Effect of Dietary Short-Chain Fatty Acids on the Immune Status and Disease Resistance of European Seabass Juveniles
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Diets
2.2. Growth Trial
2.3. Bacterial Challenge Trial
2.3.1. Bacterial Growth
2.3.2. Bacterial Challenge
Survival Trial
Time Course Trial
2.4. Haematological Parameters
2.5. Innate Immune Parameters
2.6. Gene Expression
2.7. Statistics
3. Results
3.1. Zootechnical Performance
3.2. Hematology and Absolute Values of Peripheral Leucocytes
3.3. Innate Immune Parameters
3.4. Survival
3.5. Gene Expression
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nasr-Eldahan, S.; Nabil-Adam, A.; Shreadah, M.A.; Maher, A.M.; El-Sayed Ali, T. A review article on nanotechnology in aquaculture sustainability as a novel tool in fish disease control. Aquac. Int. 2021, 29, 1459–1480. [Google Scholar] [CrossRef] [PubMed]
- Rodger, H.D. Fish Disease Causing Economic Impact in Global Aquaculture. In Fish Vaccines; Adams, A., Ed.; Springer: Basel, Switzerland, 2016; pp. 1–34. [Google Scholar]
- Kiron, V. Fish immune system and its nutritional modulation for preventive health care. Anim. Feed Sci. Technol. 2012, 173, 111–133. [Google Scholar]
- Hoseinifar, S.H.; Sun, Y.; Caipang, C.M. Short-chain fatty acids as feed supplements for sustainable aquaculture: An updated view. Aquac. Res. 2016, 48, 1380–1391. [Google Scholar] [CrossRef]
- Ebrahimi, M.; Daeman, N.H.; Chong, C.M.; Karami, A.; Kumar, V.; Hoseinifar, S.H.; Romano, N. Comparing the effects of different dietary organic acids on the growth, intestinal short-chain fatty acids, and liver histopathology of red hybrid tilapia (Oreochromis sp.) and potential use of these as preservatives. Fish Physiol. Biochem. 2017, 43, 1195–1207. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.R.T.; Fliss, I.; Biron, E. Insights in the Development and Uses of Alternatives to Antibiotic Growth Promoters in Poultry and Swine Production. Antibiotics 2022, 11, 766. [Google Scholar] [CrossRef]
- Li, S.; Heng, X.; Guo, L.; Lessing, D.J.; Chu, W. SCFAs improve disease resistance via modulate gut microbiota, enhance immune response and increase antioxidative capacity in the host. Fish Shellfish Immunol 2022, 120, 560–568. [Google Scholar] [CrossRef]
- Wassef, E.A.; Saleh, N.E.; Abdel-Meguid, N.E.; Barakat, K.M.; Abdel-Mohsen, H.H.; El-bermawy, N.M. Sodium propionate as a dietary acidifier for European seabass (Dicentrarchus labrax) fry: Immune competence, gut microbiome, and intestinal histology benefits. Aquac. Int. 2020, 28, 95–111. [Google Scholar] [CrossRef]
