Polarons in Rock-Forming Minerals: Physical Implications
Abstract
:1. Introduction
2. Results
2.1. First Evidence for Delocalised H+ and e− in Amphiboles at High Temperatures
2.2. Grunerite as Model Pure MFe2+-Amphibole
2.3. Compositional Effects on the Polaron Characteristics
2.3.1. Mix-Valence Iron in the Octahedral Stripes
2.3.2. Filled A-Sites in the Voids Formed by the I-Beams
2.3.3. Effect of the Fe2+ Content: Fe-Poor Magnesian Amphiboles
3. Discussion
- (i)
- in geophysics: we provide direct evidence for the existence of polarons with anisotropic mobility in various amphiboles to explain the anisotropic rock conductivity near subduction wedges. Thus, our results fully support the suggested mechanism of polaronic conductivity, based on in situ electrical measurements on amphiboles and amphibole-containing rocks [9,10,11].
- (ii)
- in materials science: amphiboles have the potential to be used as functional materials having two types of charge carriers with an anisotropic mobility in two mutually perpendicular directions. Synthetic amphibole counterparts with controlled chemistry can be relatively easily produced at 600–900 K and 2–3 kbar [15,27], which could be the basis for mineral-inspired technologies for designing functional materials with highly anisotropic polaron conductivity and hydrogen diffusion.
4. Materials and Methods
5. Conclusions
- At high temperatures Fe-bearing amphiboles develop both mobile FeO6 polarons and H+ cations and therefore can be considered as hydrous “geo-stripes”;
- The temperature-activated polarons exist independently of the presence or absence of external O2 as well as independently of the amphibole composition;
- The cationic site occupancy can tune the polaron activation temperature (i.e., via A-site population as well as Fe3+/Fetot and Mg/(Mg++Fe2+) concentrations in the octahedral stripes), the polaron-dipole magnitude (via A-site population) and mutual polaron-dipole alignment (highly aligned along the stripes of linked SiO4-rings and MO6 octahedra, if the occupancy of octahedrally coordinated sites by Fe2+ exceeds 50%);
- The room-temperature lifetime of polarons, pre-activated at elevated temperatures, can be lengthened by the presence of A-site cations;
- Even a low concentration of polarons triggers the delocalisation of all H+ cations at high temperatures.
- The existence of thermally-activated compositionally-controlled quasiparticles in amphiboles explains the anomalous rock conductivity in subduction wedge regions, but also opens a new route to designing novel smart materials with highly anisotropic properties working up to high temperatures.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bhalla, A.S.; Guo, R.; Roy, R. The perovskite structure—A review of its role in ceramic science and technology. Mat. Res. Innov. 2000, 4, 3–26. [Google Scholar] [CrossRef]
- Uchino, K. Glory of piezoelectric perovskites. Sci. Technol. Adv. Mater. 2015, 16, 046001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fratini, M.; Poccia, N.; Ricci, A.; Campi, G.; Burghammer, M.; Aeppli, G.; Bianconi, A. Scale-free structural organization of oxygen interstitials in La2CuO4+y. Nature 2010, 466, 841–844. [Google Scholar] [CrossRef] [Green Version]
- Poccia, N.; Ricci, A.; Campi, G.; Fratini, M.; Puri, A.; Di Gioacchino, D.; Marcelli, A.; Reynolds, M.; Burghammer, M.; Lal Saini, N.; et al. Optimum inhomogeneity of local lattice distortions in La2CuO4+y. Proc. Natl. Acad. Sci. USA 2012, 109, 15685–15690. [Google Scholar] [CrossRef] [Green Version]
- Ronov, A.B.; Yaroshevsky, A.A. Chemical Composition of the Earth’s Crust; Washington DC American Geophysical Union Geophysical Monograph Series; AGU: Washington, DC, USA, 1969; Volume 13, pp. 37–57. [Google Scholar] [CrossRef]
