Effects of Environmental Enrichment on the Growth, Gonadal Development, and Welfare of the Chinese Hooksnout Carp (Opsariichthys bidens)
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Material
2.2. Experimental Design
2.3. Behavioral Observation
2.4. Growth Index, Enzyme Activity, and Hormone Determination
2.5. Tissue Section Observation
2.6. Gene Expression Measurement
2.7. Calculation and Analysis of Relevant Data
3. Results
3.1. Growth Indicators
3.2. Gonadal Development
3.3. Behavioral Response
3.4. Antioxidant Index
3.5. Hormone Level
3.6. Expression of Genes
4. Discussions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huntingford, F.A.; Adams, C.; Braithwaite, V.A.; Kadri, S.; Pottinger, T.G.; Sandøe, P.; Turnbull, J.F. Current issues in fish welfare. J. Fish Biol. 2006, 68, 332–372. [Google Scholar] [CrossRef]
- Ashley, P.J. Fish welfare: Current issues in aquaculture. Appl. Anim. Behav. Sci. 2007, 104, 199–235. [Google Scholar] [CrossRef]
- Ohara, A.; Oyakawa, C.; Yoshihara, Y.; Ninomiya, S.; Sato, S. Effect of Environmental Enrichment on the Behavior and Welfare of Japanese Broilers at a Commercial Farm. J. Poult. Sci. 2015, 52, 323–330. [Google Scholar] [CrossRef]
- Xu, D.; Shu, G.; Liu, Y.; Qin, P.; Zheng, Y.; Tian, Y.; Zhao, X.; Du, X. Farm Environmental Enrichments Improve the Welfare of Layer Chicks and Pullets: A Comprehensive Review. Animals 2022, 12, 2610. [Google Scholar] [CrossRef]
- Arechavala-Lopez, P.; Cabrera-Álvarez, M.J.; Maia, C.M.; Saraiva, J.L. Environmental enrichment in fish aquaculture: A review of fundamental and practical aspects. Rev. Aquac. 2022, 14, 704–728. [Google Scholar] [CrossRef]
- Casalini, A.; Gentile, L.; Emmanuele, P.; Brusa, R.; Elmi, A.; Parmeggiani, A.; Galosi, L.; Roncarati, A.; Mordenti, O. Effects of Environmental Enrichment on the Behavior of Octopus vulgaris in a Recirculating Aquaculture System. Animals 2023, 13, 1862. [Google Scholar] [CrossRef] [PubMed]
- Shen, F.; Zhang, Z.; Guo, H.; Fu, Y.; Zhang, D.; Zhang, X. Effects of Two Environmental Enrichment Methods on Cognitive Ability and Growth Performance of Juvenile Black Rockfish Sebastes schlegelii. Animals 2023, 13, 2131. [Google Scholar] [CrossRef]
- Näslund, J.; Johnsson, J.I. State-dependent behavior and alternative behavioral strategies in brown trout (Salmo trutta L.) fry. Behav. Ecol. Sociobiol. 2016, 70, 2111–2125. [Google Scholar] [CrossRef]
- Xu, C.; Hou, M.; Su, L.; Qiu, N.; Yu, F.; Zou, X.; Wang, C.; Wang, J.; He, Y. The Effect of Environmental Enrichment on Laboratory Rare Minnows (Gobiocypris rarus): Growth, Physiology, and Behavior. Animals 2022, 12, 514. [Google Scholar] [CrossRef]
- Johansson, F.; Radman, P.; Andersson, J. The relationship between ontogeny, morphology, and diet in the Chinese hook snout carp (Opsariichthys bidens). Ichthyol. Res. 2006, 53, 63–69. [Google Scholar] [CrossRef]
- Wang, X.; Wang, J.; He, S.; Mayden, R.L. The complete mitochondrial genome of the Chinese hook snout carp Opsariichthys bidens (Actinopterygii: Cypriniformes) and an alternative pattern of mitogenomic evolution in vertebrate. Gene 2007, 399, 11–19. [Google Scholar] [CrossRef]
