Scale-Free Distribution of Oxygen Interstitial Wires in Optimum-Doped HgBa2CuO4+y
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bussmann-Holder, A.; Keller, H.; Bianconi, A. (Eds.) High-Tc Copper Oxide Superconductors and Related Novel Materials (Springer Series in Materials Science); Springer International Publishing AG: Cham, Switzerland, 2017; Volume 255. [Google Scholar]
- Egami, T. Alex and the origin of high-temperature superconductivity. In High-Tc Copper Oxide Superconductors and Related Novel Materials; Springer: Cham, Switzerland, 2017; pp. 35–46. [Google Scholar]
- Giraldo-Gallo, P.; Zhang, Y.; Parra, C.; Manoharan, H.; Beasley, M.; Geballe, T.; Kramer, M.; Fisher, I. Stripe-like nanoscale structural phase separation in superconducting BaPb1−xBixO3. Nat. Commun. 2015, 6, 8231. [Google Scholar] [CrossRef] [Green Version]
- Krockenberger, Y.; Ikeda, A.; Yamamoto, H. Atomic Stripe Formation in Infinite-Layer Cuprates. ACS Omega 2021, 6, 21884–21891. [Google Scholar] [CrossRef]
- Bartolomé, E.; Mundet, B.; Guzmán, R.; Gázquez, J.; Valvidares, S.M.; Herrero-Martín, J.; Pellegrin, E.; Puig, T.; Obradors, X. Embedded magnetism in YBa2Cu3O7 associated with Cu–O vacancies within nanoscale intergrowths: Implications for superconducting current performance. ACS Appl. Nano Mater. 2020, 3, 3050–3059. [Google Scholar] [CrossRef]
- Gavrichkov, V.A.; Shan’ko, Y.; Zamkova, N.G.; Bianconi, A. Is there any hidden symmetry in the stripe structure of perovskite high-temperature superconductors? J. Phys. Chem. Lett. 2019, 10, 1840–1844. [Google Scholar] [CrossRef] [Green Version]
- Bianconi, A. Shape resonances in superstripes. Nat. Phys. 2013, 9, 536–553. [Google Scholar] [CrossRef] [Green Version]
- Hoshi, K.; Sakuragi, S.; Yajima, T.; Goto, Y.; Miura, A.; Moriyoshi, C.; Kuroiwa, Y.; Mizuguchi, Y. Structural phase diagram of LaO1− xFxBiSSe: Suppression of the structural phase transition by partial F substitutions. Condens. Matter 2020, 5, 81. [Google Scholar] [CrossRef]
- Athauda, A.; Louca, D. Nanoscale atomic distortions in the BiS2 superconductors: Ferrodistortive sulfur modes. J. Phys. Soc. Jpn. 2019, 88, 041004. [Google Scholar] [CrossRef]
- Li, W.M.; Zhao, J.F.; Cao, L.P.; Hu, Z.; Huang, Q.Z.; Wang, X.C.; Liu, Y.; Zhao, G.Q.; Zhang, J.; Liu, Q.Q.; et al. Superconductivity in a unique type of copper oxide. Proc. Natl. Acad. Sci. USA 2019, 116, 12156–12160. [Google Scholar] [CrossRef] [Green Version]
- Conradson, S.D.; Geballe, T.H.; Gauzzi, A.; Karppinen, M.; Jin, C.; Baldinozzi, G.; Li, W.; Cao, L.; Gilioli, E.; Jiang, J.M.; et al. Local lattice distortions and dynamics in extremely overdoped superconducting YSr2Cu2.75Mo0.25O7.54. Proc. Natl. Acad. Sci. USA 2020, 117, 4559–4564. [Google Scholar] [CrossRef]
- Crabtree, G.W.; Sarrao, J.L. Opportunities for mesoscale science. MRS Bull. 2012, 37, 1079–1088. [Google Scholar] [CrossRef]