- Katya, K.; Park, G.; Bharadwaj, A.S.; Browdy, C.L.; Vazquez-Anon, M.; Bai, S.C. Organic acids blend as dietary antibiotic replacer in marine fish olive flounder, Paralichthys olivaceus. Aquac. Res. 2018, 49, 2861–2868. [Google Scholar] [CrossRef]
- Wassef, E.; Saleh, N.; Barakat, K. Advantageous effects of dietary butyrate on growth, immunity response, intestinal microbiota and histomorphology of European Seabass (Dicentrarchus labrax) fry. Egypt. J. Aquat. Biol. Fish. 2018, 22, 93–110. [Google Scholar]
- Schonfeld, P.; Wojtczak, L. Short- and medium-chain fatty acids in energy metabolism: The cellular perspective. J Lipid Res 2016, 57, 943–954. [Google Scholar] [CrossRef]
- Estensoro, I.; Ballester-Lozano, G.; Benedito-Palos, L.; Grammes, F.; Martos-Sitcha, J.A.; Mydland, L.T.; Calduch-Giner, J.A.; Fuentes, J.; Karalazos, V.; Ortiz, A.; et al. Dietary Butyrate Helps to Restore the Intestinal Status of a Marine Teleost (Sparus aurata) Fed Extreme Diets Low in Fish Meal and Fish Oil. PLoS ONE 2016, 11, e0166564. [Google Scholar] [CrossRef]
- Tran, N.T.; Li, Z.; Wang, S.; Zheng, H.; Aweya, J.J.; Wen, X.; Li, S. Progress and perspectives of short-chain fatty acids in aquaculture. Rev. Aquac. 2018, 12, 283–298. [Google Scholar]
- Kim, M.; Qie, Y.; Park, J.; Kim, C.H. Gut Microbial Metabolites Fuel Host Antibody Responses. Cell Host Microbe 2016, 20, 202–214. [Google Scholar] [CrossRef]
- Tan, J.; McKenzie, C.; Potamitis, M.; Thorburn, A.N.; Mackay, C.R.; Macia, L. The role of short-chain fatty acids in health and disease. Adv. Immunol. 2014, 121, 91–119. [Google Scholar] [CrossRef]
- Taheri Mirghaed, A.; Yarahmadi, P.; Soltani, M.; Paknejad, H.; Pirali Kheirabadi, E. Beneficial effects of a sodium butyrate source on growth performance, intestinal bacterial communities, digestive enzymes, immune responses and disease resistance in rainbow trout (Oncorhynchus mykiss). Surv. Fish. Sci. 2022, 8, 1–15. [Google Scholar]
- Abdel-Latif, H.M.R.; Hendam, B.M.; Shukry, M.; El-Shafai, N.M.; El-Mehasseb, I.M.; Dawood, M.A.O.; Abdel-Tawwab, M. Effects of sodium butyrate nanoparticles on the hemato-immunological indices, hepatic antioxidant capacity, and gene expression responses in Oreochromisniloticus. Fish Shellfish Immunol 2021, 119, 516–523. [Google Scholar] [CrossRef]
- El-Adawy, M.; El-Aziz, M.A.; El-Shazly, K.; Ali, N.G.; El-Magd, M.A. Dietary propionic acid enhances antibacterial and immunomodulatory effects of oxytetracycline on Nile tilapia, Oreochromis niloticus. Environ. Sci. Pollut. Res. 2018, 25, 34200–34211. [Google Scholar] [CrossRef]
- Safari, R.; Hoseinifar, S.H.; Kavandi, M. Modulation of antioxidant defense and immune response in zebra fish (Danio rerio) using dietary sodium propionate. Fish Physiol. Biochem. 2016, 42, 1733–1739. [Google Scholar]
