A Novel Bulk-Optics Scheme for Quantum Walk with High Phase Stability
Abstract
1. Introduction
2. Theoretical Model
3. Experimental Implementation
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- O’Brien, J.L. Optical Quantum Computing. Science 2007, 318, 1567–1570. [Google Scholar] [CrossRef]
- Kimble, H.J. The quantum internet. Nature 2008, 453, 1023–1030. [Google Scholar] [CrossRef]
- Harrow, A.W.; Montanaro, A. Quantum computational supremacy. Nature 2017, 549, 203–209. [Google Scholar] [CrossRef] [PubMed]
- Mattle, K.; Weinfurter, H.; Kwiat, P.G.; Zeilinger, A. Dense Coding in Experimental Quantum Communication. Phys. Rev. Lett. 1996, 76, 4656–4659. [Google Scholar] [CrossRef] [PubMed]
- Gisin, N.; Ribordy, G.; Tittel, W.; Zbinden, H. Quantum cryptography. Rev. Mod. Phys. 2002, 74, 145–195. [Google Scholar] [CrossRef]
- Shenvi, N.; Kempe, J.; Whaley, K.B. Quantum random-walk search algorithm. Phys. Rev. A 2003, 67, 052307. [Google Scholar] [CrossRef]
- Gross, D.; Nesme, V.; Vogts, H.; Werner, R.F. Index Theory of One Dimensional Quantum Walks and Cellular Automata. Commun. Math. Phys. 2012, 310, 419–454. [Google Scholar] [CrossRef]
- Kitagawa, T.; Broome, M.A.; Fedrizzi, A.; Rudner, M.S.; Berg, E.; Kassal, I.; Aspuru-Guzik, A.; Demler, E.; White, A.G. Observation of topologically protected bound states in photonic quantum walks. Nat. Commun. 2012, 3, 882. [Google Scholar] [CrossRef]
- Kitagawa, T.; Rudner, M.S.; Berg, E.; Demler, E. Exploring topological phases with quantum walks. Phys. Rev. A 2010, 82, 033429. [Google Scholar] [CrossRef]
- Magdziarz, M.; Weron, A.; Burnecki, K.; Klafter, J. Fractional Brownian Motion Versus the Continuous-Time Random Walk: A Simple Test for Subdiffusive Dynamics. Phys. Rev. Lett. 2009, 103, 180602. [Google Scholar] [CrossRef]
- Mackay, T.D.; Bartlett, S.D.; Stephenson, L.T.; Sanders, B.C. Quantum walks in higher dimensions. J. Phys. A Math. Gene. 2002, 35, 2745. [Google Scholar] [CrossRef]
- Schreiber, A.; Cassemiro, K.N.; Potoček, V.; Gábris, A.; Jex, I.; Silberhorn, C. Decoherence and Disorder in Quantum Walks: From Ballistic Spread to Localization. Phys. Rev. Lett. 2011, 106, 180403. [Google Scholar] [CrossRef]
- Crespi, A.; Osellame, R.; Ramponi, R.; Giovannetti, V.; Fazio, R.; Sansoni, L.; De Nicola, F.; Sciarrino, F.; Mataloni, P. Anderson localization of entangled photons in an integrated quantum walk. Nat. Photon. 2013, 7, 322–328. [Google Scholar] [CrossRef]
- Venegas-Andraca, S.E. Quantum walks: a comprehensive review. Quantum Inf. Proc. 2012, 11, 1015–1106. [Google Scholar] [CrossRef]
- Strauch, F.W. Connecting the discrete- and continuous-time quantum walks. Phys. Rev. A 2006, 74, 030301. [Google Scholar] [CrossRef]
- Schreiber, A.; Cassemiro, K.N.; Potoček, V.; Gábris, A.; Mosley, P.J.; Andersson, E.; Jex, I.; Silberhorn, C. Photons Walking the Line: A Quantum Walk with Adjustable Coin Operations. Phys. Rev. Lett. 2010, 104, 050502. [Google Scholar] [CrossRef]
- Sansoni, L.; Sciarrino, F.; Vallone, G.; Mataloni, P.; Crespi, A.; Ramponi, R.; Osellame, R. Two-Particle Bosonic-Fermionic Quantum Walk via Integrated Photonics. Phys. Rev. Lett. 2012, 108, 010502. [Google Scholar] [CrossRef]
- Kempe, J. Quantum random walks: An introductory overview. Contemp. Phys. 2003, 44, 307–327. [Google Scholar] [CrossRef]
- Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information: 10th Anniversary Edition, 10th ed.; Cambridge University Press: New York, NY, USA, 2011. [Google Scholar]
- Loudon, R. The quantum theory of light; Oxford Science Publications, Clarendon Press: Oxford, UK, 1983. [Google Scholar]