- Schroer, C.G.; Kurapova, O.; Patommel, J.; Boye, P.; Feldkamp, J.; Lengeler, B.; Burghammer, M.; Riekel, C.; Vincze, L.; van der Hart, A.; et al. Hard x-ray nanoprobe based on refractive x-ray lenses. Appl. Phys. Lett. 2005, 87, 124103. [Google Scholar] [CrossRef]
- Campi, G. Structural Fluctuations at Nanoscale in Complex Functional Materials. In Synchrotron Radiation Science and Applications; Springer: Cham, Switzerland, 2021; pp. 181–189. [Google Scholar]
- Campi, G.; Bianconi, A. Evolution of complexity in out-of-equilibrium systems by time-resolved or space-resolved synchrotron radiation techniques. Condens. Matter 2019, 4, 32. [Google Scholar] [CrossRef] [Green Version]
- Phillabaum, B.; Carlson, E.W.; Dahmen, K.A. Spatial complexity due to bulk electronic nematicity in a superconducting underdoped cuprate. Nat. Commun. 2012, 3, 915. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carlson, E.W.; Liu, S.; Phillabaum, B.; Dahmen, K.A. Decoding spatial complexity in strongly correlated electronic systems. J. Supercond. Nov. Magn. 2015, 28, 1237–1243. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Carlson, E.W.; Dahmen, K.A. Connecting complex electronic pattern formation to critical exponents. Condens. Matter 2021, 6, 39. [Google Scholar] [CrossRef]
- Li, J.; Pelliciari, J.; Mazzoli, C.; Catalano, S.; Simmons, F.; Sadowski, J.T.; Levitan, A.; Gibert, M.; Carlson, E.; Triscone, J.-M.; et al. Scale-invariant magnetic textures in the strongly correlated oxide NdNiO3. Nat. Commun. 2019, 10, 4568. [Google Scholar] [CrossRef] [Green Version]
- Campi, G.; Poccia, N.; Joseph, B.; Bianconi, A.; Mishra, S.; Lee, J.; Roy, S.; Nugroho, A.A.; Buchholz, M.; Braden, M.; et al. Direct visualization of spatial inhomogeneity of spin stripes order in La1.72Sr0.28NiO4. Condens. Matter 2019, 4, 77. [Google Scholar] [CrossRef] [Green Version]
- Campi, G.; Bianconi, A.; Ricci, A. Nanoscale phase separation of incommensurate and quasi-commensurate spin stripes in low temperature spin glass of La2−xSrxNiO4. Condens. Matter 2021, 6, 45. [Google Scholar] [CrossRef]
- Richardella, A.; Roushan, P.; Mack, S.; Zhou, B.; Huse, D.A.; Awschalom, D.D.; Yazdani, A. Visualizing critical correlations near the metal-insulator transition in Ga1-xMnxAs. Science 2010, 327, 665–669. [Google Scholar] [CrossRef] [Green Version]
- Newman, M.E.; Barabási, A.L.E.; Watts, D.J. The Structure and Dynamics of Networks; Princeton University Press: Princeton, NJ, USA, 2006. [Google Scholar]
- Richard, P.; Valance, A.; Métayer, J.F.; Sanchez, P.; Crassous, J.; Louge, M.; Delannay, R. Rheology of confined granular flows: Scale invariance, glass transition, and friction weakening. Phys. Rev. Lett. 2008, 101, 248002. [Google Scholar] [CrossRef]
- Bianconi, G. Enhancement of Tc in the superconductor–insulator phase transition on scale-free networks. J. Stat. Mech. Theory Exp. 2012, 2012, P07021. [Google Scholar] [CrossRef] [Green Version]
- Uchino, T.; Teramachi, N.; Matsuzaki, R.; Tsushima, E.; Fujii, S.; Seto, Y.; Takahashi, K.; Mori, T.; Adachi, Y.; Nagashima, Y.; et al. Proximity coupling of superconducting nanograins with fractal distributions. Phys. Rev. B 2020, 101, 035146. [Google Scholar] [CrossRef]