- Zare, R.; Kenari, A.A.; Sadati, M.Y. Influence of dietary acetic acid, protexin (probiotic), and their combination on growth performance, intestinal microbiota, digestive enzymes, immunological parameters, and fatty acids composition in Siberian sturgeon (Acipenser baerii, Brandt, 1869). Aquac. Int. 2021, 29, 891–910. [Google Scholar] [CrossRef]
- National Research Council. Nutrient Requirements of Fish and Shrimp; The National Academies Press: Washington, DC, USA, 2011; p. 392. [Google Scholar]
- Afonso, A.; Lousada, S.; Silva, J.; Ellis, A.E.; Silva, M.T. Neutrophil and macrophage responses to inflammation in the peritoneal cavity of rainbow trout Oncorhynchus mykiss. A light and electron microscopic cytochemical study. Dis. Aquat. Org. 1998, 34, 27–37. [Google Scholar] [CrossRef]
- Vandesompele, J.; De Preter, K.; Pattyn, F.; Poppe, B.; Van Roy, N.; De Paepe, A.; Speleman, F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002, 3, research0034.1. [Google Scholar]
- Du, Y.; He, C.; An, Y.; Huang, Y.; Zhang, H.; Fu, W.; Wang, M.; Shan, Z.; Xie, J.; Yang, Y.; et al. The Role of Short Chain Fatty Acids in Inflammation and Body Health. Int. J. Mol. Sci. 2024, 25, 7379. [Google Scholar] [CrossRef] [PubMed]
- Ahmadifar, E.; Dawood, M.A.O.; Moghadam, M.S.; Sheikhzadeh, N.; Hoseinifar, S.H.; Musthafa, M.S. Modulation of immune parameters and antioxidant defense in zebrafish (Danio rerio) using dietary apple cider vinegar. Aquaculture 2019, 513, 734412. [Google Scholar] [CrossRef]
- Semple, S.L.; Dixon, B. Salmonid Antibacterial Immunity: An Aquaculture Perspective. Biology 2020, 9, 331. [Google Scholar] [CrossRef]
- Kumar, P.; Jain, K.K.; Sardar, P.; Sahu, N.P.; Gupta, S. Dietary supplementation of acidifier: Effect on growth performance and haemato-biochemical parameters in the diet of Cirrhinus mrigala juvenile. Aquac. Int. 2017, 25, 2101–2116. [Google Scholar] [CrossRef]
- Hassaan, M.S.; Soltan, M.A.; Jarmołowicz, S.; Abdo, H.S. Combined effects of dietary malic acid and Bacillus subtilis on growth, gut microbiota and blood parameters of Nile tilapia (Oreochromis niloticus). Aquac. Nutr. 2018, 24, 83–93. [Google Scholar] [CrossRef]
- Reda, R.M.; Mahmoud, R.; Selim, K.M.; El-Araby, I.E. Effects of dietary acidifiers on growth, hematology, immune response and disease resistance of Nile tilapia, Oreochromis niloticus. Fish Shellfish Immunol. 2016, 50, 255–262. [Google Scholar] [CrossRef]
- Sheikhzadeh, N.; Ahmadifar, E.; Dawood, M.A.O.; Soltani, M. Dietary sodium propionate enhanced the growth performance, immune-related genes expression, and resistance against Ichthyophthirius multifiliis in goldfish (Carassius auratus). Aquaculture 2021, 540, 736720. [Google Scholar] [CrossRef]