- Ding, J.; Tang, D.; Zhang, Y.; Gao, X.; Du, C.; Shen, W.; Jin, S.; Zhu, J. Transcriptomes of Testes at Different Developmental Stages in the Opsariichthys bidens Predict Key Genes for Testis Development and Spermatogenesis. Mar. Biotechnol. 2023, 25, 123–139. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Lan, Z.; Zhao, J.; Chen, L.; Zhong, L.; Yi, Z.; Shu, H.; Li, H. Study on individual fecundity of Opsariichthys bidens of the Beijiang River in Guangdong Province. Sichuan J. Zool. 2010, 29, 440–445. [Google Scholar]
- Perdices, A.; Coelho, M. Comparative phylogeography of Zacco platypus and Opsariichthys bidens (Teleostei, Cypri-nidae) in China based on cytochrome bsequences. J. Zool Syst. Evol. Res. 2006, 44, 330–338. [Google Scholar] [CrossRef]
- Huang, Y.; Mei, X.; Rudstam, L.G.; Taylor, W.D.; Urabe, J.; Jeppesen, E.; Liu, Z.; Zhang, X. Effects of Crucian Carp (Carassius auratus) on Water Quality in Aquatic Ecosystems: An Experimental Mesocosm Study. Water 2020, 12, 1444. [Google Scholar] [CrossRef]
- Zheng, S.; Yu, J.; Weng, X. Discussion on the key technology of artificial culture of Opsariichthys bidens. Sci. Fishkeep. 2021, 12, 45–46. (In Chinese) [Google Scholar]
- Fu, S.J.; Peng, Z.; Cao, Z.D.; Peng, J.L.; He, X.K.; Xu, D.; Zhang, A.J. Habitat-specific locomotor variation among Chinese hook snout carp (Opsariichthys bidens) along a river. PLoS ONE 2012, 7, e40791. [Google Scholar] [CrossRef]
- Gao, X.; Zhao, C.; Yu, Q.; Wang, X. Experiment on artificial breeding of Opsariichthys bidens. Hebei Fish. 2023, 11, 36–38. (In Chinese) [Google Scholar]
- Tang, R.; Zhu, Y.; Gan, W.; Zhang, Y.; Yao, Z.; Ren, J.; Li, M. De novo transcriptome analysis of gonads reveals the sex-associated genes in Chinese hook snout carp Opsariichthys bidens. Aquac. Rep. 2022, 23, 1–10. [Google Scholar] [CrossRef]
- Chen, X.; Kan, Y.; Zhong, Y.; Jawad, M.; Wei, W.; Gu, K.; Gui, L.; Li, M. Generation of a Normal Long-Term-Cultured Chinese Hook Snout Carp Spermatogonial Stem Cell Line Capable of Sperm Production In Vitro. Biology 2022, 11, 1069. [Google Scholar] [CrossRef]
- Lee, C.J.; Paull, G.C.; Tyler, C.R. Effects of environmental enrichment on survivorship, growth, sex ratio, and behavior in laboratory maintained zebrafish Danio rerio. J. Fish Biol. 2019, 94, 86–95. [Google Scholar] [CrossRef] [PubMed]
- Buenhombre, J.; Daza-Cardona, E.A.; Sousa, P.; Gouveia, A.; Jr Cajiao-Pachón, M.N. Structural environmental enrichment and the way it is offered influence cognitive judgment bias and anxiety-like behaviors in zebrafish. Anim. Cogn. 2023, 26, 563–577. [Google Scholar] [CrossRef]
- Omondi, G.A.A.; Otachi, E.O.; Munguti, J.M. Growth performance of mixed sex Nile tilapia in cage monoculture and polyculture with African catfish and African carp. Aquac. Int. 2017, 25, 1799–1812. [Google Scholar] [CrossRef]
- Mork, O.I.; Bjerkeng, B.; Rye, M. Aggressive interactions in pure and mixed groups of juvenile farmed and hatchery-reared wild Atlantic salmon Salmo salar L. in relation to tank substrate. Aquac. Res. 1999, 30, 571–578. [Google Scholar]
- Meyer, M.M.; Johnson, A.K.; Leyk, C.A.; Tieberg, J.L.; Stephan, A.B.; Bobeck, E.A. Field report: Methods for assessing laser environmental enrichment application in commercial broilers. J. Appl. Poult. Res. 2024, 33, 100391. [Google Scholar] [CrossRef]