- Bianconi, A. Shape resonances in superconducting gaps and complexity in superstripes. J. Supercond. Nov. Magn. 2013, 26, 2821–2827. [Google Scholar] [CrossRef]
- Ashkenazi, J.; Johnson, N.F. Quantum criticality stabilizes high Tc superconductivity against competing symmetry-breaking instabilities. J. Supercond. Nov. Magn. 2013, 26, 2611–2616. [Google Scholar] [CrossRef] [Green Version]
- Campi, G.; Bianconi, A. High-Temperature superconductivity in a hyperbolic geometry of complex matter from nanoscale to mesoscopic scale. J. Supercond. Nov. Magn. 2016, 29, 627–631. [Google Scholar] [CrossRef]
- Littlewood, P. Superconductivity: An X-ray oxygen regulator. Nat. Mater. 2011, 10, 726–727. [Google Scholar] [CrossRef] [PubMed]
- Perrichon, A.; Piovano, A.; Boehm, M.; Zbiri, M.; Johnson, M.; Schober, H.; Ceretti, M.; Paulus, W. Lattice dynamics modified by excess oxygen in Nd2NiO4+δ: Triggering Low-Temperature oxygen diffusion. J. Phys. Chem. C 2015, 119, 1557–1564. [Google Scholar] [CrossRef]
- Campi, G.; Ricci, A.; Poccia, N.; Fratini, M.; Bianconi, A. X-Rays Writing/Reading of charge density waves in the CuO2 plane of a simple cuprate superconductor. Condens. Matter 2017, 2, 26. [Google Scholar] [CrossRef] [Green Version]
- Bianconi, A.; Marcelli, A.; Bendele, M.; Innocenti, D.; Barinov, A.; Poirot, N.; Campi, G. VUV Pump and probe of phase separation and oxygen interstitials in La2NiO4+y using spectromicroscopy. Condens. Matter 2018, 3, 6. [Google Scholar] [CrossRef] [Green Version]
- Jarlborg, T.; Bianconi, A. Electronic structure of superoxygenated La2NiO4 domains with ordered oxygen interstitials. J. Supercond. Nov. Magn. 2016, 29, 615–621. [Google Scholar] [CrossRef]
- Fratini, M.; Poccia, N.; Ricci, A.; Campi, G.; Burghammer, M.; Aeppli, G.; Bianconi, A. Scale-free structural organization of oxygen interstitials in La2CuO4+y. Nature 2010, 466, 841–844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poccia, N.; Fratini, M.; Ricci, A.; Campi, G.; Barba, L.; Vittorini-Orgeas, A.; Bianconi, G.; Aeppli, G.; Bianconi, A. Evolution and control of oxygen order in a cuprate superconductor. Nat. Mater. 2011, 10, 733–736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poccia, N.; Ricci, A.; Campi, G.; Fratini, M.; Puri, A.; Gioacchino, D.D.; Marcelli, A.; Reynolds, M.; Burghammer, M.; Saini, N.L.; et al. Optimum inhomogeneity of local lattice distortions in La2CuO4+y. Proc. Natl. Acad. Sci. USA 2012, 109, 15685–15690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poccia, N.; Bianconi, A.; Campi, G.; Fratini, M.; Ricci, A. Size evolution of the oxygen interstitial nanowires in La2CuO4+y by thermal treatments and X-ray continuous illumination. Supercond. Sci. Technol. 2012, 25, 124004. [Google Scholar] [CrossRef]