- Aalamifar, H.; Soltanian, S.; Vazirzadeh, A.; Akhlaghi, M.; Morshedi, V.; Gholamhosseini, A.; Torfi Mozanzadeh, M. Dietary butyric acid improved growth, digestive enzyme activities and humoral immune parameters in Barramundi (Lates calcarifer). Aquac. Nutr. 2020, 26, 156–164. [Google Scholar] [CrossRef]
- Vinolo, M.A.; Rodrigues, H.G.; Hatanaka, E.; Hebeda, C.B.; Farsky, S.H.; Curi, R. Short-chain fatty acids stimulate the migration of neutrophils to inflammatory sites. Clin. Sci. 2009, 117, 331–338. [Google Scholar] [CrossRef]
- Kumar, V.; Sharma, A. Neutrophils: Cinderella of innate immune system. Int. Immunopharmacol. 2010, 10, 1325–1334. [Google Scholar] [CrossRef] [PubMed]
- Dalmo, R.A.; Ingebrigtsen, K.; Bøgwald, J. Non-specific defence mechanisms in fish, with particular reference to the reticuloendothelial system (RES). J. Fish Dis. 1997, 20, 241–273. [Google Scholar]
- Belaaouaj, A. Neutrophil elastase-mediated killing of bacteria: Lessons from targeted mutagenesis. Microbes Infect. 2002, 4, 1259–1264. [Google Scholar] [CrossRef]
- Ellis, A. Innate host defense mechanisms of fish against viruses and bacteria. Dev. Comp. Immunol. 2001, 25, 827–839. [Google Scholar]
- Abd El-Naby, A.; Khattaby, A.E.R.; Samir, F.; Awad, S. Stimulatory effect of dietary butyrate on growth, immune response, and resistance of Nile tilapia, Oreochromis niloticus against Aeromonas hydrophila infection. Anim. Feed Sci. Technol. 2019, 254, 114212. [Google Scholar] [CrossRef]
- Rossi, R.; Pastorelli, G.; Cannata, S.; Corino, C. Recent advances in the use of fatty acids as supplements in pig diets: A review. Anim. Feed Sci. Technol. 2010, 162, 1–11. [Google Scholar] [CrossRef]
- Biswas, G.; Korenaga, H.; Nagamine, R.; Kawahara, S.; Takeda, S.; Kikuchi, Y.; Dashnyam, B.; Yoshida, T.; Kono, T.; Sakai, M. Elevated cytokine responses to Vibrio harveyi infection in the Japanese pufferfish (Takifugu rubripes) treated with Lactobacillus paracasei spp. paracasei (06TCa22) isolated from the Mongolian dairy product. Fish Shellfish Immunol 2013, 35, 756–765. [Google Scholar] [CrossRef]
- Cicchese, J.M.; Evans, S.; Hult, C.; Joslyn, L.R.; Wessler, T.; Millar, J.A.; Marino, S.; Cilfone, N.A.; Mattila, J.T.; Linderman, J.J.; et al. Dynamic balance of pro- and anti-inflammatory signals controls disease and limits pathology. Immunol Rev 2018, 285, 147–167. [Google Scholar] [CrossRef] [PubMed]
