Quantum-Granularity Effect in the Formation of Supermixed Solitons in Ring Lattices
Abstract
:1. Introduction
2. The Two Species Model
3. A Continuous-Variable Picture to Investigate the Formation of Supermixed Solitons
3.1. The System Phase Diagram
3.2. Some Quantum Indicators to Characterize the Different Phases
4. Beyond the Continuous-Variable Picture: Emergence of the Quantum-Granularity
4.1. Exact Numerical Results
4.2. Analytic Treatment
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
BH | Bose–Hubbard |
CV | Continuous-variable |
SM | Supermixed |
PL | Partially localized |
M | Mixed |
EE | Entanglement entropy |
References
- Modugno, G.; Modugno, M.; Riboli, F.; Roati, G.; Inguscio, M. Two Atomic Species Superfluid. Phys. Rev. Lett. 2002, 89, 190404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chin, C.; Grimm, R.; Julienne, P.; Tiesinga, E. Feshbach resonances in ultracold gases. Rev. Mod. Phys. 2010, 82, 1225–1286. [Google Scholar] [CrossRef]
- Myatt, C.J.; Burt, E.A.; Ghrist, R.W.; Cornell, E.A.; Wieman, C.E. Production of Two Overlapping Bose-Einstein Condensates by Sympathetic Cooling. Phys. Rev. Lett. 1997, 78, 586–589. [Google Scholar] [CrossRef]
- Catani, J.; De Sarlo, L.; Barontini, G.; Minardi, F.; Inguscio, M. Degenerate Bose-Bose mixture in a three-dimensional optical lattice. Phys. Rev. A 2008, 77, 011603. [Google Scholar] [CrossRef] [Green Version]
- Mishra, T.; Pai, R.V.; Das, B.P. Phase separation in a two-species Bose mixture. Phys. Rev. A 2007, 76, 013604. [Google Scholar] [CrossRef] [Green Version]
- Jain, P.; Boninsegni, M. Quantum demixing in binary mixtures of dipolar bosons. Phys. Rev. A 2011, 83, 023602. [Google Scholar] [CrossRef] [Green Version]
- Lingua, F.; Guglielmino, M.; Penna, V.; Capogrosso Sansone, B. Demixing effects in mixtures of two bosonic species. Phys. Rev. A 2015, 92, 053610. [Google Scholar] [CrossRef] [Green Version]
- Suthar, K.; Angom, D. Optical-lattice-influenced geometry of quasi-two-dimensional binary condensates and quasiparticle spectra. Phys. Rev. A 2016, 93, 063608. [Google Scholar] [CrossRef] [Green Version]
- Suthar, K.; Roy, A.; Angom, D. Fluctuation-driven topological transition of binary condensates in optical lattices. Phys. Rev. A 2015, 91, 043615. [Google Scholar] [CrossRef] [Green Version]
- Buonsante, P.; Giampaolo, S.M.; Illuminati, F.; Penna, V.; Vezzani, A. Mixtures of Strongly Interacting Bosons in Optical Lattices. Phys. Rev. Lett. 2008, 100, 240402. [Google Scholar] [CrossRef] [Green Version]
- Roscilde, T.; Cirac, J.I. Quantum Emulsion: A Glassy Phase of Bosonic Mixtures in Optical Lattices. Phys. Rev. Lett. 2007, 98, 190402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belemuk, A.; Chtchelkatchev, N.; Mikheyenkov, A.; Kugel, K. Quantum phase transitions and the degree of nonidentity in the system with two different species of vector bosons. New J. Phys. 2018, 20, 063039. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Penna, V.; Capogrosso-Sansone, B. Inter-species entanglement of Bose–Bose mixtures trapped in optical lattices. New J. Phys. 2016, 18, 063002. [Google Scholar] [CrossRef] [Green Version]
