Magnetic Interaction in Doped 2D Perovskite Cuprates with Nanoscale Inhomogeneity: Lattice Nonlocal Effects vs. Superexchange
Abstract
:1. Introduction
2. Color Approach to Nanoscale Inhomogeneity and D and U Stripe Structure
3. Electron-Hole Pairs in the Superexchange Interaction
4. Discussion and Conclusions
- (i)
- The spontaneous -symmetry breaking leads to a static spatial distribution of the and stripes in the doped LSCO. The static distribution origins from the different stripe width and shape, when there is no phase degeneracy. The signature of the static structure depend on the experimental timescale ranging from s to s, but is sensitive to the temperature and hole concentration [47]. In the static structure of the CuO layer, the superexchange interaction has the Anderson’s form for the interacting ions Cu2+ with spin 1/2, but is limited in space by the stripes with the zero hole concentration.
- (ii)
- Without spontaneous -symmetry breaking a novel JT cell can be constructed in the periodic stripe nanostructure with the fourfold degenerate state. The ideal CuO2 structure with nonlocal anisotropic effects and the homogeneous superexchange are restored. The stripe boundaries, spin and charge inhomogeneities disappear, and the superexchange is suppressed from its magnitude (in the undoped cuprate) by the exponential factor due to dynamic quenching for the CuO octahedra. We can evaluate the magnitude as , where , because the stripe fluctuations are observed at the temperature ∼100 K. Thus , where and eV. The strip signatures noticeably weaken with the decreasing temperature, but they are still detected as density waves of the hole pairs [43,44,45,46].
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bussmann-Holder, A.; Keller, H.; Bianconi, A. (Eds.) High-Tc Copper Oxide Superconductors and Related Novel Materials; Springer Series in Materials Science; Springer International Publishing AG: Berlin/Heidelberg, Germany, 2017; Volume 255. [Google Scholar]
- Egami, T. Alex and the Origin of High-Temperature Superconductivity. In High-Tc Copper Oxide Superconductors and Related Novel Materials; Springer Series in Materials Science; Springer International Publishing AG: Berlin/Heidelberg, Germany, 2017; pp. 35–46. [Google Scholar]
- Benedek, G.; Muller, K. Phase Separation in Cuprate Superconductors; World Scientific: Singapore, 1993. [Google Scholar]
- Bianconi, A.; Agrestini, S.; Bianconi, G.; Di Castro, D.; Saini, N. A Quantum Phase Transition Driven by the Electron Lattice Interaction Gives High TC Superconductivity. J. Alloys Compd. 2001, 317, 537–541. [Google Scholar] [CrossRef]
- Zhao, H.; Ren, Z.; Rachmilowitz, B.; Schneeloch, J.; Zhong, R.; Gu, G.; Wang, Z.; Zeljkovic, I. Charge stripe crystal phase in an insulating cuprate. Nat. Mater. 2019, 18, 103–107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maggio-Aprile, I.; Berthod, C.; Jenkins, N.; Fasano, Y.; Piriou, A.; Fischer, O. Nanoscience and Engineering in Superconductivity. NanoScience and Technolog; Chapter Scanning Tunneling Spectroscopy of High Tc Cuprates; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Fischer, O.; Kugler, M.; Maggio-Aprile, I.; Berthod, C.; Renner, C. Scanning tunneling spectroscopy of high-temperature superconductors. Rev. Mod. Phys. 2007, 79, 353–419. [Google Scholar] [CrossRef] [Green Version]