- Poccia, N.; Chorro, M.; Ricci, A.; Xu, W.; Marcelli, A.; Campi, G.; Bianconi, A. Percolative superconductivity in La2CuO4.06 by lattice granularity patterns with scanning micro x-ray absorption near edge structure. Appl. Phys. Lett. 2014, 104, 221903. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.H.; Hoffmann, R. Oxygen interstitials in superconducting La2CuO4: Their valence state and role. J. Phys. Chem. A 2006, 110, 609–617. [Google Scholar] [CrossRef]
- De Mello, E.V.L. Describing how the superconducting transition in La2CuO4+y is related to the i-O phase separation. J. Supercond. Nov. Magn. 2012, 25, 1347–1350. [Google Scholar] [CrossRef]
- Jarlborg, T.; Bianconi, A. Fermi surface reconstruction of superoxygenated La2CuO4 superconductors with ordered oxygen interstitials. Phys. Rev. B 2013, 87, 054514. [Google Scholar] [CrossRef] [Green Version]
- Ricci, A.; Poccia, N.; Campi, G.; Coneri, F.; Caporale, A.S.; Innocenti, D.; Burghammer, M.; Zimmermann, M.V.; Bianconia, A. Multiscale distribution of oxygen puddles in 1/8 doped YBa2Cu3O6.67. Sci. Rep. 2013, 3, 2383. [Google Scholar] [CrossRef] [Green Version]
- Ricci, A.; Poccia, N.; Campi, G.; Coneri, F.; Barba, L.; Arrighetti, G.; Polentarutti, M.; Burghammer, M.; Sprung, M.; Zimmermann, M.V.; et al. Networks of superconducting nano-puddles in 1/8 doped YBa2Cu3O6.5+y controlled by thermal manipulation. New J. Phys. 2014, 16, 053030. [Google Scholar] [CrossRef]
- Campi, G.; Ricci, A.; Poccia, N.; Barba, L.; Arrighetti, G.; Burghammer, M.; Caporale, A.S.; Bianconi, A. Scanning micro-x-ray diffraction unveils the distribution of oxygen chain nanoscale puddles in YBa2Cu3O6.33. Phys. Rev. B 2013, 87, 014517. [Google Scholar] [CrossRef] [Green Version]
- Bianconi, A.; Lusignoli, M.; Saini, N.L.; Bordet, P.; Kvick, Å.; Radaelli, P.G. Stripe structure of the CuO2 plane in Bi2Sr2CaCu2O8+y by anomalous X-ray diffraction. Phys. Rev. B 1996, 54, 4310–4314. [Google Scholar] [CrossRef] [PubMed]
- Poccia, N.; Campi, G.; Fratini, M.; Ricci, A.; Saini, N.L.; Bianconi, A. Spatial inhomogeneity and planar symmetry breaking of the lattice incommensurate supermodulation in the high-temperature superconductor Bi2Sr2CaCu2O8+y. Phys. Rev. B 2011, 84, 100504. [Google Scholar] [CrossRef] [Green Version]
- Zeljkovic, I.; Xu, Z.; Wen, J.; Gu, G.; Markiewicz, R.S.; Hoffman, J.E. Imaging the impact of single oxygen atoms on superconducting Bi2Sr2–yCaCu2O8+x. Science 2012, 337, 320–323. [Google Scholar] [CrossRef] [PubMed]
- Poccia, N.; Zhao, S.Y.F.; Yoo, H.; Huang, X.; Yan, H.; Chu, Y.S.; Zhong, R.; Gu, G.; Mazzoli, C.; Watanabe, K.; et al. Spatially correlated incommensurate lattice modulations in an atomically thin high-temperature Bi2.1Sr1.9CaCu2.0O8+y superconductor. Phys. Rev. Mater. 2020, 4, 114007. [Google Scholar] [CrossRef]
- Putilin, S.; Antipov, E.; Chmaissem, O.; Marezio, M. Superconductivity at 94 K in HgBa2Cu04+δ. Nature 1993, 362, 226–228. [Google Scholar] [CrossRef]
- Karpinski, J.; Meijer, G.I.; Schwer, H.; Molinski, R.; Kopnin, E.; Conder, K.; Angst, M.; Jun, J.; Kazakov, S.; Wisniewski, A.; et al. High-pressure synthesis, crystal growth, phase diagrams, structural and magnetic properties of Y2Ba4CunO2n+x, HgBa2 Can−1 CunO2n+2+x and quasi-one-dimensional cuprates. Supercond. Sci. Technol. 1999, 12, R153–R181. [Google Scholar] [CrossRef]