- Mujal, P.; Juliá-Díaz, B.; Polls, A. Quantum properties of a binary bosonic mixture in a double well. Phys. Rev. A 2016, 93, 043619. [Google Scholar] [CrossRef] [Green Version]
- Melé-Messeguer, M.; Julia-Diaz, B.; Guilleumas, M.; Polls, A.; Sanpera, A. Weakly linked binary mixtures of F = 187Rb Bose–Einstein condensates. New J. Phys. 2011, 13, 033012. [Google Scholar] [CrossRef]
- Richaud, A.; Penna, V. Phase separation can be stronger than chaos. New J. Phys. 2018, 20, 105008. [Google Scholar] [CrossRef]
- Lingua, F.; Richaud, A.; Penna, V. Residual entropy and critical behavior of two interacting boson species in a double well. Entropy 2018, 20, 84. [Google Scholar] [CrossRef] [Green Version]
- Penna, V.; Richaud, A. The phase separation mechanism of a binary mixture in a ring trimer. Sci. Rep. 2018, 8, 10242. [Google Scholar] [CrossRef]
- Richaud, A.; Zenesini, A.; Penna, V. The mixing-demixing phase diagram of ultracold heteronuclear mixtures in a ring trimer. Sci. Rep. 2019, 9, 6908. [Google Scholar] [CrossRef] [Green Version]
- Penna, V.; Richaud, A. Spatial Phase Separation of a Binary Mixture in a Ring Trimer. J. Phys. Conf. Ser. 2019, 1206, 10242. [Google Scholar] [CrossRef]
- Richaud, A.; Penna, V. Pathway toward the formation of supermixed states in ultracold boson mixtures loaded in ring lattices. Phys. Rev. A 2019, 100, 013609. [Google Scholar] [CrossRef] [Green Version]
- Camesasca, M.; Kaufman, M.; Manas-Zloczower, I. Quantifying fluid mixing with the Shannon entropy. Macromol. Theory Simul. 2006, 15, 595–607. [Google Scholar] [CrossRef] [Green Version]
- Lingua, F.; Mazzarella, G.; Penna, V. Delocalization effects, entanglement entropy and spectral collapse of boson mixtures in a double well. J. Phys. B At. Mol. Opt. Phys. 2016, 49, 205005. [Google Scholar] [CrossRef] [Green Version]
- Fisher, M.P.A.; Weichman, P.B.; Grinstein, G.; Fisher, D.S. Boson localization and the superfluid-insulator transition. Phys. Rev. B 1989, 40, 546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaksch, D.; Bruder, C.; Cirac, J.I.; Gardiner, C.W.; Zoller, P. Cold Bosonic Atoms in Optical Lattices. Phys. Rev. Lett. 1998, 81, 3108. [Google Scholar] [CrossRef]
- Greiner, M.; Mandel, O.; Esslinger, T.; Hänsch, T.W.; Bloch, I. Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature 2002, 415, 39. [Google Scholar] [CrossRef] [PubMed]
- Caleffi, F.; Capone, M.; Menotti, C.; Carusotto, I.; Recati, A. Quantum fluctuations beyond the Gutzwiller approximation in the Bose-Hubbard model. arXiv 2019, arXiv:1908.03470. [Google Scholar]
- Sowiński, T.; García-March, M.Á. One-dimensional mixtures of several ultracold atoms: A review. Rep. Prog. Phys. 2019, 82, 104401. [Google Scholar] [CrossRef] [Green Version]
- Amico, L.; Osterloh, A.; Cataliotti, F. Quantum Many Particle Systems in Ring-Shaped Optical Lattices. Phys. Rev. Lett. 2005, 95, 063201. [Google Scholar] [CrossRef] [Green Version]
- Amico, L.; Aghamalyan, D.; Auksztol, F.; Crepaz, H.; Dumke, R.; Kwek, L.C. Superfluid qubit systems with ring shaped optical lattices. Sci. Rep. 2014, 4, 4298. [Google Scholar] [CrossRef] [Green Version]
- Penna, V.; Richaud, A. Two-species boson mixture on a ring: A group-theoretic approach to the quantum dynamics of low-energy excitations. Phys. Rev. A 2017, 96, 053631. [Google Scholar] [CrossRef] [Green Version]
