Metal Bioaccumulation in the Muscle of the Northern Pike (Esox lucius) from Historically Contaminated River and the Estimation of the Human Health Risk
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling of the Northern Pike and Muscle Dissection
2.2. Fish Muscle Digestion
2.3. Measurement of Trace and Macro Elements in Digested Fish Muscles
2.4. Calculation of Daily Intakes and Risk Quotients
As | Bi | Co | Cs | Cu | Fe | Mn | Rb | Se | Tl | Zn | |
---|---|---|---|---|---|---|---|---|---|---|---|
a RfD/mg kg−1 day−1 | 0.0003 c | - | 0.0003 d | - | 0.04 d | 0.7 d | 0.14 c | - | 0.005 c | 0.00001 c | 0.3 c |
b CSF/(mg kg−1 day−1)−1 | 1.5 c | - | - | - | - | - | - | - | - | - | - |
EDIREF-Apr/mg kg−1 day−1 | 0.0000032 | 0.0000011 | 0.0000003 | 0.0000011 | 0.000024 | 0.000201 | 0.000053 | 0.000543 | 0.000038 | 0.0000013 | 0.000658 |
EDIDRF-Apr/mg kg−1 day−1 | 0.0000040 | 0.0000013 | 0.0000003 | 0.0000012 | 0.000023 | 0.000185 | 0.000036 | 0.000494 | 0.000031 | 0.0000010 | 0.000617 |
EDIREF-Sep/mg kg−1 day−1 | 0.0000033 | 0.0000015 | 0.0000002 | 0.0000010 | 0.000017 | 0.000217 | 0.000046 | 0.000622 | 0.000035 | 0.0000008 | 0.000511 |
EDIDRF-Sep/mg kg−1 day−1 | 0.0000031 | 0.0000027 | 0.0000002 | 0.0000011 | 0.000020 | 0.000193 | 0.000042 | 0.000566 | 0.000028 | 0.0000006 | 0.000543 |
THQREF-Apr (HI = 0.1552) | 0.0107 | - | 0.0011 | - | 0.0006 | 0.0003 | 0.0004 | - | 0.0077 | 0.1322 | 0.0022 |
THQDRF-Apr (HI = 0.1276) | 0.0134 | - | 0.0010 | - | 0.0006 | 0.0003 | 0.0003 | - | 0.0062 | 0.1038 | 0.0021 |
THQREF-Sep (HI = 0.0982) | 0.0111 | - | 0.0006 | - | 0.0004 | 0.0003 | 0.0003 | - | 0.0070 | 0.0768 | 0.0017 |
THQDRF-Sep (HI = 0.0835) | 0.0104 | - | 0.0006 | - | 0.0005 | 0.0003 | 0.0003 | - | 0.0056 | 0.0640 | 0.0018 |
THQ (brown trout, Salmo trutta) e | - | - | - | - | 0.016 | 0.0002 | 0.0002 | - | - | - | 0.0017 |
THQ (Prussian carp, Carassius gibelio) f | - | - | 0.0004 | - | 0.0007 | 0.009 | 0.0002 | - | 0.0040 | - | - |
THQ (common carp, Cyprinus carpio) g | - | - | - | - | 0.0007–0.0008 | 0.036–0.044 | 0.0001 | - | - | - | 0.0020 |
THQ (Prussian carp, C. gibelio) h | - | - | - | - | 0.008–0.010 | - | - | - | - | - | 0.017–0.030 |
TRREF-Apr | 0.0000048 | - | - | - | - | - | - | - | - | - | - |
TRDRF-Apr | 0.0000060 | - | - | - | - | - | - | - | - | - | - |
TRREF-Sep | 0.0000050 | - | - | - | - | - | - | - | - | - | - |
TRDRF-Sep | 0.0000047 | - | - | - | - | - | - | - | - | - | - |
2.5. Statistical Analyses and Graphical Data Presentation
3. Results and Discussion
3.1. Biometric Characteristics of the Sampled Fish
3.2. Metal/Metalloid Bioaccumulation in Fish Muscle: Environmental Considerations
3.2.1. Overview of the Metals/Metalloids Concentrations in the Fish Muscle
3.2.2. Size/Age/Sex Influence on Bioaccumulated Metal/Metalloid Concentration Variability
3.2.3. Spatial Differences of Metal/Metalloid Concentrations in the Fish Muscle as the Result of the Differences in Environmental Exposure
3.2.4. Differences in Metal/Metalloid Concentrations in the Fish Muscle in Two Distinct Sampling Periods
3.3. Assessment of the Potential Human Health Risk from the Fish Meat Consumption
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Arroyo-Abad, U.; Pfeifer, M.; Mothes, S.; Stärk, H.-J.; Piechotta, C.; Mattusch, J.; Reemtsma, T. Determination of moderately polar arsenolipids and mercury speciation in freshwater fish of the River Elbe (Saxony, Germany). Environ. Pollut. 2016, 208, 458–466. [Google Scholar] [CrossRef] [PubMed]
- Alp, A.; Yeğen, V.; Apaydin Yağci, M.; Uysal, R.; Biçen, E.; Yağci, A. Diet composition and prey selection of the pike, Esox lucius, in Çivril Lake, Turkey. J. Appl. Ichthyol. 2008, 24, 670–677. [Google Scholar] [CrossRef]