- da Silva Neto, E.; Aynajian, P.; Frano, A.; Comin, R.; Schierle, E.; Weschke, E.; Gyenis, A.; Wen, J.; Schneeloch, J.; Xu, Z.; et al. Ubiquitous Interplay Between Charge Ordering and High-TemperatureSuperconductivity in Cuprates. Science 2014, 343, 393–396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, J. Scanning Tunneling Microscopy Studies of Single Layer High-Tc Cuprate Bi2Sr2−xLaxCuO6+δ. Ph.D. Thesis, Boston College, Chestnut Hill, MA, USA, 2009. [Google Scholar]
- Lanzara, A.; Saini, N.; Brunelli, M.; Valletta, A.; Bianconi, A. Evidence for onset of charge density wave in the La-based Perovskite superconductors. J. Supercond. 1997, 10, 319–321. [Google Scholar] [CrossRef]
- Campi, G.; Bianconi, A.; Poccia, N.; Bianconi, G.; Barba, L.; Gand, A.; Innocenti, D.; Karpinski, J.; Zhigadlo, N.; Kazakov, S.; et al. Inhomogeneity of charge-density-wave order and quenched disorder in a high-Tc superconductor. Nature 2015, 525, 359–362. [Google Scholar] [CrossRef] [Green Version]
- Comin, R.; Damascelli, A. Resonant X-ray Scattering Studies of Charge Order in Cuprates. Annu. Rev. Condens. Matter Phys. 2016, 7, 369–405. [Google Scholar] [CrossRef] [Green Version]
- Mitrano, M.; Lee, S.; Husain, A.; Delacretaz, L.; Zhu, M.; de la Pena Munoz, G.; Sun, S.X.-L.; Joe, Y.I.L.; Reid, A.; Wandel, S.; et al. Ultrafast time-resolved X-ray scattering reveals diffusive charge order dynamics in La2−xBaxCuO4. Sci. Adv. 2019, 5, eaax3346. [Google Scholar] [CrossRef] [Green Version]
- Campi, G.; Bianconi, A. Functional Nanoscale Phase Separation and Intertwined Order in Quantum Complex Materials. Condens. Matter 2021, 6, 40. [Google Scholar] [CrossRef]
- Zaanen, J.; Gunnarsson, O. Charged magnetic domain lines and the magnetism of high-Tc oxides. Phys. Rev. B 1989, 40, 7391–7394. [Google Scholar] [CrossRef]
- Machida, K. Magnetism in La2CuO4 based compounds. Phys. C 1989, 158, 192–196. [Google Scholar] [CrossRef]
- Tranquada, J.M.; Sternlieb, B.J.; Axe, J.D.; Nakamura, Y.; Uchida, S. Evidence for stripe correlations of spins and holes in copper oxide superconductors. Nature 1995, 375, 561–563. [Google Scholar] [CrossRef]
- Fujita, M.; Goka, H.; Yamada, K.; Tranquada, J.M.; Regnault, L.P. Stripe order, depinning, and fluctuations in La1.875Ba0.125CuO4 and La1.875Ba0.075Sr0.050CuO4. Phys. Rev. B 2004, 70, 104517. [Google Scholar] [CrossRef] [Green Version]
- Hucker, M.; van Zimmermann, M.; Gu, G.D.; Xu, Z.J.; Wen, J.S.; Xu, G.; Kang, H.J.; Zheludev, A.; Tranquada, J.M. Stripe order in superconducting La2−xBaxCuO4 (0.095 < x < 0.155). Phys. Rev. B 2011, 83, 104506. [Google Scholar]
- Fujita, M.; Hiraka, H.; Matsuda, M.; Matsuura, M.; Tranquada, J.; Wakimoto, S.; Xu, G.; Yamada, K. Progress in Neutron Scattering Studies of Spin Excitations in High-Tc Cuprates. J. Phys. Soc. Jpn. 2012, 81, 011007–011025. [Google Scholar] [CrossRef] [Green Version]
- Wen, J.J.; Huang, H.; Lee, S.J.; Jang, H.; Knight, J.; Lee, Y.S.; Fujita, M.; Suzuki, K.M.; Asano, S.; Kivelson, S.A.; et al. Observation of two types of charge-density-wave orders in superconducting La2−xSrxCuO4. Nat. Commun. 2019, 10, 3269. [Google Scholar] [CrossRef] [Green Version]