- Spekkens, R.W.; Sipe, J.E. Spatial fragmentation of a Bose-Einstein condensate in a double-well potential. Phys. Rev. A 1999, 59, 3868–3877. [Google Scholar] [CrossRef] [Green Version]
- Javanainen, J. Phonon approach to an array of traps containing Bose-Einstein condensates. Phys. Rev. A 1999, 60, 4902–4909. [Google Scholar] [CrossRef] [Green Version]
- Ho, T.L.; Ciobanu, C.V. The Schrödinger Cat Family in Attractive Bose Gases. J. Low Temp. Phys. 2004, 135, 257–266. [Google Scholar] [CrossRef]
- Ziń, P.; Chwedeńczuk, J.; Oleś, B.; Sacha, K.; Trippenbach, M. Critical fluctuations of an attractive Bose gas in a double-well potential. EPL 2008, 83, 64007. [Google Scholar]
- Buonsante, P.; Burioni, R.; Vescovi, E.; Vezzani, A. Quantum criticality in a bosonic Josephson junction. Phys. Rev. A 2012, 85, 043625. [Google Scholar] [CrossRef] [Green Version]
- Buonsante, P.; Penna, V.; Vezzani, A. Dynamical bifurcation as a semiclassical counterpart of a quantum phase transition. Phys. Rev. A 2011, 84, 061601. [Google Scholar] [CrossRef] [Green Version]
- Oelkers, N.; Links, J. Ground-state properties of the attractive one-dimensional Bose-Hubbard model. Phys. Rev. B 2007, 75, 115119. [Google Scholar] [CrossRef] [Green Version]
- Sachdev, S. Quantum Phase Transitions; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Brandani, G.B.; Schor, M.; MacPhee, C.E.; Grubmüller, H.; Zachariae, U.; Marenduzzo, D. Quantifying disorder through conditional entropy: an application to fluid mixing. PLoS ONE 2013, 8, e65617. [Google Scholar] [CrossRef] [PubMed]
- Computational Resources Provided by HPC@POLITO. Available online: http://hpc.polito.it/ (accessed on 3 January 2020).
- Wang, W.; Penna, V.; Capogrosso-Sansone, B. Analysis and resolution of the ground-state degeneracy of the two-component Bose-Hubbard model. Phys. Rev. E 2014, 90, 022116. [Google Scholar] [CrossRef] [Green Version]
- Kordas, G.; Wimberger, S.; Witthaut, D. Decay and fragmentation in an open Bose-Hubbard chain. Phys. Rev. A 2013, 87, 043618. [Google Scholar] [CrossRef] [Green Version]
- Ferrini, G.; Minguzzi, A.; Hekking, F.W.J. Number squeezing, quantum fluctuations, and oscillations in mesoscopic Bose Josephson junctions. Phys. Rev. A 2008, 78, 023606. [Google Scholar] [CrossRef] [Green Version]
Phase | ||
---|---|---|
M | ||
PL | ||
SM |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Richaud, A.; Penna, V. Quantum-Granularity Effect in the Formation of Supermixed Solitons in Ring Lattices. Condens. Matter 2020, 5, 2. https://doi.org/10.3390/condmat5010002
Richaud A, Penna V. Quantum-Granularity Effect in the Formation of Supermixed Solitons in Ring Lattices. Condensed Matter. 2020; 5(1):2. https://doi.org/10.3390/condmat5010002
Chicago/Turabian StyleRichaud, Andrea, and Vittorio Penna. 2020. "Quantum-Granularity Effect in the Formation of Supermixed Solitons in Ring Lattices" Condensed Matter 5, no. 1: 2. https://doi.org/10.3390/condmat5010002
APA StyleRichaud, A., & Penna, V. (2020). Quantum-Granularity Effect in the Formation of Supermixed Solitons in Ring Lattices. Condensed Matter, 5(1), 2. https://doi.org/10.3390/condmat5010002