Isotope Effect in the Translation-Invariant Bipolaron Theory of High-Temperature Superconductivity
Abstract
:1. Introduction
2. Isotope Influence on
3. Isotope Influence on London Penetration Depth
4. Discussion
Funding
Conflicts of Interest
Appendix A. Derivation of Formula (4)
Appendix B. The Criteria for D-Wave Phonon Input into Thermodynamic Properties of HTSC
References
- Bardeen, J.; Cooper, L.N.; Schrieffer, J.R. Theory of Superconductivity. Phys. Rev. 1957, 108, 1175–1204. [Google Scholar] [CrossRef] [Green Version]
- Bill, A.; Kresin, V.Z.; Wolf, S.A. The isotope Effect in Superconductors. In Pair Correlations in Many-Fermion Systems; Kresin, V.Z., Ed.; Plenum Press: New York, NY, USA, 1998. [Google Scholar]
- Lakhno, V.D. Superconducting Properties of 3D Low-Density Translation-Invariant Bipolaron Gas. Adv. Cond. Matt. Phys. 2018, 2018, 1380986. [Google Scholar] [CrossRef] [Green Version]
- Lakhno, V.D. Superconducting properties of a nonideal bipolaron gas. Phys. C Supercond. 2019, 561, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Lakhno, V.D. Superconducting Properties of 3D Low-Density TI-Bipolaron Gas in Magnetic Field. Condens. Matter 2019, 4, 43. [Google Scholar] [CrossRef] [Green Version]
- Lakhno, V.D. Translational-Invariant Bipolarons and Superconductivity. Condens. Matter 2020, 5, 30. [Google Scholar] [CrossRef]
- Eliashberg, G.M. Interactions between Electrons and Lattice Vibrations in a Superconductor. Sov. Phys. JETP 1960, 11, 696–702. [Google Scholar]
- Chen, X.-J.; Liang, B.; Ulrich, C.; Lin, C.-T.; Struzhkin, V.V.; Wu, Z.; Hemley, R.J.; Mao, H.; Lin, H.-Q. Oxygen isotope effect in Bi2Sr2Can−1CunO2n+4+δ (n = 1,2,3) single crystals. Phys. Rev. B 2007, 76, 140502. [Google Scholar] [CrossRef]
- Franck, J.P. Experimental studies of the isotope effect in high temperature superconductors. In Physical Properties of High Temperature Superconductors IV; Ginsberg, D.M., Ed.; World Scientific: Singapore, 1994; p. 189. [Google Scholar] [CrossRef]
- Franck, J.; Jung, J.; Mohamed, M.A.-K.; Gygax, S.; Sproule, G.I. Observation of an oxygen isotope effect in superconducting (Y1−xPrx)Ba2Cu3O7−δ. Phys. Rev. B 1991, 44, 5318–5321. [Google Scholar] [CrossRef]
- Batlogg, B.; Kourouklis, G.A.; Weber, W.H.; Cava, R.J.; Jayaraman, A.; White, A.E.; Short, K.T.; Rupp, L.W.; Rietman, E.A. Nonzero isotope effect in La1.85Sr0.15CuO4. Phys. Rev. Lett. 1987, 59, 912–914. [Google Scholar] [CrossRef]
- Zech, D.; Keller, H.; Conder, K.; Kaldis, E.; Liarokapis, E.; Poulakis, N.; Müller, K.A. Site-selective oxygen isotope effect in optimally doped YBa2Cu3O6+x. Nature 1994, 371, 681–683. [Google Scholar] [CrossRef]
- Khasanov, R.; Eshchenko, D.G.; Luetkens, H.; Morenzoni, E.; Prokscha, T.; Suter, A.; Garifianov, N.; Mali, M.; Roos, J.; Conder, K.; et al. Direct Observation of the Oxygen Isotope Effect on the In-Plane Magnetic Field Penetration Depth in Optimally Doped YBa2Cu3O7−δ. Phys. Rev. Lett. 2004, 92, 057602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tallon, J.L.; Islam, R.S.; Storey, J.; Williams, G.V.M.; Cooper, J.R. Isotope Effect in the Superfluid Density of High-Temperature Superconducting Cuprates: Stripes, Pseudogap, and Impurities. Phys. Rev. Lett. 2005, 94, 237002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bill, A.; Kresin, V.Z.; Wolf, S.A. Isotope effect for the penetration depth in superconductors. Phys. Rev. B 1998, 57, 10814–10824. [Google Scholar] [CrossRef] [Green Version]