- Taniguchi, K.; Karin, M. NF-κB, inflammation, immunity and cancer: Coming of age. Nat. Rev. Immunol. 2018, 18, 309–324. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, S.; Wang, Y.; Lu, S.; Han, S.; Liu, Y.; Jiang, H.; Wang, C.; Liu, H. Dietary Sodium Butyrate Improves Intestinal Health of Triploid Oncorhynchus mykiss Fed a Low Fish Meal Diet. Biology 2023, 12, 145. [Google Scholar] [CrossRef]
- Mirghaed, A.T.; Yarahmadi, P.; Soltani, M.; Paknejad, H.; Hoseini, S.M. Dietary sodium butyrate (Butirex® C4) supplementation modulates intestinal transcriptomic responses and augments disease resistance of rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immunol. 2019, 92, 621–628. [Google Scholar] [CrossRef] [PubMed]
Feedstuffs | CTR | SA (0.25/0.50) | SP (0.25/0.50) | SB (0.25/0.50) |
---|---|---|---|---|
Fishmeal 1 | 15.0 | 15.0 | 15.0 | 15.0 |
CPSP 2 | 5.00 | 5.00 | 5.00 | 5.00 |
Soybean meal 3 | 15.0 | 15.0 | 15.0 | 15.0 |
Corn gluten 4 | 17.5 | 17.6 | 17.6 | 17.6 |
Wheat gluten 5 | 5.98 | 5.98 | 5.98 | 5.98 |
Rapeseed 6 | 5.00 | 5.00 | 5.00 | 5.00 |
Wheat meal 7 | 17.6 | 17.00–17.30 | 17.00–17.30 | 17.00–17.30 |
Fish oil | 7.13 | 7.13 | 7.13 | 7.13 |
Colza oil | 7.13 | 7.13 | 7.13 | 7.13 |
Vitamin 8 | 1.00 | 1.00 | 1.00 | 1.00 |
Mineral 9 | 1.00 | 1.00 | 1.00 | 1.00 |
Choline chloride (50%) | 0.50 | 0.50 | 0.50 | 0.50 |
Binder 10 | 1.00 | 1.00 | 1.00 | 1.00 |
Dicalcium phosphate 11 | 0.67 | 0.68 | 0.68 | 0.68 |
Methionine 12 | 0.15 | 0.15 | 0.15 | 0.15 |
Taurine 13 | 0.30 | 0.30 | 0.30 | 0.30 |
Sodium acetate 14 | 0.00 | 0.25–0.50 | ||
Sodium propionate 15 | 0.00 | 0.25–0.50 | ||
Sodium butyrate 16 | 0.00 | 0.25–0.50 | ||
Proximate analysis | ||||
Lipids (%) | 17.5 | 17.4–17.7 | 18.0–18.2 | 17.6–17.7 |
Protein (%) | 43.9 | 43.2–44.0 | 42.9–43.3 | 43.1–43.3 |
Energy (MJ/kg) | 22.7 | 23.1–22.6 | 22.8–22.9 | 22.8–22.7 |
Dry matter (%) | 95.8 | 95.1–95.3 | 93.9–95.6 | 94.6–95.6 |
Gene | Gene Abbreviation | Primer Sequences (5′→3′) | Primer Efficiency | Accession Number | Anel. Temp. |
---|---|---|---|---|---|
Nuclear factor kappa β | nf-kβ | F: GCTGCGAGAAGAGAGGAAGA R: GGTGAACTTTAACCGGACGA | 89.57 | DLAgn_00239840 | 60 °C |
Tumor necrosis factor-α | tnf-α | F: AGCCACAGGATCTGGAGCTA R: GTCCGCTTCTGTAGCTGTCC | 105.3 | DQ200910 | 60 °C |
Interleukin 8 | il-8 | F: GTCTGAGAAGCCTGGGAGTG R: GCAATGGGAGTTAGCAGGAA | 101.3 | AM490063 | 60 °C |
Transforming growth factor-β | tgf-β | F: GACCTGGGATGGAAGTGGAT R: CAGCTGCTCCACCTTGTGTTG | 101.78 | AM421619.1 | 60 °C |
Caspase 3 | Casp3 | F: CTGATTTGGATCCAGGCATT R: CGGTCGTAGTGTTCCTCCAT | 107.7 | DQ345773 | 60 °C |
Interleukin 10 | il-10 | F: ACCCCGTTCGCTTGCCA R: CATCTGGTGACATCACTC | 96.8 | AM268529 | 60 °C |
Elongation factor 1α | ef1α | F: GCTTCGAGGAAATCACCAAG R: CAACCTTCCATCCCTTGAAC | 100.92 | AJ866727 | 60 °C |