- Miao, H.; Fabbris, G.; Koch, R.J.; Mazzone, D.G.; Nelson, C.S.; Acevedo-Esteves, R.; Gu, G.D.; Li, Y.; Yilimaz, T.; Kaznatcheev, K.; et al. Charge density waves in cuprate superconductors beyond the critical doping. NPJ Quantum Mater. 2021, 6, 31. [Google Scholar] [CrossRef]
- Ma, Q.; Rule, K.C.; Cronkwright, Z.W.; Dragomir, M.; Mitchell, G.; Smith, E.M.; Chi, S.; Kolesnikov, A.I.; Stone, M.B.; Gaulin, B.D. Parallel spin stripes and their coexistence with superconducting ground states at optimal and high doping in La1.6−xNd0.4SrxCuO4. Phys. Rev. Res. 2021, 3, 023151. [Google Scholar] [CrossRef]
- Anderson, P.W. The Resonating Valence Bond State in La2CuO4 and Superconductivity. Science 1987, 235, 1196–1198. [Google Scholar] [CrossRef]
- Scalapino, D. The Case for dx2-y2 Pairing in the Cuprate Superconductors. Phys. Rep. 1995, 250, 329–365. [Google Scholar] [CrossRef]
- Dagotto, E. Correlated Electrons in High-Temperature Superconductors. Rev. Mod. Phys. 1994, 66, 763–841. [Google Scholar] [CrossRef]
- Izyumov, Y.A. Spin-fluctuation mechanism of high-Tc superconductivity and order-parameter symmetry. Physics-Uspekhi 1999, 42, 215–243. [Google Scholar] [CrossRef]
- Anderson, P.W. New Approach to the Theory of Superexchange Interactions. Phys. Rev. 1959, 115, 2–13. [Google Scholar] [CrossRef]
- Coldea, R.; Hayden, S.M.; Aeppli, G.; Perring, T.; Frost, C.D.; Mason, T.E.; Cheong, S.W.; Fisk, Z. Spin Waves and Electronic Interactions in La2CuO4. Phys. Rev. Lett. 2001, 86, 5377–5380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bascaran, G.; Zou, Z.; Anderson, P.W. The resonating valence bond state and high-Tc superconductivity—A mean field theory. Solid State Commun. 1987, 63, 973–976. [Google Scholar] [CrossRef]
- Gros, C.; Joynt, R.; Rice, T.M. Antiferromagnetic correlations in almost-localized Fermi liquids. Phys. Rev. B 1987, 36, 381–393. [Google Scholar] [CrossRef] [PubMed]
- Kotliar, G.; Liu, J. Superexchange mechanism and d-wave superconductivity. Phys. Rev. B 1988, 38, 5142–5145. [Google Scholar] [CrossRef]
- Suzumura, Y.; Hasegawa, Y.; Fukuyama, H. Mean Field Theory of RVB and Superconductivity. J. Phys. Soc. Jpn. 1988, 57, 2768–2778. [Google Scholar] [CrossRef]
- Prelovsek, P.; Ramsak, A. Spin-fluctuation mechanism of superconductivity in cuprates. Phys. Rev. B 2005, 72, 012510. [Google Scholar] [CrossRef] [Green Version]
- Plakida, N.M.; Anton, L.; Adam, S.; Adam, G. Exchange and Spin-Fluctuation Mechanisms of Superconductivity in Cuprates. J. Exp. Theor. Phys. 2003, 97, 331–342. [Google Scholar] [CrossRef] [Green Version]
- Rossat-Mignod, J.; Regnault, L.P.; Vettier, C.; Bourges, P.; Burlet, P.; Bossy, J.; Henry, J.Y.; Lapertot, G. Neutron scattering study of the YBa2Cu3O6+x system. Phys. C Supercond. 1991, 185–189, 86–92. [Google Scholar] [CrossRef]
- Fong, H.F.; Bourges, P.; Sidis, Y.; Regnault, L.P.; Bossy, J.; Ivanov, A.; Milius, D.L.; Aksay, I.A.; Keimer, B. Spin susceptibility in underdoped YBa2Cu3O6+x. Phys. Rev. B 2000, 61, 14773–14776. [Google Scholar] [CrossRef] [Green Version]
- Dai, P.; Mook, H.A.; Hunt, R.D.; Dogan, F. Evolution of the resonance and incommensurate spin fluctuations in superconducting YBa2Cu3O6+x. Phys. Rev. B 2001, 63, 054525. [Google Scholar] [CrossRef] [Green Version]