- Lakhno, V.D. Translation Invariant Bipolarons and Charge Density Waves in High-Temperature Superconductors. Keldysh Inst. Prepr. 2020, 57, 1–13. (In Russian) [Google Scholar] [CrossRef]
- Smilde, H.J.; Golubov, A.A.; Ariando Rijnders, G.; Dekkers, J.M.; Harkema, S.; Blank, D.H.; Rogalla, H.; Hilgenkamp, H. Admixtures to d-Wave Gap Symmetry in Untwinned YBa2Cu3O7 Superconducting Films Measured by Angle-Resolved Electron Tunneling. Phys. Rev. Lett. 2005, 95, 257001. [Google Scholar] [CrossRef] [Green Version]
- Kirtley, J.R.; Tsuei, C.C.; Ariando; Verwijs, C.J.M.; Harkema, S.; Hilgenkamp, H. Angle-resolved phase-sensitive determination of the in-plane gap symmetry in YBa2Cu3O7−δ. Nat. Phys. 2006, 2, 190–194. [Google Scholar] [CrossRef]
- Zhao, G.-M.; Hunt, M.; Conder, K.; Keller, H.; Müller, K. Oxygen isotope effects in the manganites and cuprates: Evidence for polaronic charge carriers. Phys. C Supercond. 1997, 282–287 (Pt 1), 202–205. [Google Scholar] [CrossRef]
- Božović, I.; He, X.; Wu, J.; Bollinger, A.T. Dependence of the critical temperature in overdoped copper oxides on superfluid density. Nature 2016, 536, 309–311. [Google Scholar] [CrossRef]
- Shengelaya, A.; Müller, K.A. Superconductivity in Oxides Generated by Percolating Electron or Hole Bipolarons. J. Supercond. Nov. Magn. 2019, 32, 3–6. [Google Scholar] [CrossRef]
- Müller, K.A. The Polaronic Basis for High-Temperature Superconductivity. J. Supercond. Nov. Magn. 2017, 30, 3007–3018. [Google Scholar] [CrossRef]
- Kochelaev, B.I.; Müller, K.A.; Shengelaya, A. Oxygen Isotope Effects on Tc Related to Polaronic Superconductivity in Underdoped Cuprates. J. Mod. Phys. 2014, 5, 473–476. [Google Scholar] [CrossRef] [Green Version]
- Müller, K.A. The Unique Properties of Superconductivity in Cuprates. J. Supercond. Nov. Magn. 2014, 27, 2163–2179. [Google Scholar] [CrossRef]
- Bussmann-Holder, A.; Keller, H. Evidence for Polaron Formation in High-Temperature Superconducting Cuprates: Experiment and Theory. J. Supercond. Nov. Magn. 2009, 22, 123–129. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lakhno, V.D. Isotope Effect in the Translation-Invariant Bipolaron Theory of High-Temperature Superconductivity. Condens. Matter 2020, 5, 80. https://doi.org/10.3390/condmat5040080
Lakhno VD. Isotope Effect in the Translation-Invariant Bipolaron Theory of High-Temperature Superconductivity. Condensed Matter. 2020; 5(4):80. https://doi.org/10.3390/condmat5040080
Chicago/Turabian StyleLakhno, Victor D. 2020. "Isotope Effect in the Translation-Invariant Bipolaron Theory of High-Temperature Superconductivity" Condensed Matter 5, no. 4: 80. https://doi.org/10.3390/condmat5040080
APA StyleLakhno, V. D. (2020). Isotope Effect in the Translation-Invariant Bipolaron Theory of High-Temperature Superconductivity. Condensed Matter, 5(4), 80. https://doi.org/10.3390/condmat5040080