Complex Dielectric and Impedance Spectroscopic Studies in a Multiferroic Composite of Bi2Fe4O9-BiFeO3
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structural Analysis
2.2. TEM Studies
2.3. Mössbauer Studies
2.4. Complex Modulous Spectroscopic Studies
2.4.1. Dielectric and Impedance Studies
2.4.2. Modulus Analysis
2.4.3. Conductivity Analysis
3. Materials and Methods
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wang, J.; Neaton, J.; Zheng, H.; Nagarajan, V.; Ogale, S.; Liu, B.; Viehland, D.; Vaithyanathan, V.; Schlom, D.; Waghmare, U. Epitaxial BiFeO3 mutliferroic thinfim heterostructures. Science 2003, 299, 1719–1722. [Google Scholar] [CrossRef] [PubMed]
- Erenstein, W.; Mathur, N.; Scott, J. Multiferroic and magnetoelectric materials. Nature 2006, 442, 759–765. [Google Scholar] [CrossRef] [PubMed]
- Hill, N.A. Why are there so few magnetic ferroelectrics? J. Phys. Chem. B 2000, 104, 6694–6709. [Google Scholar] [CrossRef]
- Singh, K.; Negi, N.S.; Kotnala, R.K.; Singh, M. Dielectric and magnetic properties of (BiFeO3)1−x(PbTiO3)x ferromagnetoelectric system. Solid State Commun. 2008, 148, 18–21. [Google Scholar] [CrossRef]
- Uniyal, P.; Yadav, K.L. Synthesis and study of multiferroic properties of ZnFe2O4-BiFeO3 nanocomposites. J. Alloy. Compd. 2010, 492, 406–410. [Google Scholar] [CrossRef]
- Sahu, T.; Behera, B. Investigation on structural, dielectric and ferroelectric properties of samarium-substituted BiFeo3-PbTiO3 composites. Adv. Dielectr. 2017, 1, 1750001–1750006. [Google Scholar] [CrossRef]
- Bajpai, O.P.; Kamdi, J.B.; Selvakumar, M.; Ram, S.; Khastgir, D.; Chattopadhyay, S. Effect of surface modification of BiFeO3 on the dielectric, ferroelectric, magneto-dielectric properties of polyvinylacetate/BiFeO3 nanocomposites. Express Polym. Lett. 2014, 8, 669–681. [Google Scholar] [CrossRef]
- Adhlakha, N.; Yadav, K.L. Structural, magnetic, and optical properties of Ni0.75Zn0.25Fe2O4-BiFeO3 composites. J. Mater. Sci. 2014, 49, 4423–4438. [Google Scholar] [CrossRef]
- Ryu, J.; Priya, S.; Uchino, K.; Kim, H. Magnetoeelctric effect in composites of magnetostrictive and piezoelectric materials. J. Electroceram. 2002, 8, 107–119. [Google Scholar] [CrossRef]
- Rao, C.N.R.; Sundaresan, A.; Saha, R. Multiferroic and magnetoelectric oxides. J. Phys. Chem. Lett. 2012, 3, 2237–2246. [Google Scholar] [CrossRef]
- Varshney, D.; Kumar, A.; Verma, K. Effect of A site and B site doping on structure, thermal and dielectric properties of BiFeO3 ceramics. J. Alloy. Compd. 2011, 509, 8421–8426. [Google Scholar] [CrossRef]
- Pélaiz-Barranco, A.; Gutierrez-Amadon, M.P.; Huanosta, A.; Valenzuela, R. Phase transition in ferromagnetic and ferroelectric ceramics by ac measurement. Appl. Phys. Lett. 1998, 73, 2039–2041. [Google Scholar] [CrossRef]
- ELmezayyen, A.S.; Reicha, F.M. Preparation of Chitosan Copper Complexes: Molecular Dynamic Studies of Chitosan Copper Complexes. Open J. Appl. Sci. 2015, 5, 415–421. [Google Scholar] [CrossRef]
- Arrhenius, S. Über die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Säuren. Z. Phys. Chem. 1889, 4, 226–248. [Google Scholar] [CrossRef]
- Gheorghiu, F.; Calugaru, M.; Ianculescu, A.; Mustcate, V.; Mitoseriu, L. Preparation and functional characterization of BiFeO3 ceramics: A comparative study of the dielectric properties. Solid State Sci. 2013, 23, 79–87. [Google Scholar] [CrossRef]
