XANES Iron Geochemistry in the Mineral Dust of the Talos Dome Ice Core (Antarctica) and the Southern Hemisphere Potential Source Areas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ice Core Dust Samples
2.2. PSA Samples
2.3. XANES Analysis
3. Results
3.1. The PSA Fe K-Edge Energy Measurements
3.2. Talos Dome Mineral Dust
4. Discussion
- the geochemical properties of the dust deposited at TD change in relation to environmental and climatic modifications of the PSA [44];
- the shift from glacial to interglacial conditions impacted the dust cycle and the atmospheric circulation at TD, with changes in terms of dust provenance and of the relative contribute from different PSA.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Maher, B.A.; Prospero, J.M.; Mackie, D.; Gaiero, D.; Hesse, P.P.; Balkanski, Y. Global connections between aeolian dust, climate and ocean biogeochemistry at the present day and at the last glacial maximum. Earth-Sci. Rev. 2010, 99, 61–97. [Google Scholar] [CrossRef]
- Maggi, V. Mineralogy of atmospheric microparticles deposited along the Greenland ice core project ice core. J. Geophys. Res. Oceans 1997, 102, 26725–26734. [Google Scholar] [CrossRef]
- Maggi, V.; Petit, J.R. Atmospheric dust concentration record from the Hercules neve firn core, northern Victoria land, Antarctica. Ann. Glaciol. 1998, 27, 355–359. [Google Scholar] [CrossRef]
- Maggi, V.; Villa, S.; Finizio, A.; Delmonte, B.; Casati, P.; Marino, F. Variability of anthropogenic and natural compounds in high altitude-high accumulation alpine glaciers. Hydrobiologia 2006, 562, 43–56. [Google Scholar] [CrossRef]
- Jickells, T.; Boyd, P.; Hunter, K.A. Biogeochemical impacts of dust on the global carbon cycle. In Mineral Dust; Knippertz, B., Stuut, J.B., Eds.; Springer: Dordrecht, The Netherlands, 2014; pp. 359–384. [Google Scholar]
- Delmonte, B.; Basile-Doelsch, I.; Petit, J.; Maggi, V.; Revel-Rolland, M.; Michard, A.; Jagoutz, E.; Grousset, F. Comparing the epica and vostok dust records during the last 220,000 years: Stratigraphical correlation and provenance in glacial periods. Earth-Sci. Rev. 2004, 66, 63–87. [Google Scholar] [CrossRef]
- Delmonte, B.; Andersson, P.; Hansson, M.; Schoberg, H.; Petit, J.; Basile-Doelsch, I.; Maggi, V. Aeolian dust in east Antarctica (epica-dome c and vostok): Provenance during glacial ages over the last 800 kyr. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef]
- Lambert, F.; Delmonte, B.; Petit, J.R.; Bigler, M.; Kaufmann, P.R.; Hutterli, M.A.; Stocker, T.F.; Ruth, U.; Steffensen, J.P.; Maggi, V. Dust—Climate couplings over the past 800,000 years from the Epica dome c ice core. Nature 2008, 452, 616–619. [Google Scholar] [CrossRef] [Green Version]
- Delmonte, B.; Petit, J.R.; Krinner, G.; Maggi, V.; Jouzel, J.; Udisti, R. Ice core evidence for secular variability and 200-year dipolar oscillations in atmospheric circulation over east Antarctica during the Holocene. Clim. Dyn. 2005, 24, 641–654. [Google Scholar] [CrossRef]
- Revel-Rolland, M.; De Deckker, P.; Delmonte, B.; Hesse, P.; Magee, J.; Basile-Doelsch, I.; Grousset, F.; Bosch, D. Eastern Australia: A possible source of dust in east Antarctica interglacial ice. Earth Planet. Sci. Lett. 2006, 249, 1–13. [Google Scholar] [CrossRef]
- Frezzotti, M.; Pourchet, M.; Flora, O.; Gandolfi, S.; Gay, M.; Urbini, S.; Vincent, C.; Becagli, S.; Gragnani, R.; Proposito, M.; et al. Spatial and temporal variability of snow accumulation in east Antarctica from traverse data. J. Glaciol. 2005, 51, 113–124. [Google Scholar] [CrossRef]