- Žiliukienė, V.; Žiliukas, V. Spawning population characteristics of pike Esox lucius L. in Lake Rubikiai (Lithuania). Cent. Eur. J. Biol. 2012, 7, 867–877. [Google Scholar] [CrossRef]
- Jovičić, K.; Janković, S.; Nikolić, D.M.; Đikanović, V.; Skorić, S.; Krpo-Ćetković, J.; Jarić, I. Prospects of fish scale and fin samples usage for nonlethal monitoring of metal contamination: A study on five fish species from the Danube River. Knowl. Manag. Aquat. Ecosyst. 2023, 424, e4. [Google Scholar] [CrossRef]
- Nikolić, D.; Skorić, S.; Janković, S.; Hegediš, A.; Djikanović, V. Age specific accumulation of toxic metal(loid)s in northern pike (Esox lucius) juveniles. Environ. Monit. Assess. 2021, 193, e229. [Google Scholar] [CrossRef]
- Valić, D.; Barac, F.; Kralj, T.; Šoštarić Vulić, Z. Revizija Plana Upravljanja: Mjere za Unapređenje Slatkovodnog Ribarstva na Ribolovnom Području KŠR “Mrežnica” Duga Resa [In Croatian]; Ruđer Bošković Institute: Zagreb, Croatia, 2021. [Google Scholar]
- Valić, D.; Vardić Smrzlić, I.; Žunić, J.; Šoštarić Vulić, Z.; Gligora Udovič, M. Provođenje Programa Praćenja Stanja u Slatkovodnom Ribarstvu u 2017. Godini—Grupa C—Ribolovno Područje Kupa [In Croatian]; Ruđer Bošković Institute: Zagreb, Croatia, 2017. [Google Scholar]
- Dragun, Z.; Stipaničev, D.; Fiket, Ž.; Lučić, M.; Udiković Kolić, N.; Puljko, A.; Repec, S.; Šoštarić Vulić, Z.; Ivanković, D.; Barac, F.; et al. Yesterday’s contamination—A problem of today? The case study of discontinued historical contamination of the Mrežnica River (Croatia). Sci. Total Environ. 2022, 848, e157775. [Google Scholar] [CrossRef]
- Frančišković-Bilinski, S.; Bilinski, H.; Maldini, K.; Milović, S.; Zhang, Q.; Appel, E. Chemical and magnetic tracing of coal slag pollutants in karstic river sediments. Environ. Earth Sci. 2017, 76, e476. [Google Scholar] [CrossRef]
- Hurley, R.R.; Rothwell, J.J.; Woodward, J.C. Metal contamination of bed sediments in the Irwell and Upper Mersey catchments, northwest England: Exploring the legacy of industry and urban growth. J. Soils Sediments 2017, 17, 2648–2665. [Google Scholar] [CrossRef]
- Farkas, A.; Salánki, J.; Specziár, A. Age- and size-specific patterns of heavy metals in the organs of freshwater fish Abramis brama L. populating a low-contaminated site. Water Res. 2003, 37, 959–964. [Google Scholar] [CrossRef]
- Canpolat, Ö.; Eroğlu, M.; Zülfü Çoban, M.; Düşükcan, M. Transfer factors and bioaccumulation of some heavy metals in muscle of a freshwater fish species: A human health concern. Fresenius Environ. Bull. 2014, 23, 418–425. [Google Scholar]
- Łuczyńska, J.; Paszczyk, B.; Łuczyński, M.J. Determination of cadmium in muscles and liver of freshwater fish species from Mazurian Lake District, and risk assessment of fish consumption (Poland). Turk. J. Fish. Aquat. Sci. 2019, 19, 935–945. [Google Scholar] [CrossRef] [PubMed]
- Diana, J.S. Growth, maturation, and production of northern pike in three Michigan lakes. Trans. Am. Fish. Soc. 1983, 112, 38–46. [Google Scholar] [CrossRef]
- Dragun, Z.; Krasnići, N.; Ivanković, D.; Filipović Marijić, V.; Mijošek, T.; Redžović, Z.; Erk, M. Comparison of intracellular trace element distributions in the liver and gills of the invasive freshwater fish species, Prussian carp (Carassius gibelio Bloch, 1782). Sci. Total Environ. 2020, 730, e138923. [Google Scholar] [CrossRef] [PubMed]
- HRN EN 14011; Fish Sampling by Electric Power [Uzorkovanje Riba Električnom Strujom]. Glasilo DZNM: Zagreb, Croatia, 2005; pp. 1–2.