- Momma, K.; Izumi, F. Vesta: A three-dimensional visualization system for electronic and structural analysis. J. Appl. Crystallogr. 2008, 41, 653–658. [Google Scholar] [CrossRef]
- Thompson, J.B. Biopyriboles and polysomatic series. Am. Mineral. 1978, 63, 239–249. [Google Scholar]
- Schmidt, M.W.; Poli, S. Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation. Earth Plan. Sci. Lett. 1998, 163, 361–379. [Google Scholar] [CrossRef]
- Schmidbauer, E.; Kunzmann, T.; Fehr, T.; Hochleitner, R. Electrical conductivity, thermopower and 57Fe Mössbauer spectroscopy on an Fe-rich amphibole, arfvedsonite. Phys. Chem. Miner. 1996, 23, 99–106. [Google Scholar] [CrossRef]
- Schmidbauer, E.; Kunzmann, T.; Fehr, T.; Hochleitner, R. Electrical resistivity and 57Fe Mössbauer spectra of Fe-bearing calcic amphiboles. Phys. Chem. Miner. 2000, 27, 347–356. [Google Scholar] [CrossRef]
- Hu, H.; Dai, L.; Li, H.; Sun, W.; Li, B. Effect of dehydrogenation on the electrical conductivity of Fe-bearing amphibole: Implications for high conductivity anomalies in subduction zones and continental crust. Earth Planet Sci Lett. 2018, 498, 27–37. [Google Scholar] [CrossRef]
- Wang, D.; Karato, S.-I. Electrical conductivity of talc aggregates at 0.5 GPa: Influence of dehydration. Phys. Chem. Miner. 2013, 40, 11–17. [Google Scholar] [CrossRef]
- Deer, W.A.; Howie, R.A.; Zussman, J. Introduction to the Rock-Forming Minerals; Mineralogical Society of Great Britain & Ireland: London, UK, 2013; pp. 137–171. [Google Scholar]
- Hawthorne, F.C.; Oberti, R. Amphiboles: Crystal chemistry. In Amphiboles: Crystal Chemistry, Occurrence, and Health Issues, Reviews in Mineralogy and Geochemistry; Hawthorne, F.C., Oberti, R., Della Ventura, G., Mottana, A., Eds.; Mineralogical Society of Amer: Chantilly, VA, USA, 2007; Volume 67, pp. 1–54. [Google Scholar] [CrossRef]
- Oberti, R.; Della Ventura, G.; Camara, F. New amphibole compositions: Natural and synthetic. In Amphiboles: Crystal Chemistry, Occurrence, and Health Issues, Reviews in Mineralogy and Geochemistry; Hawthorne, F.C., Oberti, R., Della Ventura, G., Mottana, A., Eds.; Mineralogical Society of Amer: Chantilly, VA, USA, 2007; Volume 67, pp. 89–124. [Google Scholar] [CrossRef]
- Mihailova, B.; Della Ventura, G.; Waeselmann, N.; Xu, W.; Schlüter, J.; Galdenzi, F.; Marcelli, A.; Redhammer, G.J.; Boiocchi, M.; Oberti, R. Atomistic insight into lithospheric conductivity revealed by phonon-electron excitations in hydrous iron-bearing silicates. Commun. Mater. 2021, 2, 57. [Google Scholar] [CrossRef]
- Della Ventura, G.; Mihailova, B.; Susta, U.; Cestelli Guidi, M.; Marcelli, A.; Schlüter, J.; Oberti, R. The dynamics of Fe oxidation in riebeckite: A model for amphiboles. Am. Mineral. 2018, 103, 1103–1111. [Google Scholar] [CrossRef]
- Friedman, J.M.; Hochstrasser, R.M. Approximate selection sules for resonance raman spectroscopy. J. Am. Chem. Soc. 1976, 98, 4043–4048. [Google Scholar] [CrossRef]
- Yu, P.Y.; Cardona, M. Fundamentals of Semiconductors, 4th ed.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 107–158. Available online: https://link.springer.com/book/10.1007/978-3-642-00710-1 (accessed on 13 October 2022).
- de la Flor, G.; Wehber, M.; Rohrbeck, A.; Aroyo, M.I.; Bismayer, U.; Mihailova, B. Resonance Raman scattering of perovskite-type relaxor ferroelectrics under non-ambient conditions. Phys. Rev. B 2014, 90, 064107. [Google Scholar] [CrossRef]
- Thomsen, C. Light scattering in high-Tc superconductors. In Light Scattering in Solids VI, Topics in Applied Physics; Cardona, M., Güntherodt, G., Eds.; Spinger: Berlin/Heidelberg, Germany, 1991; Volume 68, pp. 285–360. [Google Scholar] [CrossRef]
- Ivanov, V.G.; Dyulgerov, M.; Oberti, R. Polarized Raman spectroscopy and lattice dynamics of potassicmagnesio-arfvedsonite. Phys. Chem. Miner. 2019, 46, 181–191. [Google Scholar] [CrossRef]