- Scarchilli, C.; Frezzotti, M.; Ruti, P. Snow precipitation at four ice core sites in east Antarctica: Provenance, seasonality and blocking factors. Clim. Dyn. 2011, 37, 2107–2125. [Google Scholar] [CrossRef]
- Vallelonga, P.; Gabrielli, P.; Balliana, E.; Wegner, A.; Delmonte, B.; Turetta, C.; Burton, G.; Vanhaecke, F.; Rosman, K.; Hong, S.; et al. Lead isotopic compositions in the epica dome c ice core and southern hemisphere potential source areas. Quat. Sci. Rev. 2010, 29, 247–255. [Google Scholar] [CrossRef] [Green Version]
- Basile, I.; Grousset, F.; Revel, M.; Petit, J.; Biscaye, P.; Barkov, N. Patagonian origin of glacial dust deposited in east Antarctica (Vostok and Dome c) during glacial stages 2, 4 and 6. Earth Planet. Sci. Lett. 1997, 146, 573–589. [Google Scholar] [CrossRef]
- Grousset, F.; Biscaye, P.; Revel, M.; Petit, J.; Pye, K.; Joussaume, S.; Jouzel, J. Antarctic (dome c) ice-core dust at 18 ky bp—Isotopic constraints on origins. Earth Planet. Sci. Lett. 1992, 111, 175–182. [Google Scholar] [CrossRef]
- Frezzotti, M.; Bitelli, G.; De Michelis, P.; Deponti, A.; Forieri, A.; Gandolfi, S.; Maggi, V.; Mancini, F.; Remy, F.; Tabacco, I.; et al. Geophysical survey at talos dome, east antarctica: The search for a new deep-drilling site. Ann. Glaciol. 2004, 39, 423–432. [Google Scholar] [CrossRef]
- Delmonte, B.; Baroni, C.; Andersson, P.; Schoberg, H.; Hansson, M.; Aciego, S.; Petit, J.; Albani, S.; Mazzola, C.; Maggi, V.; et al. Aeolian dust in the talos dome ice core (east Antarctica, pacific/ross sea sector): Victoria land versus remote sources over the last two climate cycles. J. Quat. Sci. 2010, 25, 1327–1337. [Google Scholar] [CrossRef]
- Baccolo, G.; Clemenza, M.; Delmonte, B.; Maffezzoli, N.; Nastasi, M.; Previtali, E.; Prata, M.; Salvini, A.; Maggi, V. A new method based on low background instrumental neutron activation analysis for major, trace and ultra-trace element determination in atmospheric mineral dust from polar ice cores. Anal. Chim. Acta 2016, 922, 11–18. [Google Scholar] [CrossRef]
- Marino, F.; Calzolai, G.; Caporali, S.; Castellano, E.; Chiari, M.; Lucarelli, F.; Maggi, V.; Nava, S.; Sala, M.; Udisti, R. Pixe and pige techniques for the analysis of antarctic ice dust and continental sediments. Nuclear Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms 2008, 266, 2396–2400. [Google Scholar] [CrossRef]
- Delmonte, B.; Paleari, C.; Ando, S.; Garzanti, E.; Andersson, P.; Petit, J.; Crosta, X.; Narcisi, B.; Baroni, C.; Salvatore, M.; et al. Causes of dust size variability in central east Antarctica (dome b): Atmospheric transport from expanded south American sources during marine isotope stage 2. Quat. Sci. Rev. 2017, 168, 55–68. [Google Scholar] [CrossRef]
- Jickells, T.; An, Z.; Andersen, K.; Baker, A.; Bergametti, G.; Brooks, N.; Cao, J.; Boyd, P.; Duce, R.; Hunter, K.; et al. Global iron connections between desert dust, ocean biogeochemistry, and climate. Science 2005, 308, 67–71. [Google Scholar] [CrossRef]
- Mahowald, N.; Baker, A.; Bergametti, G.; Brooks, N.; Duce, R.; Jickells, T.; Kubilay, N.; Prospero, J.; Tegen, I. Atmospheric global dust cycle and iron inputs to the ocean. Glob. Biogeochem. Cycles 2005, 19. [Google Scholar] [CrossRef] [Green Version]
- Blain, S.; Queguiner, B.; Armand, L.; Belviso, S.; Bombled, B.; Bopp, L.; Bowie, A.; Brunet, C.; Brussaard, C.; Carlotti, F.; et al. Effect of natural iron fertilization on carbon sequestration in the southern ocean. Nature 2007, 446, 1070–1071. [Google Scholar] [CrossRef] [PubMed]