- NN 55; Ordinance on the Protection of Animals Used for the Scientific Purposes [Pravilnik o Zaštiti Životinja Koje se Koriste u Znanstvene Svrhe]. Narodne Novine: Zagreb, Croatia, 2013; p. 55.
- Dragun, Z.; Filipović Marijić, V.; Krasnići, N.; Ivanković, D.; Valić, D.; Žunić, J.; Kapetanović, D.; Vardić Smrzlić, I.; Redžović, Z.; Grgić, I.; et al. Total and cytosolic concentrations of twenty metals/metalloids in the liver of brown trout Salmo trutta (Linnaeus, 1758) from the karstic Croatian river Krka. Ecotoxicol. Environ. Saf. 2018, 147, 537–549. [Google Scholar] [CrossRef] [PubMed]
- Dragun, Z.; Ivanković, D.; Krasnići, N.; Kiralj, Z.; Cvitanović, M.; Karamatić, I.; Valić, D.; Barac, F.; Filipović Marijić, V.; Mijošek, T.; et al. Metal-binding biomolecules in the liver of northern pike (Esox lucius Linnaeus, 1758): The first data for the family Esocidae. Comp. Biochem. Phys. C. 2022, 257, e109327. [Google Scholar] [CrossRef]
- Cresson, P.; Travers-Trolet, M.; Rouquette, M.; Timmerman, C.-A.; Giraldo, C.; Lefebvre, S.; Ernande, B. Underestimation of chemical contamination in marine fish muscle tissue can be reduced by considering variable wet:dry weight ratios. Mar. Pollut. Bull. 2017, 123, 279–285. [Google Scholar] [CrossRef]
- Đikanović, V.; Skorić, S.; Gačić, Z. Concentrations of metals and trace elements in different tissues of nine fish species from the Međuvršje Reservoir (West Morava River Basin, Serbia). Arch. Biol. Sci. 2016, 68, 811–819. [Google Scholar] [CrossRef]
- Harrison, S.E.; Klaverkamp, J.F. Metal contamination in liver and muscle of northern pike (Esox lucius) and white sucker (Catostomus commersoni) and in sediments from lakes near the smelter at Flin Flon, Manitoba. Environ. Toxicol. Chem. 1990, 9, 941–956. [Google Scholar] [CrossRef]
- Zrnčić, S.; Oraić, D.; Ćaleta, M.; Mihaljević, Ž.; Zanella, D.; Bilandžić, N. Biomonitoring of heavy metals in fish from the Danube River. Environ. Monit. Assess. 2013, 185, 1189–1198. [Google Scholar] [CrossRef] [PubMed]
- Altug, G.; Okgerman, H. Levels of some toxic elements in the surface sediment and some biota from the Sapanca Lake, Turkey. Fresenius Environ. Bull. 2008, 17, 27–31. [Google Scholar]
- Rajkowska, M.; Protasowicki, M. Distribution of metals (Fe, Mn, Zn, Cu) in fish tissues in two lakes of different trophy in Northwestern Poland. Environ. Monit. Assess. 2013, 185, 3493–3502. [Google Scholar] [CrossRef]
- European Commission (EC). Commission regulation No. 1881/2006, Setting maximum levels for certain contaminants in foodstuffs. OJ L 2006, 364, 5–24. [Google Scholar]
- NN 46; Ordinance on the Maximum Allowed Quantities of Contaminants in Food [Pravilnik o Najvećim Dopuštenim Količinama Kontaminanata u Hrani]. Narodne Novine: Zagreb, Croatia, 2007; p. 46.