- PŁcharski, J.; Weiczorek, W. PEO based composite solid electrolyte containing nasicon. Solid State Ion. 1988, 28–30, 979–982. [Google Scholar] [CrossRef]
- Singh, H.; Kumar, A.; Yadav, K.L. Structural, dielectric, magnetic, magnetodielectric and impedance spectroscopic studies of BiFeO3-BaTiO3 ceramics. Mater. Sci. Eng. B 2011, 176, 540–547. [Google Scholar] [CrossRef]
- Satpathy, S.; Mohanty, N.; Behera, A.; Behera, B. Dielectric and electrical properties of 0.5(BiGd0.05Fe0.95O3)-0.5 (PbZrO3) composite. Mater. Sci. 2014, 32, 59–65. [Google Scholar] [CrossRef]
- Victor, P.; Bhattacharrya, S.; Krupanidhi, S.B. Dielctric relaxation in laser ablated polycrystalline ZrTiO4 thin films. J. Appl. Phys. 2003, 94, 5135–5142. [Google Scholar] [CrossRef]
- Kolte, J.; Daryapurkar, A.S.; Gulwade, D.D.; Gopalan, P. Microwave sintered Bi0.90La0.10Fe0.95Mn0.05O3 nanocrstal ceramics: Impedance and modulus spectroscopy. Ceram Int. 2016, 42, 12914–12921. [Google Scholar] [CrossRef]
- Pradhan, D.K.; Choudhary, R.N.P.; Samantaray, B.K. Studies of structural, thermal and electrical behavior of polymer nanocomposite electrolytes. Express Polym. Lett. 2008, 2, 630–638. [Google Scholar] [CrossRef]
- Yakuphanoglu, F.; Senkal, B.F. Electronic and thermoelectric properties of polyaniline organic semiconductor and electrical characterization of Al/PANI MIS diode. J. Phys. Chem. C 2007, 111, 1840–1846. [Google Scholar] [CrossRef]
- Angell, C.A. Dynamic processes in ionic glasses. Chem. Rev. 1990, 90, 523–542. [Google Scholar] [CrossRef]
- Pribosic, I.; Makovec, D.; Drofenic, M. Electrical properties of donor and acceptor doped BaBi4Ti4O15. Eur. Ceram. Soc. 2001, 21, 1327–1331. [Google Scholar] [CrossRef]
- Anand, K.; Ramamurthy, B.; Veeraiah, V.; Vijaya Babu, K. Effect of Magnesium substitution on structural and dielectric properties of LiNiPO4. Mater. Sci. 2017, 35, 66–80. [Google Scholar] [CrossRef]
- Dutta, A.; Sinha, T.P.; Jena, P.; Adak, S. AC conductivity and dielectric relaxation in ionically conducting sodalime-silicate glasses. J. Non-Cryst. Solids 2008, 354, 3952–3957. [Google Scholar] [CrossRef]
- Baral, A.; Meher, K.R.S.P.; Varma, K.B.R. Dielectric behavior of Sr2SBMnO6 ceramics fabricated from nanocrystalline powders prepared by molten salt synthesis. Mater. Sci. Bull. 2011, 34, 53–60. [Google Scholar] [CrossRef]
- Mohapatra, S.R.; Sahu, B.; Badapanda, T.; Pattanaik, M.S.; Kaushik, S.D.; Singh, A.K. Optical, dielectric relaxation and conductivity study of Bi2Fe4O9 ceramic. J. Mater. Sci. Mater. Electron. 2016, 27, 3645–3652. [Google Scholar] [CrossRef]
- Mariyappan, C.R.; Govindaraj, G.; Ramya, L.; Hariharan, S. Synthesis, Characterizationand electrical conductivity studies on A3Bi2P3O12 (A-Na.K) materials. Mater. Res. Bull. 2005, 40, 610–618. [Google Scholar] [CrossRef]
- Joanscher, A.K. A new understanding of the dielectric relaxation of solids. J. Mater. Sci. 1981, 16, 2037–2060. [Google Scholar] [CrossRef]
- Behera, A.K.; Mohanty, N.K.; Satpathy, S.K.; Behera, B.; Nayak, P. Effect of rare earth doping in impedance modulus and conductivity properties of multiferroic composites: 0.5 BiLaxFe1−xO3−0.5 PbTiO3. Acta Metall. Sin. 2015, 28, 841–857. [Google Scholar] [CrossRef]
- Funke, K. Jump Relaxation in Solid Electrolytes. Prog. Solid State Chem. 1993, 22, 111–195. [Google Scholar] [CrossRef]