- Watenphul, A.; Macherek, T.; Wilke, F.; Schlüter, J.; Mihailova, B. Composition–thermal expandability relations and oxidation processes in tourmaline studied by in situ Raman spectroscopy. Phys. Chem. Miner. 2017, 44, 735–749. [Google Scholar] [CrossRef]
- Bernardini, S.; Della Ventura, G.; Schluter, J.; Mihailova, B. Thermally activated electron hopping in Fe-rich amphiboles: Implications for the high-conductivity anomalies in subduction zones. Geochemistry, 2022; submitted. [Google Scholar]
- Rösche, C.; Waeselmann, N.; Petrova, N.; Malcherek, T.; Schlüter, J.; Mihailova, B. Oxidation processes and thermal stability of actinolite. Phys. Chem. Mineral. 2022; accepted for publication. [Google Scholar]
- Della Ventura, G.; Radica, F.; Galdenzi, F.; Susta, U.; Cinque, G.; Mihailova, B.; Marcelli, A. Kinetics of hydrogen diffusion in riebeckite, Na2Fe3+2Fe2+3Si8O22(OH)2: An HT-FTIR study. Am. Mineral. 2022, 107, 754–764. [Google Scholar] [CrossRef]
- Evans, B.W. The synthesis and stability of some end-member amphiboles. In Amphiboles: Crystal Chemistry, Occurrence, and Health Issues, Reviews in Mineralogy and Geochemistry; Hawthorne, F.C., Oberti, R., Della Ventura, G., Mottana, A., Eds.; Mineralogical Society of Amer: Chantilly, VA, USA, 2007; Volume 67, pp. 261–286. [Google Scholar] [CrossRef]
- Della Ventura, G.; Galdenzi, F.; Cibin, G.; Oberti, R.; Xu, W.; Macis, S.; Marcelli, A. Iron oxidation dynamics vs. temperature of synthetic potassic-ferro-richterite: A XANES investigation. Phys. Chem. Chem. Phys. 2018, 20, 21764–21771. [Google Scholar] [CrossRef] [PubMed]
- Leissner, L.; Schlüter, J.; Horn, I.; Mihailova, B. Exploring the potential of Raman spectroscopy for crystallochemical analysis of complex hydrous silicates: I. Amphiboles. Am. Mineral. 2015, 100, 2682–2694. [Google Scholar] [CrossRef]
- Waeselmann, N.; Schlüter, J.; Malcherek, T.; Della Ventura, G.; Oberti, R.; Mihailova, B. Non-destructive determination of the amphibole crystal-chemical formulae by Raman spectroscopy: One step closer. J. Raman Spectrosc. 2020, 51, 1530–1548. [Google Scholar] [CrossRef]
Amphibole Sample | Nominal End-Member Formula | Actual Chemical Formula of the Studied Sample |
---|---|---|
grunerite | A☐BFe2+2CFe2+5Si8O22(OH)2 | A☐B(Fe2+1.96Mg0.02Ca0.01Na0.01)C(Fe2+4.54Mg0.43Al0.03) T(Si7.97Al0.03)O22W[(OH)1.99F0.01] |
riebeckite | A□BNa2C(Fe2+3Fe3+2)Si8O22(OH)2 | A(☐0.9K0.06Na0.04)B(Na1.82Ca0.13Fe2+0.05) C(Fe2+2.94Fe3+1.64Mg0.26Al0.10Mn2+0.05Ti0.01) T(Si7.97Al0.03)O22W[(OH)1.90F0.10] |
potassic-ferro-richterite | AKB(CaNa)CFe2+5Si8O22(OH)2 | A(K0.90Na0.07☐0.03)B(Ca0.54Na1.46)C(Fe2+4.71Fe3+0.79) TSi8O22W[(OH)1.70O0.30] |
actinolite | (A☐BCa2C(Mg1−xFe2+x)5Si8O22(OH)2, 0.1 < x < 0.5 | A(☐0.83Na0.16K0.01)B(Ca1.74Fe2+0.24Mn2+0.02) C(Mg4.33Fe2+0.53Al0.10Cr3+0.04)T(Si7.84 Al0.16)O22W(OH)2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mihailova, B.; Della Ventura, G.; Waeselmann, N.; Bernardini, S.; Xu, W.; Marcelli, A. Polarons in Rock-Forming Minerals: Physical Implications. Condens. Matter 2022, 7, 68. https://doi.org/10.3390/condmat7040068
Mihailova B, Della Ventura G, Waeselmann N, Bernardini S, Xu W, Marcelli A. Polarons in Rock-Forming Minerals: Physical Implications. Condensed Matter. 2022; 7(4):68. https://doi.org/10.3390/condmat7040068
Chicago/Turabian StyleMihailova, Boriana, Giancarlo Della Ventura, Naemi Waeselmann, Simone Bernardini, Wei Xu, and Augusto Marcelli. 2022. "Polarons in Rock-Forming Minerals: Physical Implications" Condensed Matter 7, no. 4: 68. https://doi.org/10.3390/condmat7040068
APA StyleMihailova, B., Della Ventura, G., Waeselmann, N., Bernardini, S., Xu, W., & Marcelli, A. (2022). Polarons in Rock-Forming Minerals: Physical Implications. Condensed Matter, 7(4), 68. https://doi.org/10.3390/condmat7040068