- NN 146; Ordinance on the Maximum Allowed Quantities of Certain Contaminants in Food [Pravilnik o Najvećim Dopuštenim Količinama Određenih Kontaminanata u Hrani]. Narodne Novine: Zagreb, Croatia, 2012; p. 146.
- CXS 193-1995; General Standard for Contaminants and Toxins in Food and Feed. Adopted in 1995; revised in 1997, 2006, 2008, 2009; amended in 2010, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2019.
- Javed, M.; Usmani, N. Accumulation of heavy metals and human health risk assessment via the consumption of freshwater fish Mastacembelus armatus inhabiting thermal power plant effluent loaded canal. SpringerPlus 2016, 5, e776. [Google Scholar] [CrossRef]
- Speedy, A.W. Global production and consumption of animal source foods. J. Nutr. 2003, 133, 4048S–4053S. [Google Scholar] [CrossRef]
- Alberto, A.; Francesco, C.; Atzei, A.; Andrea, S.; Francesco, P.; Carla, L.; Mariateresa, R. Heavy metal and metalloid accumulation in wild brown trout (Salmo trutta L., 1758 complex, Osteichthyes: Salmonidae) from a mountain stream in Sardinia by ICP OES. Environ. Monit. Assess. 2021, 193, e448. [Google Scholar] [CrossRef] [PubMed]
- Milošković, A.; Stojković Piperac, M.; Kojadinović, N.; Radenković, M.; Đuretanović, S.; Čerba, D.; Milošević, Đ.; Simić, V. Potentially toxic elements in invasive fish species Prussian carp (Carassius gibelio) from different freshwater ecosystems and human exposure assessment. Environ. Sci. Pollut. Res. 2022, 29, 29152–29164. [Google Scholar] [CrossRef] [PubMed]
- Peycheva, K.; Panayotova, V.; Stancheva, R.; Makedonski, L.; Merdzhanova, A.; Parrino, V.; Nava, V.; Cicero, N.; Fazio, F. Risk assessment of essential and toxic elements in freshwater fish species from lakes near Black Sea, Bulgaria. Toxics 2022, 10, 675. [Google Scholar] [CrossRef]
- Çağlan Kaya, D.C. Health risk assessments of heavy metal concentrations via consumption of an invasive species, Carassius gibelio, from two large freshwater lakes of Türkiye. Turk. J. Zool. 2023, 47, 469–478. [Google Scholar] [CrossRef]
- Koed, A.; Balleby, K.; Mejlhede, P.; Aarestrup, K. Annual movement of adult pike (Esox lucius L.) in a lowland river. Ecol. Freshw. Fish 2006, 15, 191–199. [Google Scholar] [CrossRef]
- Relman, A.S. The physiological behavior of rubidium and cesium in relation to that of potassium. Yale J. Biol. Med. 1956, 29, 248–262. [Google Scholar] [PubMed]
- Has-Schön, E.; Bogut, I.; Strelec, I. Heavy metal profile in five fish species included in human diet, domiciled in the end flow of River Neretva (Croatia). Arch. Environ. Contam. Toxicol. 2006, 50, 545–551. [Google Scholar] [CrossRef]
- Morrow, J.E. The Freshwater Fishes of Alaska; Alaska Northwest Publishing Co.: Anchorage, AK, USA, 1980. [Google Scholar]