- Scalapino, D.J. A common thread: The pairing interaction for unconventional superconductors. Rev. Mod. Phys. 2012, 84, 1383. [Google Scholar] [CrossRef] [Green Version]
- Vasala, S.; Cheng, J.G.; Yamauchi, H.; Goodenough, J.B.; Karppinen, M. Synthesis and Characterization of Sr2Cu(W1−xMox)O6: A Quasi-Two-Dimensional Magnetic System. Chem. Mater. 2012, 24, 2764–2774. [Google Scholar] [CrossRef]
- Katukuri, V.M.; Babkevich, P.; Mustonen, O.; Walker, H.C.; Fak, B.; Vasala, S.; Karppinen, M.; Ronnow, H.M.; Yazyev, V.O. Exchange Interactions Mediated by Nonmagnetic Cations in Double Perovskites. Phys. Rev. Lett. 2020, 124, 077202. [Google Scholar] [CrossRef] [Green Version]
- Thakur, G.S.; Feng, H.L.; Schnelle, W.; Felser, C.; Jansen, M. Structure and magnetism of new A- and B-site ordered double perovskites ALaCuOsO6 (A = Ba and Sr). J. Solid State Chem. 2021, 293, 121784. [Google Scholar] [CrossRef]
- Li, Y.; Terzic, J.; Baity, P.G.; Popovic, D.; Gu, G.D.; Li, Q.; Tsvelik, A.M.; Tranquada, J.M. Tuning from failed superconductor to failed insulator with magnetic field. Sci. Adv. 2019, 5, eaav7686. [Google Scholar] [CrossRef] [Green Version]
- Du, Z.; Li, H.; Joo, S.H.; Donoway, E.P.; Lee, J.; Seamus Davis, J.C.; Gu, G.; Johnson, P.D.; Fujita, K. Imaging the energy gap modulations of the cuprate pair-density-wave state. Nature 2020, 580, 65–70. [Google Scholar] [CrossRef]
- Tsvelik, A.M. Superconductor-metal transition in odd-frequency-paired superconductor in a magnetic field. Proc. Natl. Acad. Sci. USA 2019, 116, 12729–12732. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Ren, W.; Kennedy, N.; Hamidian, M.H.; Uchida, S.; Eisaki, H.; Johnson, P.D.; O’Mahony, S.M.; Seamus Davis, J.C. Identification of a nematic pair density wave state in Bi2Sr2CaCu2O8+x. Proc. Natl. Acad. Sci. USA 2022, 119, e2206481119. [Google Scholar] [CrossRef] [PubMed]
- Lanzara, A.; Zhao, G.M.; Saini, N.L.; Bianconi, A.; Conder, K.; Keller, H.; Muller, K.A. Oxygen-isotope shift of the charge-stripe ordering temperature in La2−xSrxCuO4 from X-ray absorption spectroscopy. J. Phys. Condens. Matter 1999, 11, L541–L546. [Google Scholar] [CrossRef] [Green Version]
- Rubio, D.; Mesot, J.; Conder, K.; Janssen, S.; Mutka, H.; Furrer, A.J. Doping and isotope dependence of the pseudogap in high-Tc cuprates observed by neutron crystal-field spectroscopy: A fast local probe. J. Supercond. 2000, 13, 727–730. [Google Scholar] [CrossRef]
- Suryadijaya, T.; Sasagawa, T.; Takagi, H. Oxygen isotope effect on charge/spin stripes in La1.8−xEu0.2SrxCuO4. Phys. C Supercond. 2005, 426–431, 402–406. [Google Scholar] [CrossRef]
- Bianconi, A.; Saini, N.L.; Lanzara, A.; Missori, M.; Rossetti, T.; Oyanagi, H.; Yamaguchi, H.; Oka, K.; Ito, T. Determination of the Local Lattice Distortions in the CuO2 Plane of La1.85Sr0.15CuO4. Phys. Rev. Lett. 1996, 76, 3412–3415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gavrichkov, V.A.; Shan’ko, Y.; Zamkova, N.G.; Bianconi, A. Is There Any Hidden Symmetry in the Stripe Structure of Perovskite High-Temperature Superconductors? J. Phys. Chem. Lett. 2019, 10, 1840–1844. [Google Scholar] [CrossRef] [Green Version]
- Glazer, A.M. A Brief History of Tilts. Phase Transit. 2011, 84, 405–420. [Google Scholar] [CrossRef]