Ribosomal protein S40 | 40s | F: TGATTGTGACAGACCCTCGTG R: CACAGAGCAATGGTGGGGAT | 94.5 | HE978789.1 | 60 °C |
Parameters | Hematocrit (%) | Hemoglobin (g/dL) | MCV (µm3) | MCH (pg cell−1) | MCHC (g 100 mL−1) | RBC (×106 µL−1) | WBC (×104 µL−1) | |
---|---|---|---|---|---|---|---|---|
Control | 0 h | 31.9 | 1.83 | 106 | 6.80 | 5.08 | 2.74 | 9.97 |
4 h | 22.2 | 1.73 | 107 | 5.78 | 5.62 | 2.15 | 4.03 | |
24 h | 20.7 | 1.11 | 107 | 5.75 | 5.39 | 1.94 | 5.68 | |
SA 0.25 | 0 h | 32.6 | 1.82 | 109 | 6.06 | 5.65 | 3.02 | 7.31 |
4 h | 18.8 | 1.15 | 79.4 # | 4.75 | 6.15 | 2.26 | 4.15 | |
24 h | 22.7 | 1.24 | 102 | 5.69 | 5.51 | 2.24 $ | 7.33 | |
SA 0.50 | 0 h | 28.7 | 1.76 | 113 | 6.86 | 6.27 | 2.54 | 6.72 * |
4 h | 22.2 | 1.38 | 82.2 # | 5.12 | 6.20 | 2.73 # | 3.65 | |
24 h | 22.3 | 1.26 | 105 | 5.90 | 5.66 | 3.65 | 5.77 | |
SP 0.25 | 0 h | 30.2 | 1.69 | 123 | 6.77 | 5.63 | 2.50 | 8.89 |
4 h | 21.3 | 1.13 | 91.5 # | 4.86 | 4.24 | 2.37 # | 3.70 | |
24 h | 21.3 | 1.16 | 97.6 | 5.29 | 5.45 | 2.20 | 7.13 | |
SP 0.50 | 0 h | 35.8 | 1.76 | 137 | 6.66 | 5.13 | 2.68 | 6.83 |
4 h | 22.5 | 1.17 | 88.3 # | 4.60 | 5.21 | 2.55 | 3.37 | |
24 h | 26.0 $ | 1.35 | 120 | 6.18 | 5.15 | 2.18 | 6.13 | |
SB 0.25 | 0 h | 30.5 | 1.66 | 108 | 6.43 | 4.80 | 2.55 | 7.26 |
4 h | 21.5 | 1.18 | 87.6 # | 4.81 | 5.44 | 2.48 # | 3.48 | |
24 h | 24.2 | 1.38 | 110 | 6.22 | 5.85 | 2.22 $ | 5.77 | |
SB 0.50 | 0 h | 29.2 | 1.51 | 112 | 5.74 | 5.28 | 2.63 | 8.54 |
4 h | 20.2 | 1.33 | 106 | 6.44 | 6.48 | 1.94 | 4.33 | |
24 h | 25.3 $ | 1.01 | 114 | 4.52 | 3.98 $ | 2.23 $ | 5.57 | |
SEM | 0 h | 0.75 | 0.05 | 3.11 | 0.18 | 0.17 | 0.06 | 0.24 |
4 h | 0.46 | 0.10 | 2.48 | 0.29 | 0.32 | 0.06 | 0.11 | |
24 h | 0.51 | 0.04 | 2.08 | 0.19 | 0.15 | 0.04 | 0.23 | |
Time | <0.001 | <0.001 | <0.001 | <0.001 | 0.390 | <0.001 | <0.001 | |
SCFA | 0.233 | 0.651 | 0.020 | 0.989 | 0.197 | 0.172 | 0.754 | |
Level | 0.215 | 0.897 | 0.073 | 0.647 | 0.716 | 0.700 | 0.052 | |
SCFA*Level | 0.051 | 0.497 | 0.595 | 0.550 | 0.652 | 0.242 | 0.004 | |
SCFA*Time | 0.490 | 0.794 | 0.233 | 0.323 | 0.811 | 0.347 | 0.060 | |
Time*Level | 0.670 | 0.484 | 0.719 | 0.504 | 0.389 | 0.798 | 0.311 | |
SCFA*Time*level | 0.165 | 0.731 | 0.206 | 0.079 | 0.484 | 0.001 | 0.306 | |
Time | 0 h | C | B | C | B | - | B | C |
4 h | A | A | A | A | - | A | A | |
24 h | B | A | B | A | - | A | B | |
SCFA | SA | - | - | a | - | - | - | - |
SP | - | - | ab | - | - | - | - | |
SB | - | - | b | - | - | - | - |
Parameters | Thrombocytes (×104 µL−1) | Lymphocytes (×104 µL−1) | Monocytes (×104 µL−1) | Neutrophils (×104 µL−1) | |
---|---|---|---|---|---|
Control | 0 h | 5.87 * | 3.95 * | 0.14 | 0.02 |