- Legros, A.; Loret, B.; Forget, A.; Bonnaillie, P.; Collin, G.; Thuéry, P.; Sacuto, A.; Colson, D. Crystal growth and doping control of HgBa2CuO4+δ, the model compound for high-Tc superconductors. Mater. Res. Bull. 2019, 118, 110479. [Google Scholar] [CrossRef] [Green Version]
- Bordet, P.; Duc, F.; LeFloch, S.; Capponi, J.J.; Alexandre, E.; Rosa-Nunes, M.; Putilin, S.; Antipov, E.V. Single crystal X-ray diffraction study of the HgBa2CuO4+δ superconducting compound. Phys. C Supercond. 1996, 271, 189–196. [Google Scholar] [CrossRef]
- Balagurov, A.M.; Sheptyakov, D.V.; Aksenov, V.L.; Antipov, E.V.; Putilin, S.N.; Radaelli, P.G.; Marezio, M. Structure of HgBa2CuO4+δ (0.06<δ<0.19) at ambient and high pressure. Phys. Rev. B 1999, 59, 7209–7215. [Google Scholar] [CrossRef]
- Auvray, N.; Loret, B.; Chibani, S.; Grasset, R.; Guarnelli, Y.; Parisiades, P.; Forget, A.; Colson, D.; Cazayous, M.; Gallais, Y.; et al. Exploration of Hg-based cuprate superconductors by Raman spectroscopy under hydrostatic pressure. Phys. Rev. B 2021, 103, 19513. [Google Scholar] [CrossRef]
- Izquierdo, M.; Megtert, S.; Colson, D.; Honkimäki, V.; Forget, A.; Raffy, H.; Comès, R. One dimensional ordering of doping oxygen in superconductors evidenced by x-ray diffuse scattering. J. Phys. Chem. Solids 2011, 72, 545–548. [Google Scholar] [CrossRef]
- Campi, G.; Bianconi, A.; Poccia, N.; Bianconi, G.; Barba, L.; Arrighetti, G.; Innocenti, D.; Karpinski, J.; Zhigadlo, N.; Kazakov, S.M.; et al. Inhomogeneity of charge-density-wave order and quenched disorder in a high-Tc superconductor. Nature 2015, 525, 359–362. [Google Scholar] [CrossRef] [Green Version]
- Izquierdo, M.; Freitas, D.C.; Colson, D.; Garbarino, G.; Forget, A.; Raffy, H.; Itié, J.-P.; Ravy, S.; Fertey, P.; Núñez-Regueiro, M. Charge order and suppression of superconductivity in HgBa2CuO4+d at high pressures. Condens. Matter 2021, 6, 25. [Google Scholar] [CrossRef]
- Barbiellini, B.; Jarlborg, T. Electron and positron states in HgBa2CuO4. Phys. Rev. B 1994, 50, 3239–3245. [Google Scholar] [CrossRef] [PubMed]
- Jarlborg, T.; Bianconi, A. Electronic structure of HgBa2CuO4+δ with self-organized interstitial oxygen wires in the Hg spacer planes. J. Supercond. Nov. Magn. 2018, 31, 689–695. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Bollinger, A.T.; He, X.; Božović, I. Spontaneous breaking of rotational symmetry in copper oxide superconductors. Nature 2017, 547, 432–435. [Google Scholar] [CrossRef] [PubMed]
- Wahlberg, E.; Arpaia, R.; Seibold, G.; Rossi, M.; Fumagalli, R.; Trabaldo, E.; Brookes, N.B.; Braicovich, L.; Caprara, S.; Gran, U.; et al. Restored strange metal phase through suppression of charge density waves in underdoped YBa2Cu3O7–δ. Science 2021, 373, 1506–1510. [Google Scholar] [CrossRef] [PubMed]