- Gaspari, V.; Barbante, C.; Cozzi, G.; Cescon, P.; Boutron, C.; Gabrielli, P.; Capodaglio, G.; Ferrari, C.; Petit, J.; Delmonte, B. Atmospheric iron fluxes over the last deglaciation: Climatic implications. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef] [Green Version]
- Edwards, R.; Sedwick, P.; Morgan, V.; Boutron, C. Iron in ice cores from law dome: A record of atmospheric iron deposition for maritime east antarctica during the holocene and last glacial maximum. Geochem. Geophys. Geosyst. 2006, 7. [Google Scholar] [CrossRef]
- Spolaor, A.; Vallelonga, P.; Cozzi, G.; Gabrieli, J.; Varin, C.; Kehrwald, N.; Zennaro, P.; Boutron, C.; Barbante, C. Iron speciation in aerosol dust influences iron bioavailability over glacial-interglacial timescales. Geophys. Res. Lett. 2013, 40, 1618–1623. [Google Scholar] [CrossRef] [Green Version]
- Schroth, A.; Crusius, J.; Sholkovitz, E.; Bostick, B. Iron solubility driven by speciation in dust sources to the ocean. Nat. Geosci. 2009, 2, 337–340. [Google Scholar] [CrossRef]
- Wedepohl, K. The composition of the continental-crust. Geochim. Cosmochim. Acta 1995, 59, 1217–1232. [Google Scholar] [CrossRef]
- Baccolo, G.; Maffezzoli, N.; Clemenza, M.; Delmonte, B.; Prata, M.; Salvini, A.; Maggi, V.; Previtali, E. Low-background neutron activation analysis: A powerful tool for atmospheric mineral dust analysis in ice cores. J. Radioanal. Nuclear Chem. 2015, 306, 589–597. [Google Scholar] [CrossRef]
- Walker, S.; Jamieson, H.; Lanzirotti, A.; Andrade, C.; Hall, G. The speciation of arsenic in iron oxides in mine wastes from the giant gold mine, nwt: Application of synchrotron micro-xrd and micro-xanes at the grain scale. Can. Mineral. 2005, 43, 1205–1224. [Google Scholar] [CrossRef]
- Bajt, S.; Sutton, S.; Delaney, J. X-ray microprobe analysis of iron oxidation-states in silicates and oxides using X-ray-absorption near-edge structure (xanes). Geochim. Cosmochim. Acta 1994, 58, 5209–5214. [Google Scholar] [CrossRef]
- Galoisy, L.; Calas, G.; Arrio, M. High-resolution xanes spectra of iron in minerals and glasses: Structural information from the pre-edge region. Chem. Geol. 2001, 174, 307–319. [Google Scholar] [CrossRef]
- Strawn, D.; Doner, H.; Zavarin, M.; McHugo, S. Microscale investigation into the geochemistry of arsenic, selenium, and iron in soil developed in pyritic shale materials. Geoderma 2002, 108, 237–257. [Google Scholar] [CrossRef]
- Prietzel, J.; Thieme, J.; Eusterhues, K.; Eichert, D. Iron speciation in soils and soil aggregates by synchrotron-based X-ray microspectroscopy (xanes, mu-xanes). Eur. J. Soil Sci. 2007, 58, 1027–1041. [Google Scholar] [CrossRef]
- Formenti, P.; Caquineau, S.; Chevaillier, S.; Klaver, A.; Desboeufs, K.; Rajot, J.; Belin, S.; Briois, V. Dominance of goethite over hematite in iron oxides of mineral dust from western Africa: Quantitative partitioning by X-ray absorption spectroscopy. J. Geophys. Res.-Atmos. 2014, 119, 12740–12754. [Google Scholar] [CrossRef]
- Wilke, M.; Farges, F.; Petit, P.; Brown, G.; Martin, F. Oxidation state and coordination of Fe in minerals: An fek-xanes spectroscopic study. Am. Mineral. 2001, 86, 714–730. [Google Scholar] [CrossRef]
- Berry, A.; O’Neill, H.; Jayasuriya, K.; Campbell, S.; Foran, G. Xanes calibrations for the oxidation state of iron in a silicate glass. Am. Mineral. 2003, 88, 967–977. [Google Scholar] [CrossRef]