- Woodward, R.B.; Hoffmann, R. The Conservation of Orbital Symmetry; Verlag Chemie GmbH; Academic Press Inc.: Cambridge, MA, USA, 1971. [Google Scholar]
- Kano, E.; Kvashnin, D.G.; Sakai, S.; Chernozatonskii, L.A.; Sorokin, P.B.; Hashimoto, A.; Takeguchi, M. One-atom-thick 2D copper oxide clusters on graphene. Nanoscale 2017, 9, 3980–3985. [Google Scholar] [CrossRef] [Green Version]
- Kvashnin, D.G.; Kvashnin, A.G.; Kano, E.; Hashimoto, A.; Takeguchi, M.; Naramoto, H.; Sakai, S.; Sorokin, P.B. Two-Dimensional CuO Inside the Supportive Bilayer Graphene Matrix. J. Phys. Chem. C 2019, 123, 17459–17465. [Google Scholar] [CrossRef]
- Rodriguez-Carvajal, J.; Fernandez-Diaz, M.T.; Martinez, J.L. Neutron diffraction study on structural and magnetic properties of La2NiO4. J. Phys. Condens. Matter 1991, 3, 3215–3234. [Google Scholar] [CrossRef]
- Zhang, F.C.; Rice, T.M. Effective Hamiltonian for the superconducting Cu oxides. Phys. Rev. B 1988, 37, 3759–3761. [Google Scholar] [CrossRef] [PubMed]
- Bersuker, G.I.; Gorinchoy, N.N.; Polinger, V.Z.; Solonenko, A.O. Jahn-Teller Mechanism of Coupling in the HTSC. Supercond. Phys. Chem. Eng. 1992, 5, 1003–1013. [Google Scholar]
- Hubbard, J. Electron correlations in narrow bands. Proc. Roy. Soc. 1964, 84, 455–560. [Google Scholar] [CrossRef]
- Gavrichkov, V.A.; Gavrichkov, S.A. The Jahn-Teller instability criterion for resonance impurity states. Phys. Lett. A 1990, 145, 353–357. [Google Scholar] [CrossRef]
- Gavrichkov, V.A.; Polukeev, S.I.; Ovchinnikov, S.G. Cation spin and superexchange interaction in oxide materials below and above spin crossover under high pressure. Phys. Rev. B 2020, 101, 094409. [Google Scholar] [CrossRef] [Green Version]
- Gavrichkov, V.A.; Polukeev, S.I.; Ovchinnikov, S.G. Contribution from optically excited many-electron states to the superexchange interaction in Mott-Hubbard insulators. Phys. Rev. B 2017, 95, 144424. [Google Scholar] [CrossRef] [Green Version]
- Mikhaylovskiy, R.; Huisman, T.; Gavrichkov, V.; Polukeev, S.I.; Ovchinnikov, S.; Afanasiev, D.; Pisarev, R.; Rasing, T.; Kimel, A. Resonant Pumping of d-d Crystal Field Electronic Transitions as a Mechanism of Ultrafast Optical Control of the Exchange Interactions in Iron Oxides. Phys. Rev. Lett. 2020, 125, 157201. [Google Scholar] [CrossRef]
- Gavrichkov, V.A.; Pchelkina, Z.V.; Nekrasov, I.A.; Ovchinnikov, S.G. Pressure effect on the energy structure and superexchange interaction in undoped orthorhombic La2CuO4. Int. J. Mod. Phys. B 2016, 30, 1650180. [Google Scholar] [CrossRef]
- Ham, F.S. Dynamical Jahn-Teller Effect in Paramagnetic Resonance Spectra: Orbital Reduction Factors and Partial Quenching of Spin-Orbit Interaction. Phys. Rev. 1965, 138, A1727–A1740. [Google Scholar] [CrossRef]
- Hafliger, P.S.; Gerber, S.; Pramod, R.; Schnells, V.I.; dalla Piazza, B.; Chati, R.; Pomjakushin, V.; Conder, K. Quantum and thermal ionic motion, oxygen isotope effect, and superexchange distribution in La2CuO4. Phys. Rev. B 2014, 89, 085113. [Google Scholar] [CrossRef] [Green Version]
- Pickett, W.E. Electronic Structure of the High-temperature Oxide Superconductors. Rev. Mod. Phys. 1989, 61, 433–512. [Google Scholar] [CrossRef]
- Seibold, G.; Lorenzana, J.; Grilli, M. Checkerboard and Stripe Inhomogeneities in Cuprates. Phys. Rev. B 2007, 75, 100505. [Google Scholar] [CrossRef]