- Simonović, P. Familia Percidae. In Ribe Srbije [Fishes of Serbia]; NNK Internacional: Beograd, Serbia, 2001; pp. 199–211. [Google Scholar]
- Genchi, G.; Carocci, A.; Lauria, G.; Sinicropi, M.S.; Catalano, A. Thallium use, toxicity, and detoxification therapy: An overview. Appl. Sci. 2021, 11, 8322. [Google Scholar] [CrossRef]
- Tayel, F.T.R.; Shriadah, M.M.A. Fe, Cu, Mn, Pb and Cd in some fish species from Western Harbour of Alexandria, Egypt. Bull. Natl. Inst. Ocean. Fish. 1996, 22, 85–96. [Google Scholar]
- Kiralj, Z.; Dragun, Z.; Lajtner, J.; Trgovčić, K.; Valić, D.; Ivanković, D. Accumulation of metal(loid)s in the digestive gland of the mussel Unio crassus: A reliable detection of historical freshwater contamination. Environ. Pollut. 2023, 334, e122164. [Google Scholar] [CrossRef]
- Andres, S.; Ribeyre, F.; Tourencq, J.N.; Boudou, A. Interspecific comparison of cadmium and zinc contamination in the organs of four fish species along a polymetallic pollution gradient (Lot River, France). Sci. Total Environ. 2000, 248, 11–25. [Google Scholar] [CrossRef] [PubMed]
April 2021 | September 2021 | ||||
---|---|---|---|---|---|
REF | DRF | REF | DRF | ||
Total mass/g | Age 1 a; Sex F | 113 (c n = 2) | 260 (n = 1) | - | 150 (n = 1) |
Age 1; Sex M | 109 (n = 11) | 122.0 (n = 4) | 134 (n = 5) | - | |
Age 2 b; Sex F | - | 401 (n = 5) | 452 (n = 5) | 412 (n = 6) | |
Age 2; Sex M | 325 (n = 1) | 390 (n = 5) | 449 (n = 6) | 345 (n = 4) | |
GSI /% | Age 1; Sex F | 0.297 | 0.308 | - | 0.327 |
Age 1; Sex M | 0.665 | 0.673 | 1.93 | - | |
Age 2; Sex F | - | 0.372 | 1.09 | 0.900 | |
Age 2; Sex M | 0.277 | 0.280 | 2.38 | 2.47 | |
As /ng g−1 | Age 1; Sex F | 16.0 | 12.8 | - | 12.6 |
Age 1; Sex M | * 19.0 | * 34.2 | 18.1 | - | |
Age 2; Sex F | - | 19.4 | 16.7 | 17.2 | |
Age 2; Sex M | 12.4 | 16.5 | 20.2 | 18.6 | |
Bi /ng g−1 | Age 1; Sex F | 3.73 | 13.1 | - | 10.5 |
Age 1; Sex M | 6.29 | 3.90 | 7.56 | - | |
Age 2; Sex F | - | 10.2 | * 6.99 | * 15.6 | |
Age 2; Sex M | 12.5 | 6.03 | 9.52 | 14.9 | |
Co /ng g−1 | Age 1; Sex F | 1.70 | 1.01 | - | 1.06 |
Age 1; Sex M | 1.99 | 2.17 | 1.37 | - | |
Age 2; Sex F | - | 1.25 | 0.939 | 0.844 | |
Age 2; Sex M | 1.08 | 1.77 | * 0.922 | * 1.35 | |
Cs /ng g−1 | Age 1; Sex F | 5.99 | 5.90 | - | 5.95 |
Age 1; Sex M | 6.37 | 6.44 | 5.45 | - | |
Age 2; Sex F | - | 7.10 | 5.70 | 5.99 | |
Age 2; Sex M | 6.01 | 5.78 | 6.09 | 6.43 | |
a age group 1 includes fish of age 0+ and 1+; b age group 2 includes fish of age 2+ and 3+; c number of samples per group is the same for all parameters as for total mass. | |||||
Cu /ng g−1 | Age 1 a; Sex F | 108 (c n = 2) | 117 (n = 1) | - | 106 (n = 1) |
Age 1; Sex M | 132 (n = 11) | 132 (n = 4) | 96.5 (n = 5) | - | |
Age 2 b; Sex F | - | 131 (n = 5) | 90.1 (n = 5) | 99.8 (n = 6) | |
Age 2; Sex M | 140 (n = 1) | 120 (n = 5) | 95.5 (n = 6) | 122 (n = 4) | |