- Jun, L. Reproductive Physiology of Farmed Fish in China; Agriculture Press: Beijing, China, 1993; pp. 22–40. (In Chinese) [Google Scholar]
- Batzina, A.; Dalla, C.; Papadopoulou-Daifoti, Z.; Karakatsouli, N. Effects of environmental enrichment on growth, aggressive behavior, and brain monoamines of gilthead seabream Sparus aurata reared under different social conditions. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2014, 169, 25–32. [Google Scholar] [CrossRef]
- Crank, K.; Kientz, J.; Barnes, M. An Evaluation of Vertically Suspended Environmental Enrichment Structures during Rainbow Trout Rearing. N. Am. J. Aquac. 2018, 81, 94–100. [Google Scholar] [CrossRef]
- Zhang, Z.; Bai, Q.; Xu, X.; Guo, H.; Zhang, X. Effects of environmental enrichment on the welfare of juvenile black rockfish Sebastes schlegelii: Growth, behavior and physiology. Aquaculture 2020, 518, 734782. [Google Scholar] [CrossRef]
- Zhang, Z.; Fu, Y.; Zhao, H.; Zhang, X. Social enrichment affects fish growth and aggression depending on fish species: Applications for aquaculture. Front. Mar. Sci. 2022, 9, 1011780. [Google Scholar] [CrossRef]
- Yang, S.; Liu, Z.; Yan, Z.; Zhao, Z.; Zhang, C.; Gong, Q.; Du, X.; Wu, J.; Feng, Y.; Du, J.; et al. Improvement of skeletal muscle growth by GH/IGF growth-axis contributes to growth performance in commercial fleshy sturgeon. Aquaculture 2021, 543, 736929. [Google Scholar] [CrossRef]
- Lin, Q.; Mei, J.; Li, Z.; Zhang, X.; Zhou, L.; Gui, J.F. Distinct and Cooperative Roles of amh and dmrt1 in Self-Renewal and Differentiation of Male Germ Cells in Zebrafish. Genetics 2017, 207, 1007–1022. [Google Scholar] [CrossRef] [PubMed]
- Thamnawasolos, J.; Boonphakdee, C. Cyp19 expression and sex change timing in captive-bred false clownfish. Braz. J. Biol. 2023, 83. [Google Scholar] [CrossRef]
- Liu, F.; Li, S.; Yu, Y.; Sun, M.; Xiang, J.; Li, F. Effects of ammonia stress on the hemocytes of the Pacific white shrimp Litopenaeus vannamei. Chemosphere 2020, 239, 124759. [Google Scholar] [CrossRef] [PubMed]
- Lushchak, V.I. Environmentally induced oxidative stress in aquatic animals. Aquat. Toxicol. 2011, 101, 13–30. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.Y.; Lee, T.H. Antioxidant enzymes as redox-based biomarkers: A brief review. BMB Rep 2015, 48, 200–208. [Google Scholar] [CrossRef]
- Dai, J.; Zhang, L.; Du, X.; Zhang, P.; Li, W.; Guo, X.; Li, Y. Effect of Lead on Antioxidant Ability and Immune Responses of Crucian Carp. Biol. Trace Elem. Res. 2018, 186, 546–553. [Google Scholar] [CrossRef]
- Wang, Y.; Shen, H.-Y. Effect of Cefotaxime on the CAT Activities and GSH Contents of Zebrafish. IOP Conf. Ser. Earth Environ. Sci. 2018, 153, 062071. [Google Scholar] [CrossRef]
- Özok, N. Effects of cypermethrin on antioxidant enzymes and lipid peroxidation of Lake Van fish (Alburnus tarichi). Drug Chem. Toxicol. 2020, 43, 51–56. [Google Scholar] [CrossRef]
- Arechavala-Lopez, P.; Caballero-Froilán, J.C.; Jiménez-García, M.; Capó, X.; Tejada, S.; Saraiva, J.L.; Sureda, A.; Moranta, D. Enriched environments enhance cognition, exploratory behavior and brain physiological functions of Sparus aurata. Sci. Rep. 2020, 10, 11252. [Google Scholar] [CrossRef]