- Campos, R.A.; Saleh, B.E.A.; Teich, M.C. Quantum-mechanical lossless beam splitter: SU(2) symmetry and photon statistics. Phys. Rev. A 1989, 40, 1371–1384. [Google Scholar] [CrossRef]
- Ahlbrecht, A.; Scholz, V.B.; Werner, A.H. Disordered quantum walks in one lattice dimension. J. Math. Phys. 2011, 52, 102201. [Google Scholar] [CrossRef]
- Flamini, F.; Spagnolo, N.; Sciarrino, F. Photonic quantum information processing: A review. Rep. Prog. Phys. 2018, 82, 016001. [Google Scholar] [CrossRef] [PubMed]
- Nitsche, T.; Elster, F.; Novotnỳ, J.; Gábris, A.; Jex, I.; Barkhofen, S.; Silberhorn, C. Quantum walks with dynamical control: Graph engineering, initial state preparation and state transfer. New J. Phys. 2016, 18, 063017. [Google Scholar] [CrossRef]
- Do, B.; Stohler, M.L.; Balasubramanian, S.; Elliott, D.S.; Eash, C.; Fischbach, E.; Fischbach, M.A.; Mills, A.; Zwickl, B. Experimental realization of a quantum quincunx by use of linear optical elements. JOSA B 2005, 22, 499–504. [Google Scholar] [CrossRef]
- Cuevas, Á.; Geraldi, A.; Liorni, C.; Bonavena, L.D.; De Pasquale, A.; Sciarrino, F.; Giovannetti, V.; Mataloni, P. All-optical implementation of collision-based evolutions of open quantum systems. arXiv, 2018; arXiv:quant-ph/1809.01922. [Google Scholar]
- De Nicola, F.; Sansoni, L.; Crespi, A.; Ramponi, R.; Osellame, R.; Giovannetti, V.; Fazio, R.; Mataloni, P.; Sciarrino, F. Quantum simulation of bosonic-fermionic noninteracting particles in disordered systems via a quantum walk. Phys. Rev. A 2014, 89, 032322. [Google Scholar] [CrossRef]
- Peruzzo, A.; Lobino, M.; Matthews, J.C.F.; Matsuda, N.; Politi, A.; Poulios, K.; Zhou, X.Q.; Lahini, Y.; Ismail, N.; Wörhoff, K.; et al. Quantum Walks of Correlated Photons. Science 2010, 329, 1500–1503. [Google Scholar] [CrossRef] [PubMed]
- Keating, J.P.; Linden, N.; Matthews, J.C.F.; Winter, A. Localization and its consequences for quantum walk algorithms and quantum communication. Phys. Rev. A 2007, 76, 012315. [Google Scholar] [CrossRef]
- Fedotov, S.; Milstein, G.N.; Tretyakov, M.V. Superdiffusion of a random walk driven by an ergodic Markov process with switching. J. Phys. A Math. Theor. 2007, 40, 5769. [Google Scholar] [CrossRef]
- Kumar, N.; Harbola, U.; Lindenberg, K. Memory-induced anomalous dynamics: Emergence of diffusion, subdiffusion, and superdiffusion from a single random walk model. Phys. Rev. E 2010, 82, 021101. [Google Scholar] [CrossRef]
- Shikano, Y.; Wada, T.; Horikawa, J. Discrete-time quantum walk with feed-forward quantum coin. Sci. Rep. 2014, 4, 4427. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Geraldi, A.; Bonavena, L.D.; Liorni, C.; Mataloni, P.; Cuevas, Á. A Novel Bulk-Optics Scheme for Quantum Walk with High Phase Stability. Condens. Matter 2019, 4, 14. https://doi.org/10.3390/condmat4010014
Geraldi A, Bonavena LD, Liorni C, Mataloni P, Cuevas Á. A Novel Bulk-Optics Scheme for Quantum Walk with High Phase Stability. Condensed Matter. 2019; 4(1):14. https://doi.org/10.3390/condmat4010014
Chicago/Turabian StyleGeraldi, Andrea, Luís Diego Bonavena, Carlo Liorni, Paolo Mataloni, and Álvaro Cuevas. 2019. "A Novel Bulk-Optics Scheme for Quantum Walk with High Phase Stability" Condensed Matter 4, no. 1: 14. https://doi.org/10.3390/condmat4010014
APA StyleGeraldi, A., Bonavena, L. D., Liorni, C., Mataloni, P., & Cuevas, Á. (2019). A Novel Bulk-Optics Scheme for Quantum Walk with High Phase Stability. Condensed Matter, 4(1), 14. https://doi.org/10.3390/condmat4010014