- Metropolis, N.; Rosenbluth, A.W.; Rosenbluth, M.N.; Teller, A.H.; Teller, E.J. Equation of state calculations by fast computing machines. J. Chem. Phys. 1953, 21, 1087–1091. [Google Scholar] [CrossRef] [Green Version]
- Proffen, T.; Neder, R.B. DISCUS, a program for diffuse scattering and defect structure simulations. J. Appl. Cryst. 1997, 30, 171–175. [Google Scholar] [CrossRef]
- Bianconi, A.; Poccia, N.; Sboychakov, A.O.; Rakhmanov, A.L.; Kugel, K.I. Intrinsic arrested nanoscale phase separation near a topological Lifshitz transition in strongly correlated two-band metals. Supercond. Sci. Technol. 2015, 28, 024005. [Google Scholar] [CrossRef] [Green Version]
- Jaouen, T.; Hildebrand, B.; Mottas, M.L.; Di Giovannantonio, M.; Ruffieux, P.; Rumo, M.; Nicholson, C.W.; Razzoli, E.; Barreteau, C.; Ubaldini, A.; et al. Phase separation in the vicinity of Fermi surface hot spots. Phys. Rev. B 2019, 100, 075152. [Google Scholar] [CrossRef] [Green Version]
- Jarlborg, T.; Bianconi, A. Multiple electronic components and Lifshitz transitions by oxygen wires formation in layered cuprates and nickelates. Condens. Matter 2019, 4, 15. [Google Scholar] [CrossRef] [Green Version]
- Agrestini, S.; Metallo, C.; Filippi, M.; Simonelli, L.; Campi, G.; Sanipoli, C.; Liarokapis, E.; de Negri, S.; Giovannini, M.; Saccone, A.; et al. Substitution of Sc for Mg in MgB2: Effects on transition temperature and Kohn anomaly. Phys. Rev. B 2004, 70, 134514. [Google Scholar] [CrossRef] [Green Version]
- Perali, A.; Innocenti, D.; Valletta, A.; Bianconi, A. Anomalous isotope effect near a 2.5 Lifshitz transition in a multi-band multi-condensate superconductor made of a superlattice of stripes. Supercond. Sci. Technol. 2012, 25, 124002. [Google Scholar] [CrossRef] [Green Version]
- Mazziotti, M.V.; Valletta, A.; Campi, G.; Innocenti, D.; Perali, A.; Bianconi, A. Possible Fano resonance for high-Tc multi-gap superconductivity in p-Terphenyl doped by K at the Lifshitz transition. EPL 2017, 118, 37003. [Google Scholar] [CrossRef] [Green Version]
- Pinto, N.; di Nicola, C.; Trapananti, A.; Minicucci, M.; di Cicco, A.; Marcelli, A.; Bianconi, A.; Marchetti, F.; Pettinari, C.; Perali, A. Potassium-doped para-terphenyl: Structure, electrical transport properties and possible signatures of a superconducting transition. Condens. Matter 2020, 5, 78. [Google Scholar] [CrossRef]
- Bianconi, A.; Jarlborg, T. Lifshitz transitions and zero point lattice fluctuations in sulfur hydride showing near room temperature superconductivity. Nov. Supercond. Mater. 2015, 1, 37–49. [Google Scholar] [CrossRef]
- Mazziotti, M.V.; Jarlborg, T.; Bianconi, A.; Valletta, A. Room temperature superconductivity dome at a Fano resonance in superlattices of wires. EPL 2021, 134, 17001. [Google Scholar] [CrossRef]
- Mazziotti, M.V.; Mazziotti, M.V.; Raimondi, R.; Valletta, Antonio; Campi, G.; Bianconi, A. Resonant multi-gap superconductivity at room temperature near a Lifshitz topological transition in sulfur hydrides. J. Appl. Phys. 2021, 130, 173904. [Google Scholar] [CrossRef]