4 h | 2.51 | 1.25 | 0.07 | 0.21 # | |
24 h | 3.27 | 1.96 $ | 0.26 | 0.19 | |
SA 0.25 | 0 h | 4.25 | 2.89 | 0.14 | 0.06 |
4 h | 2.53 | 1.31 | 0.04 | 0.27 | |
24 h | 4.10 | 2.79 $ | 0.24 | 0.19 | |
SA 0.50 | 0 h | 4.09 | 2.44 | 0.15 | 0.04 |
4 h | 2.22 | 1.06 | 0.08 | 0.29 | |
24 h | 3.54 | 2.00 | 0.15 | 0.08 | |
SP 0.25 | 0 h | 5.27 | 3.48 | 0.12 | 0.02 |
4 h | 2.24 | 1.29 | 0.04 | 0.13 | |
24 h | 3.94 | 2.78 $ | 0.22 | 0.14 | |
SP 0.50 | 0 h | 3.99 | 2.67 * | 0.15 | 0.03 |
4 h | 2.10 | 1.11 | 0.04 | 0.07 # | |
24 h | 3.28 | 2.41 | 0.31 | 0.11 | |
SB 0.25 | 0 h | 4.19 * | 2.89 * | 0.11 | 0.02 |
4 h | 2.28 | 1.01 | 0.06 | 0.11 | |
24 h | 3.44 | 2.06 | 0.13 | 0.13 | |
SB 0.50 | 0 h | 4.94 * | 3.39 * | 0.13 | 0.07 |
4 h | 2.71 | 1.44 | 0.12 | 0.07 # | |
24 h | 3.15 | 2.11 | 0.21 | 0.09 | |
SEM | 0 h | 0.16 | 0.11 | 0.01 | 0.01 |
4 h | 0.07 | 0.05 | 0.01 | 0.02 | |
24 h | 0.12 | 0.11 | 0.02 | 0.02 | |
Time | <0.001 | <0.001 | <0.001 | <0.001 | |
SCFA | 0.867 | 0.281 | 0.896 | <0.001 | |
Level | 0.117 | 0.057 | 0.362 | 0.108 | |
SCFA*Level | 0.002 | 0.003 | 0.221 | 0.808 | |
SCFA*Time | 0.049 | 0.106 | 0.086 | 0.001 | |
Time*Level | 0.284 | 0.403 | 0.627 | 0.200 | |
SCFA*Time*level | 0.279 | 0.603 | 0.344 | 0.540 | |
Time | 0 h | C | C | B | A |
4 h | A | A | A | B | |
24 h | B | B | C | B | |
SCFA | SA | - | - | - | b |
SP | - | - | - | a | |
SB | - | - | - | a |
Parameters | Lysozyme (µg mL−1) | Peroxidase (Units mL−1) | Proteases Activity (%) | Anti-Proteases Activity (%) | Bactericidal Activity (%) | Nitric Oxide | ||
---|---|---|---|---|---|---|---|---|
Control | 0 h | 21.0 * | 181.4 | 15.8 * | 87.5 * | 50.7 * | 711 | |
4 h | 14.9 | 35.3 # | 8.64 # | 85.7 | 43.1 # | 429 # | ||
24 h | 8.3 $ | 143.1 $ | 10.76 | 90.3 | 45.5 | 492 $ | ||
SA 0.25 | 0 h | 16.9 | 165.8 | 20.3 | 87.4 | 44.7 * | 738 | |
4 h | 16.1 | 42.2 | 9.82 | 86.7 | 52.3 # | 532 # | ||
24 h | 4.4 $ | 120.7 | 10.30 | 89.0 | 44.3 | 482 | ||
SA 0.50 | 0 h | 16.4 | 191.1 | 23.7 * | 87.2 | 49.0 | 719 | |
4 h | 14.1 | 64.6 | 9.39 | 88.0 | 53.0 # | 572 # | ||
24 h | 7.2 | 139.5 | 11.33 | 87.1 | 44.0 | 475 | ||
SP 0.25 | 0 h | 28.1 * | 127.2 | 18.6 | 86.9 | 48.7 | 731 | |
4 h | 14.6 | 82.2 # | 10.8 # | 84.2 | 47.2 | 577 # | ||
24 h | 9.7 | 132.2 | 10.76 | 90.3 | 48.8 | 492 | ||
SP 0.50 | 0 h | 19.0 | 126.6 | 16.7 | 84.2 * | 48.5 | 686 | |
4 h | 16.0 | 62.0 | 9.94 | 83.6 | 47.7 | 599 # | ||
24 h | 8.4 | 47.5 $ | 10.47 | 89.8 | 42.4 | 352 $ | ||
SB 0.25 | 0 h | 24.2 | 179 | 18.4 | 87.9 | 46.1 | 732 | |
4 h | 12.1 | 67.1 | 11.3 # | 78.7 | 47.0 | 546 | ||
24 h | 8.4 | 54.2 $ | 10.38 | 89.0 | 48.0 | 275 $ | ||
SB 0.50 | 0 h | 18.9 | 220 | 23.3 * | 86.2 | 46.1 | 747 | |