Fe /µg g−1 | Age 1; Sex F | 0.963 | 1.06 | - | 1.22 |
Age 1; Sex M | 1.18 | 1.15 | 1.40 | - | |
Age 2; Sex F | - | 0.809 | 1.11 | 0.936 | |
Age 2; Sex M | 0.934 | 1.10 | 1.12 | 1.25 | |
Mn /ng g−1 | Age 1; Sex F | 372 | 183 | - | 198 |
Age 1; Sex M | 276 | 260 | 326 | - | |
Age 2; Sex F | - | 163 | 223 | 229 | |
Age 2; Sex M | 348 | 178 | 230 | 253 | |
Rb /µg g−1 | Age 1; Sex F | 2.56 | 2.58 | - | 3.53 |
Age 1; Sex M | 3.13 | 2.79 | 3.35 | - | |
Age 2; Sex F | - | 2.73 | 3.41 | 3.17 | |
Age 2; Sex M | 3.23 | 2.71 | * 3.59 | * 3.01 | |
Se /ng g−1 | Age 1; Sex F | 196 | 153 | - | 142 |
Age 1; Sex M | * 217 | * 175 | 167 | - | |
Age 2; Sex F | - | 163 | * 204 | * 153 | |
Age 2; Sex M | 229 | 189 | * 207 | * 166 | |
a age group 1 includes fish of age 0+ and 1+; b age group 2 includes fish of age 2+ and 3+; c number of samples per group is the same for all parameters as for Cu. | |||||
Tl /ng g−1 | Age 1 a; Sex F | 6.84 (c n = 2) | 3.99 (n = 1) | - | 4.79 (n = 1) |
Age 1; Sex M | 7.41 (n = 11) | 6.61 (n = 4) | 5.19 (n = 5) | - | |
Age 2 b; Sex F | - | 5.55 (n = 5) | 3.82 (n = 5) | 3.66 (n = 6) | |
Age 2; Sex M | 8.16 (n = 1) | 5.16 (n = 5) | 3.87 (n = 6) | 3.11 (n = 4) | |
Zn /µg g−1 | Age 1; Sex F | 3.94 | 3.46 | - | 2.48 |
Age 1; Sex M | 3.62 | 3.83 | 3.12 | - | |
Age 2; Sex F | - | 3.02 | 2.71 | 2.92 | |
Age 2; Sex M | 2.92 | 3.38 | 2.72 | 3.29 | |
K /µg g−1 | Age 1; Sex F | 5366 | 5338 | - | 4710 |
Age 1; Sex M | 5255 | 5130 | 4681 | - | |
Age 2; Sex F | - | 5017 | 4544 | 4768 | |
Age 2; Sex M | 6078 | 5095 | 4624 | 4640 | |
Mg /µg g−1 | Age 1; Sex F | 374 | 356 | - | 316 |
Age 1; Sex M | 377 | 375 | 327 | - | |
Age 2; Sex F | - | 355 | 324 | 330 | |
Age 2; Sex M | 423 | 373 | 329 | 325 | |
Na /µg g−1 | Age 1; Sex F | 444 | 335 | - | 340 |
Age 1; Sex M | 427 | 389 | 307 | - | |
Age 2; Sex F | - | 355 | 388 | 328 | |
Age 2; Sex M | 442 | 420 | 321 | 347 | |
a age group 1 includes fish of age 0+ and 1+; b age group 2 includes fish of age 2+ and 3+; c number of samples per group is the same for all parameters as for Tl. |
As ng g−1 | Bi ng g−1 | Co ng g−1 | Cs ng g−1 | Cu ng g−1 | Fe µg g−1 | Mn ng g−1 | Rb µg g−1 | Se ng g−1 | Tl ng g−1 | Zn µg g−1 | K µg g−1 | Mg µg g−1 | Na µg g−1 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mrežnica, this study (means ± standard deviations) | ||||||||||||||
REF-Apr | 17.9 ± 5.4 | 6.08 ± 4.53 | 1.88 ± 0.49 | 6.23 ± 0.91 | 132 ± 20 | 1.12 ± 0.24 | 292 ± 105 | 3.02 ± 0.32 | 213 ± 20 | 7.35 ± 1.58 | 3.66 ± 0.57 | 5323 ± 319 | 379 ± 23 | 428 ± 73 |
REF-Sep | 18.5 ± 4.3 | 8.11 ± 4.28 | 1.07 ± 0.40 | 5.77 ± 0.64 | 94.1 ± 8.3 | 1.21 ± 0.64 | 258 ± 81 | 3.46 ± 0.35 | 194 ± 27 | 4.27 ± 1.07 | 2.84 ± 0.39 | 4617 ± 198 | 327 ± 10 | 337 ± 68 |
DRF-Apr | 22.4 ± 11.0 | 7.11 ± 3.91 | 1.70 ± 0.57 | 6.48 ± 0.87 | 126 ± 35 | 1.03 ± 0.32 | 202 ± 97 | 2.75 ± 0.23 | 173 ± 28 | 5.77 ± 1.48 | 3.43 ± 0.79 | 5078 ± 198 | 365 ± 20 | 385 ± 50 |