- Isobe, H.; Fu, L. Supermetal. Phys. Rev. Res. 2019, 1, 033206. [Google Scholar] [CrossRef] [Green Version]
- Mazziotti, M.V.; Valletta, A.; Raimondi, R.; Bianconi, A. Multigap superconductivity at an unconventional Lifshitz transition in a three-dimensional Rashba heterostructure at the atomic limit. Phys. Rev. B 2021, 103, 024523. [Google Scholar] [CrossRef]
- Walsh, C.; Sémon, P.; Sordi, G.; Tremblay, A.M. Critical opalescence across the doping-driven Mott transition in optical lattices of ultracold atoms. Phys. Rev. B 2019, 99, 165151. [Google Scholar] [CrossRef] [Green Version]
- Di Castro, D.; Bianconi, G.; Colapietro, M.; Pifferi, A.; Saini, N.L.; Agrestini, S.; Bianconi, A. Evidence for the strain critical point in high Tc superconductors. Eur. Phys. J. B Condens. Matter Complex Syst. 2000, 18, 617–624. [Google Scholar] [CrossRef]
- Gavrichkov, V.A.; Polukeev, S.I. Magnetic interaction in doped 2D perovskite cuprates with banoscale inhomogeneity: Lattice nonlocal effects vs. superexchange. arXiv 2022, arXiv:2205.11959. [Google Scholar]
- Benedek, G.; Manson, J.R.; Miret-Artés, S.; Ruckhofer, A.; Ernst, W.E.; Tamtögl, A.; Toennies, J.P. Measuring the electron–phonon interaction in two-dimensional superconductors with he-atom scattering. Condens. Matter 2020, 5, 79. [Google Scholar] [CrossRef]
- Arpaia, R.; Caprara, S.; Fumagalli, R.; De Vecchi, G.; Peng, Y.Y.; Andersson, E.; Betto, D.; De Luca, G.M.; Brookes, N.B.; Lombardi, F.; et al. Dynamical charge density fluctuations pervading the phase diagram of a Cu-based high-Tc superconductor. Science 2019, 365, 906–910. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castellani, C.; di Castro, C.; Grilli, M. Singular quasiparticle scattering in the proximity of charge instabilities. Phys. Rev. Lett. 1995, 75, 4650–4653. [Google Scholar] [CrossRef] [PubMed]
Cu | Opl | Oap | Total | |
---|---|---|---|---|
Hg12Ba24Cu12O48 | 0.73 | 0.12 | 0.0 | 0.85 |
Hg12Ba24Cu12O48+2 near O-i stripes | 1.0 | 0.21 | 0.50 | 1.71 |
far from O-i stripes | 0.93 | 0.18 | 0.15 | 1.26 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Campi, G.; Mazziotti, M.V.; Jarlborg, T.; Bianconi, A. Scale-Free Distribution of Oxygen Interstitial Wires in Optimum-Doped HgBa2CuO4+y. Condens. Matter 2022, 7, 56. https://doi.org/10.3390/condmat7040056
Campi G, Mazziotti MV, Jarlborg T, Bianconi A. Scale-Free Distribution of Oxygen Interstitial Wires in Optimum-Doped HgBa2CuO4+y. Condensed Matter. 2022; 7(4):56. https://doi.org/10.3390/condmat7040056
Chicago/Turabian StyleCampi, Gaetano, Maria Vittoria Mazziotti, Thomas Jarlborg, and Antonio Bianconi. 2022. "Scale-Free Distribution of Oxygen Interstitial Wires in Optimum-Doped HgBa2CuO4+y" Condensed Matter 7, no. 4: 56. https://doi.org/10.3390/condmat7040056
APA StyleCampi, G., Mazziotti, M. V., Jarlborg, T., & Bianconi, A. (2022). Scale-Free Distribution of Oxygen Interstitial Wires in Optimum-Doped HgBa2CuO4+y. Condensed Matter, 7(4), 56. https://doi.org/10.3390/condmat7040056