- Behera, B.; Nayak, P.; Choudhary, R.N.P. Impedance spectroscopy study of NaBa2V5O15 ceramic. J. Alloy. Compd. 2007, 436, 226–232. [Google Scholar] [CrossRef]
- Dridi, R.; Saafi, I.; Mhandi, A.; Matri, A.; Yumak, A.; Lakhdar, M.H.; Amlouk, A.; Boubaker, K.; Amlouk, M. Structural, optical and AC conductivity studies on alloy ZnO-Zn2SnO4(ZnO-ZTO) thin films. J. Alloy. Compd. 2015, 634, 179. [Google Scholar] [CrossRef]
- Ranjan, R.; Kumar, P.; Kumar, N.; Behera, B.; Choudhary, R.N.P. Impedance and electrical modulus analysis of Sm modified Pb(Zr0.55Ti0.45)1−x/4O4 ceramics. J. Alloy. Compd. 2011, 509, 6388–6394. [Google Scholar] [CrossRef]
- Jia, W.; Hou, Y.; Zheng, M.; Xu, Y.; Zhu, M.; Yang, K.; Cheng, H.; Sun, S.; Xing, J. Advances in lead free high-temperature dielectric materials for ceramic capacitor application. JET Nanodielectr. 2018, 1, 3–16. [Google Scholar] [CrossRef]
- Lanbing, F.; Danping, S.; Yanming, H.; Laijung, L. Low dielectric loss and good thermal stability of Eu and Ti codoped K0.5Na0.5NbO3 ceramics. J. Mater. Sci. Mater. Electron. 2015, 26, 7159–7164. [Google Scholar] [CrossRef]
- Sebastian, M.T.; Ubic, R.; Jantunen, H. Low loss dielectric ceramic material and their properties. Int. Mater. Rev. 2015, 60, 392–412. [Google Scholar] [CrossRef]
Sample Details | i | Γi mm/sec | δi mm/sec | Δi mm/sec | Bhf Tesla | fi |
---|---|---|---|---|---|---|
BM-α-Fe2O3-Bi2O3 | 1a | 0.48 | 0.38 | -0.21 | 51.8 | 0.75 |
1b | 0.45 | 0.36 | -0.15 | 50.3 | 0.18 | |
1c | 0.18 | 0.33 | -0.14 | 53.4 | 0.04 | |
2a | 0.22 | 0.30 | 0.38 | 40.4 | 0.03 | |
BMA | 1a | 0.22 | 0.34 | -0.18 | 51 | 0.34 |
1b | 0.26 | 0.33 | -0.15 | 52 | 0.12 | |
2d | 0.28 | 0.48 | 0.24 | 47.3 | 0.06 | |
2b | 0.26 | 0.44 | 1.09 | 46 | 0.05 | |
2c | 0.24 | 0.50 | 0.23 | 35.5 | 0.07 | |
3a | 0.25 | 0.24 | 0.82 | 0 | 0.14 | |
3b | 0.3 | 0.38 | 0.53 | 0 | 0.22 | |
Bi2Fe4O9 (SSR) | 3a | 0.32 | 0.29 | 0.86 | 0 | 0.51 |
3b | 0.32 | 0.39 | 0.33 | 0 | 0.49 |
Plot | Sample | Ea (eV) | τ0 (s) | Possible Mechanism Involved |
---|---|---|---|---|
Tan δ vs. f | BM 3 step | 0.6 | 2.853 × 10−13 | Fe2+/Fe3+ electron hopping |
Z” vs. f | BM 3 step | 1.5 | 1.28 × 10−16 | Grain boundary barrier |
M” vs. f | BM 3 step low f peak | 1.13 | 2.97 × 10−15 | Grain boundary barrier |
M” vs. f | BM 3 step high f peak | 1.01 | 8.77 × 10−15 | Oxygen vacancies |
M” vs. f | Bi2Fe4O9 SSR | 0.6 | 7.02 × 10−14 | Fe2+/Fe3+ electron hopping |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alaka, P.; Govindaraj, R. Complex Dielectric and Impedance Spectroscopic Studies in a Multiferroic Composite of Bi2Fe4O9-BiFeO3. Condens. Matter 2018, 3, 44. https://doi.org/10.3390/condmat3040044
Alaka P, Govindaraj R. Complex Dielectric and Impedance Spectroscopic Studies in a Multiferroic Composite of Bi2Fe4O9-BiFeO3. Condensed Matter. 2018; 3(4):44. https://doi.org/10.3390/condmat3040044
Chicago/Turabian StyleAlaka, Panda, and Ramanujan Govindaraj. 2018. "Complex Dielectric and Impedance Spectroscopic Studies in a Multiferroic Composite of Bi2Fe4O9-BiFeO3" Condensed Matter 3, no. 4: 44. https://doi.org/10.3390/condmat3040044
APA StyleAlaka, P., & Govindaraj, R. (2018). Complex Dielectric and Impedance Spectroscopic Studies in a Multiferroic Composite of Bi2Fe4O9-BiFeO3. Condensed Matter, 3(4), 44. https://doi.org/10.3390/condmat3040044