DRF-Sep | 17.3 ± 4.9 | 14.9 ± 5.7 | 1.05 ± 0.33 | 6.15 ± 0.52 | 109 ± 24 | 1.08 ± 0.33 | 235 ± 43 | 3.15 ± 0.24 | 156 ± 12 | 3.56 ± 1.17 | 3.02 ± 0.65 | 4716 ± 183 | 327 ± 11 | 336 ± 44 |
River Elbe, Germany 1 | 67.5 | - | - | - | - | - | - | - | - | - | - | - | - | - |
River Danube, Serbia 2 | 685 ± 807 | - | 151 ± 49 | - | 1690 ±1136 | 46.4 ± 25.4 | 3446 ±1326 | - | 1136 ±373 | - | 21.3 ± 6.96 | - | - | - |
Vizelj Channel, Serbia 3 | ND (<44.6) | - | ND (<3.80) | - | ND-1716 | 1.65–22.6 | - | - | - | - | 4.10–10.7 | - | - | - |
Međuvršje Reservoir, Serbia 4 | 352 ± 74 | - | ND | - | 164 ± 4 | 3.66 ± 0.80 | 250 ± 20 | - | - | - | 9.72 ± 2.22 | - | - | - |
Flin Flon Lakes, Canada 5 | - | - | - | - | 160 ± 20 | - | - | - | - | - | 5.6 ± 2.4 | - | - | - |
River Danube, Croatia 6 | 6 ± 3 | - | - | - | - | - | - | - | - | - | - | - | - | - |
Sapanca Lake, Turkey 7 | - | - | - | - | 342 ± 420 | - | - | - | - | - | 2.00 ± 0.36 | - | - | - |
Ińsko/Wisola lakes, Poland 8 | - | - | - | - | 140/190 | 1.4/0.8 | 200 | - | - | - | 9.4/6.2 | - | - | - |
MAC-EU a/Croatia c | 2000 b | - | - | - | - | 30.0 b | - | - | - | - | - | - | - | - |
ML-FAO d | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dragun, Z.; Ivanković, D.; Tepić, N.; Filipović Marijić, V.; Šariri, S.; Pavin, T.M.; Drk, S.; Gjurčević, E.; Matanović, K.; Kužir, S.; et al. Metal Bioaccumulation in the Muscle of the Northern Pike (Esox lucius) from Historically Contaminated River and the Estimation of the Human Health Risk. Fishes 2024, 9, 364. https://doi.org/10.3390/fishes9090364
Dragun Z, Ivanković D, Tepić N, Filipović Marijić V, Šariri S, Pavin TM, Drk S, Gjurčević E, Matanović K, Kužir S, et al. Metal Bioaccumulation in the Muscle of the Northern Pike (Esox lucius) from Historically Contaminated River and the Estimation of the Human Health Risk. Fishes. 2024; 9(9):364. https://doi.org/10.3390/fishes9090364
Chicago/Turabian StyleDragun, Zrinka, Dušica Ivanković, Nataša Tepić, Vlatka Filipović Marijić, Sara Šariri, Tatjana Mijošek Pavin, Sara Drk, Emil Gjurčević, Krešimir Matanović, Snježana Kužir, and et al. 2024. "Metal Bioaccumulation in the Muscle of the Northern Pike (Esox lucius) from Historically Contaminated River and the Estimation of the Human Health Risk" Fishes 9, no. 9: 364. https://doi.org/10.3390/fishes9090364
APA StyleDragun, Z., Ivanković, D., Tepić, N., Filipović Marijić, V., Šariri, S., Pavin, T. M., Drk, S., Gjurčević, E., Matanović, K., Kužir, S., Barac, F., Kiralj, Z., Kralj, T., & Valić, D. (2024). Metal Bioaccumulation in the Muscle of the Northern Pike (Esox lucius) from Historically Contaminated River and the Estimation of the Human Health Risk. Fishes, 9(9), 364. https://doi.org/10.3390/fishes9090364