- Balzarotti, A.; Bianconi, A.; Burattini, E.; Grandolfo, M.; Habel, R.; Piacentini, M. Core transitions from the al 2p level in amorphous and crystalline Al2O3. Phys. Status Solidi (b) 1974, 63, 77–87. [Google Scholar] [CrossRef]
- Belli, M.; Scafati, A.; Bianconi, A.; Mobilio, S.; Palladino, L.; Reale, A.; Burattini, E. X-ray absorption near edge structures (XANES) in simple and complex Mn compounds. Solid State Commun. 1980, 35, 355–361. [Google Scholar] [CrossRef]
- Benfatto, M.; Natoli, C.R.; Bianconi, A.; Garcia, J.; Marcelli, A.; Fanfoni, M.; Davoli, I. Multiple-scattering regime and higher-order correlations in X-ray-absorption spectra of liquid solutions. Phys. Rev. B 1986, 34, 5774–5781. [Google Scholar] [CrossRef]
- Koningsberger, D.C.; Prins, R. (Eds.) X-ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS, and XANES Chemical Analysis; Wiley: New York, NY, USA, 1988; Volume 2, pp. 1–673. [Google Scholar]
- Bianconi, A.; Fritsch, E.; Calas, G.; Petiau, J. X-ray-absorption near-edge structure of 3d transition elements in tetrahedral coordination: The effect of bond-length variation. Phys. Rev. B Condense. Matter 1985, 32, 4292–4295. [Google Scholar] [CrossRef]
- Dent, A.J.; Cibin, G.; Ramos, S.; Smith, A.D.; Scott, S.M.; Varandas, L.; Pearson, M.R.; Krumpa, N.A.; Jones, C.P.; Robbins, P.E. B18: A Core XAS Spectroscopy Beamline for Diamond. J. Phys. Conf. Ser. 2009, 190, 012039. [Google Scholar] [CrossRef]
- Marcelli, A.; Hampai, D.; Giannone, F.; Sala, M.; Maggi, V.; Marino, F.; Pignotti, S.; Cibin, G. Xrf-xanes characterization of deep ice core insoluble dust. J. Anal. At. Spectrom. 2012, 27, 33–37. [Google Scholar] [CrossRef]
- Cibin, G.; Marcelli, A.; Maggi, V.; Sala, M.; Marino, F.; Delmonte, B.; Albani, S.; Pignotti, S. First combined total reflection X-ray fluorescence and grazing incidence X-ray absorption spectroscopy characterization of aeolian dust archived in Antarctica and alpine deep ice cores. Spectrochim. Acta Part B-At. Spectrosc. 2008, 63, 1503–1510. [Google Scholar] [CrossRef]
- Davey, B.; Russell, J.; Wilson, M. Iron-oxide and clay-minerals and their relation to colors of red and yellow podzolic soils near Sydney, Australia. Geoderma 1975, 14, 125–138. [Google Scholar] [CrossRef]
- Singh, B.; Gilkes, R. Properties and distribution of iron-oxides and their association with minor elements in the soils of south-western Australia. J. Soil Sci. 1992, 43, 77–98. [Google Scholar] [CrossRef]
- Tombolini, F.; Brigatti, M.F.; Marcelli, A.; Cibin, G.; Mottana, A.; Giuli, G. Local and average Fe distribution in trioctahedral micas: Analysis of Fe K-edge XANES spectra in the phlogopite–annite and phlogopite tetraferriphlogopite joins on the basis of single-crystal XRD refinements. Eur. J. Mineral. 2002, 14, 1075–1085. [Google Scholar] [CrossRef]
- Delmonte, B.; Petit, J.; Basile-Doelsch, I.; Lipenkov, V.; Maggi, V. First characterization and dating of east Antarctic bedrock inclusions from Subglacial lake vostok accreted ice. Environ. Chem. 2004, 1, 90–94. [Google Scholar] [CrossRef]
- Shoenfelt, E.; Sun, J.; Winckler, G.; Kaplan, M.; Borunda, A.; Farrell, K.; Moreno, P.; Gaiero, D.; Recasens, C.; Sambrotto, R.; et al. High particulate iron(ii) content in glacially sourced dusts enhances productivity of a model diatom. Sci. Adv. 2017, 3, e1700314. [Google Scholar] [CrossRef]