4 h | 14.1 | 62.0 | 10.4 # | 85.4 | 49.2 | 558 # | ||
24 h | 11.5 | 35.3 $ | 10.9 | 89.7 | 55.1 | 255 $ | ||
SEM | 0 h | 1.00 | 11.6 | 0.91 | 0.40 | 0.74 | 17.5 | |
4 h | 0.56 | 4.48 | 0.25 | 0.91 | 1.01 | 16.2 | ||
24 h | 0.44 | 9.23 | 0.15 | 0.19 | 1.56 | 21.2 | ||
Time | <0.001 | <0.001 | <0.001 | <0.001 | 0.234 | <0.001 | ||
SCFA | 0.015 | 0.173 | 0.408 | 0.597 | 0.647 | 0.057 | ||
Level | 0.265 | 0.761 | 0.491 | 0.917 | 0.463 | 0.454 | ||
SCFA*Level | 0.355 | 0.157 | 0.420 | 0.168 | 0.212 | 0.153 | ||
SCFA*Time | 0.070 | 0.002 | 0.238 | 0.515 | 0.011 | 0.012 | ||
Time*Level | 0.010 | 0.196 | 0.373 | 0.179 | 0.909 | 0.046 | ||
SCFA*Time*level | 0.297 | 0.786 | 0.668 | 0.171 | 0.311 | 0.271 | ||
Time | 0 h | C | B | B | B | - | C | |
4 h | B | A | A | A | - | B | ||
24 h | A | A | A | C | - | A | ||
SCFA | SA | a | - | - | - | - | - | |
SP | ab | - | - | - | - | - | ||
SB | b | - | - | - | - | - | ||
Time*Level | 0.25 | 0 h | C | - | - | - | - | - |
4 h | B | - | - | - | - | - | ||
24 h | A | - | - | - | - | - | ||
0.50 | 0 h | C | - | - | - | - | C | |
4 h | B | - | - | - | - | B | ||
24 h | A | - | - | - | - | A | ||
SCFA*Time | SA | 0 h | - | B | - | - | AB | - |
4 h | - | A | - | - | B | - | ||
24 h | - | B | - | - | A | - | ||
SP | 0 h | - | - | - | - | - | - | |
4 h | - | - | - | - | - | - | ||
24 h | - | - | - | - | - | - | ||
SB | 0 h | - | B | - | - | A | - | |
4 h | - | A | - | - | AB | - | ||
24 h | - | A | - | - | B | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fontinha, F.; Martins, N.; Bonin, F.; Magalhães, R.; Santos, R.; Peres, H.; Oliva-Teles, A. Effect of Dietary Short-Chain Fatty Acids on the Immune Status and Disease Resistance of European Seabass Juveniles. Fishes 2024, 9, 363. https://doi.org/10.3390/fishes9090363
Fontinha F, Martins N, Bonin F, Magalhães R, Santos R, Peres H, Oliva-Teles A. Effect of Dietary Short-Chain Fatty Acids on the Immune Status and Disease Resistance of European Seabass Juveniles. Fishes. 2024; 9(9):363. https://doi.org/10.3390/fishes9090363
Chicago/Turabian StyleFontinha, Filipa, Nicole Martins, Filippo Bonin, Rui Magalhães, Rafaela Santos, Helena Peres, and Aires Oliva-Teles. 2024. "Effect of Dietary Short-Chain Fatty Acids on the Immune Status and Disease Resistance of European Seabass Juveniles" Fishes 9, no. 9: 363. https://doi.org/10.3390/fishes9090363
APA StyleFontinha, F., Martins, N., Bonin, F., Magalhães, R., Santos, R., Peres, H., & Oliva-Teles, A. (2024). Effect of Dietary Short-Chain Fatty Acids on the Immune Status and Disease Resistance of European Seabass Juveniles. Fishes, 9(9), 363. https://doi.org/10.3390/fishes9090363