- Okamoto, S.; Furukawa, N. Spontaneous Fourfold-symmetry Breaking Driven by Electron-lattice Coupling and Strong Correlations in High-TC Cuprates. Phys. Rev. B 2012, 86, 094522. [Google Scholar] [CrossRef] [Green Version]
- Bersuker, I.B. Electronic Structure and Properties of Transition Metal Compounds: Introduction to the Theory; John Wiley & Sons: New York, NY, USA, 2010. [Google Scholar]
- Xia, J.; Beyersdorf, P.T.; Fejer, M.M.; Kapitulnik, A. Modified Sagnac interferometer for high-sensitivity magneto-optic measurements atcryogenic temperatures. Appl. Phys. Lett. 2006, 89, 062508. [Google Scholar] [CrossRef] [Green Version]
- Xia, J.; Schemm, E.R.; Deutscher, G.; Kivelson, S.A.; Bonn, D.A.; Hardy, N.W.; Liang, R.; Siemons, W.; Koster, G.; Fejer, M.M.; et al. Polar Kerr-Effect Measurements of the High-Temperature YBa2Cu3O6+x Superconductor: Evidence for Broken Symmetry near the Pseudogap Temperature. Phys. Rev. Lett. 2008, 100, 127002. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Alidoust, N.; Tranquada, J.M.; Gu, G.D.; Ong, N.P. Unusual Nernst Effect Suggesting Time-Reversal Violation in the Striped Cuprate Superconductor La2−xBaxCuO4. Phys. Rev. Lett. 2011, 107, 277001. [Google Scholar] [CrossRef] [Green Version]
- He, R.H.; Hashimoto, M.; Karapetyan, H.; Koralek, J.D.; Hinton, J.P.; Testaud, J.P.; Nathan, V.; Yoshida, Y.; Yao, H.; Tanaka, K.; et al. From a Single-Band Metal to a High-Temperature Superconductor via Two Thermal Phase Transitions. Science 2011, 331, 1579. [Google Scholar] [CrossRef] [Green Version]
- Harima, N.; Matsuno, J.; Fujimori, A.; Onose, Y.; Taguchi, Y.; Tokura, Y. Chemical potential shift in Nd2−xCexCuO4: Contrasting behavior between the electron- and hole-doped cuprates. Phys. Rev. B 2001, 64, 220507. [Google Scholar] [CrossRef] [Green Version]
- Ledbetter, H.; Kim, S.; Roshko, A. Critical-temperature/Debye-temperature correlation in (La-M)2CuO4 superconductors. Phys. C 1991, 190, 129–130. [Google Scholar] [CrossRef]
- Ledbetter, H. Dependence of on Debye temperature OD for various cuprates. Phys. C 1994, 235–240, 1325–1326. [Google Scholar] [CrossRef]
- Imada, M. Charge Order and Superconductivity as Competing Brothers in Cuprate High-Tc Superconductors. J. Phys. Soc. Jpn. 2021, 90, 111009. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gavrichkov, V.A.; Polukeev, S.I. Magnetic Interaction in Doped 2D Perovskite Cuprates with Nanoscale Inhomogeneity: Lattice Nonlocal Effects vs. Superexchange. Condens. Matter 2022, 7, 57. https://doi.org/10.3390/condmat7040057
Gavrichkov VA, Polukeev SI. Magnetic Interaction in Doped 2D Perovskite Cuprates with Nanoscale Inhomogeneity: Lattice Nonlocal Effects vs. Superexchange. Condensed Matter. 2022; 7(4):57. https://doi.org/10.3390/condmat7040057
Chicago/Turabian StyleGavrichkov, Vladimir A., and Semyon I. Polukeev. 2022. "Magnetic Interaction in Doped 2D Perovskite Cuprates with Nanoscale Inhomogeneity: Lattice Nonlocal Effects vs. Superexchange" Condensed Matter 7, no. 4: 57. https://doi.org/10.3390/condmat7040057
APA StyleGavrichkov, V. A., & Polukeev, S. I. (2022). Magnetic Interaction in Doped 2D Perovskite Cuprates with Nanoscale Inhomogeneity: Lattice Nonlocal Effects vs. Superexchange. Condensed Matter, 7(4), 57. https://doi.org/10.3390/condmat7040057