- Delmonte, B.; Andersson, P.; Schoberg, H.; Hansson, M.; Petit, J.; Delmas, R.; Gaiero, D.; Maggi, V.; Frezzotti, M. Geographic provenance of aeolian dust in east Antarctica during Pleistocene glaciations: Preliminary results from talos dome and comparison with east Antarctic and new Andean ice core data. Quat. Sci. Rev. 2010, 29, 256–264. [Google Scholar] [CrossRef]
- Baccolo, G.; Delmonte, B.; Albani, S.; Baroni, C.; Cibin, G.; Frezzotti, M.; Hampai, D.; Marcelli, A.; Revel, M.; Salvatore, M.C.; et al. Regionalization of the atmospheric dust cycle on the periphery of the East Antarctic ice sheet since the last glacial maximum. Geochem. Geophys. Geosyst. 2018. [Google Scholar] [CrossRef]
- De Angelis, M.; Tison, J.L.; Morel-Fourcade, M.C.; Susini, J. Micro-investigation of EPICA Dome C bottom ice: Evidence of long term in situ processes involving acid-salt interactions, mineral dust, and organic matter. Quat. Sci. Rev. 2013, 78, 248–265. [Google Scholar] [CrossRef]
- Baccolo, G.; Cibin, G.; Delmonte, B.; Hampai, D.; Marcelli, A.; Di Stefano, E.; Macis, S.; Maggi, V. The Contribution of Synchrotron Light for the Characterization of Atmospheric Mineral Dust in Deep Ice Cores: Preliminary Results from the Talos Dome Ice Core (East Antarctica). Condens. Matter 2018, 3, 25. [Google Scholar] [CrossRef]
- Galdenzi, F.; Della Ventura, G.; Cibin, G.; Macis, S.; Marcelli, A. Accurate Fe3+/Fetot ratio from XAS spectra at the Fe K-edge. Radiat. Phys. Chem. 2018, in press. [Google Scholar]
Antarctica | Tierra Del Fuego | Patagonia | Pampa | Australia | NIST | |
---|---|---|---|---|---|---|
N | 18 | 7 | 14 | 12 | 17 | 3 |
Mean (eV) | 7125.58 | 7124.74 | 7125.61 | 7126.57 | 7126.70 | 7126.25 |
Median (eV) | 7125.53 | 7125.10 | 7125.70 | 7126.71 | 7126.73 | 7126.32 |
Std. Error | 0.12 | 0.35 | 0.23 | 0.08 | 0.03 | 0.10 |
Variance | 0.24 | 0.86 | 0.76 | 0.08 | 0.02 | 0.03 |
Std. Dev. | 0.49 | 0.93 | 0.87 | 0.28 | 0.14 | 0.18 |
Coeff. Var. | 0.006 | 0.013 | 0.012 | 0.004 | 0.002 | 0.003 |
Holocene | Termination I | MIS2 | |
---|---|---|---|
Samples | 21 | 11 | 12 |
Mean (eV) | 7125.00 | 7125.50 | 7125.19 |
Median (eV) | 7125.05 | 7125.42 | 7125.13 |
Std. Deviation | 0.57 | 0.63 | 0.30 |
Variance | 0.32 | 0.40 | 0.09 |
Std. Error | 0.12 | 0.19 | 0.09 |
Correlation Coeff. R | 0.64 | 0.23 | 0.19 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maggi, V.; Baccolo, G.; Cibin, G.; Delmonte, B.; Hampai, D.; Marcelli, A. XANES Iron Geochemistry in the Mineral Dust of the Talos Dome Ice Core (Antarctica) and the Southern Hemisphere Potential Source Areas. Condens. Matter 2018, 3, 45. https://doi.org/10.3390/condmat3040045
Maggi V, Baccolo G, Cibin G, Delmonte B, Hampai D, Marcelli A. XANES Iron Geochemistry in the Mineral Dust of the Talos Dome Ice Core (Antarctica) and the Southern Hemisphere Potential Source Areas. Condensed Matter. 2018; 3(4):45. https://doi.org/10.3390/condmat3040045
Chicago/Turabian StyleMaggi, Valter, Giovanni Baccolo, Giannantonio Cibin, Barbara Delmonte, Dariush Hampai, and Augusto Marcelli. 2018. "XANES Iron Geochemistry in the Mineral Dust of the Talos Dome Ice Core (Antarctica) and the Southern Hemisphere Potential Source Areas" Condensed Matter 3, no. 4: 45. https://doi.org/10.3390/condmat3040045
APA StyleMaggi, V., Baccolo, G., Cibin, G., Delmonte, B., Hampai, D., & Marcelli, A. (2018). XANES Iron Geochemistry in the Mineral Dust of the Talos Dome Ice Core (Antarctica) and the Southern Hemisphere Potential Source Areas. Condensed Matter, 3(4), 45. https://doi.org/10.3390/condmat3040045