- Li, R.; Xiong, M.; Li, W.; Li, W.; Liu, J.; Zhang, T. The feasibility of Chinese mitten crab (Eriocheir sinensis), mandarin fish (Siniperca chuatsi), and mud carp (Cirrhinus molitorella) polyculture and their effects on growth performance, water quality, antioxidant, and nonspecific immunological capacity. Aquac. Int. 2023, 31, 3003–3021. [Google Scholar] [CrossRef]
- Ding, J.; Finstad, B.; Gansel, L.C.; Tveten, A.-K.; Blindheim, S.H.; Cao, Y. Comparative assessment of plasma cortisol and fecal corticoid metabolites (FCM) of Atlantic salmon (Salmo salar L.) subjected to acute- and long-term stress. Aquaculture 2023, 568, 739299. [Google Scholar] [CrossRef]
- Cavallino, L.; Rincón, L.; Scaia, M.F. Social behaviors as welfare indicators in teleost fish. Front. Vet. Sci. 2023, 10, 1050510. [Google Scholar] [CrossRef] [PubMed]
- von Krogh, K.; Sørensen, C.; Nilsson, G.E.; Øverli, Ø. Forebrain cell proliferation, behavior, and physiology of zebrafish, Danio rerio, kept in enriched or barren environments. Physiol. Behav. 2010, 101, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.; Dou, J.; Wang, Y.; Jiang, X.; Khan, M.Z.; Luo, H.; Usman, T.; Zhu, H. Evaluation of heat stress effects on cellular and transcriptional adaptation of bovine granulosa cells. J. Anim. Sci. Biotechnol. 2020, 11, 25. [Google Scholar] [CrossRef]
- Näslund, J.; Rosengren, M.; Villar, D.; Gansel, L.C.; Norrgård, J.R.; Persson, L.; Winkowski, J.J.; Kvingedal, E. Hatchery tank enrichment affects cortisol levels and shelter-seeking in Atlantic salmon (Salmo salar). Can. J. Fish. Aquat. Sci. 2013, 70, 585–590. [Google Scholar] [CrossRef]
- Einfalt, L.M.; Wojcieszak, D.B.; Wahl, D.H. Behavior, Growth and Habitat Selection of Hatchery Esocids Reared with Artificial Vegetation. Trans. Am. Fish. Soc. 2013, 142, 345–352. [Google Scholar] [CrossRef]
- Fazekas, G.; Müller, T.; Stanivuk, J.; Fazekas, D.L.; Káldy, J.; Tóth, F.; Bürgés, J.; Colchen, T.; Vass, N.; Ljubobratović, U. Evaluation of applying environmental enrichment to sterlets (Acipenser ruthenus L.) in early life stages. Appl. Anim. Behav. Sci. 2023, 268, 106090. [Google Scholar] [CrossRef]
- Turnbull, J.F.; North, B.P.; Ellis, T.; Adams, C.E.; Bron, J.; MacIntyre, C.M.; Huntingford, F.A. Stocking Density and the Welfare of Farmed Salmonids. In Fish Welfare; John Wiley & Sons: Hoboken, NJ, USA, 2008; pp. 111–120. [Google Scholar] [CrossRef]
- Galhardo, L.; Almeida, O.; Oliveira, R.F. Preference for the presence of substrate in male cichlid fish: Effects of social dominance and context. Appl. Anim. Behav. Sci. 2009, 120, 224–230. [Google Scholar] [CrossRef]
- Galhardo, L.; Correia, J.; Oliveira, R.F. The effect of substrate availability on behavioral and physiological indicators of welfare in the African cichlid (Oreochromis mossambicus). Anim. Welf. 2008, 17, 239–254. [Google Scholar] [CrossRef]
- Lin, C.; Tang, D.; Gao, X.; Jiang, H.; Du, C.; Zhu, J. Molecular characterization, dynamic transcription, and potential function of KIF3A/KIF3B during spermiogenesis in Opsariichthys bidens. Gene 2021, 798, 145795. [Google Scholar] [CrossRef]
Target Gene | Primer Sequence (5′–3′) | |
---|---|---|
β-actin | F: TCCGTGACATCAAGGAGAAG | R: GGCAACGGAAACGCTCATT |
igf | F: GTAGAGGGAAGGGTGAGATGGT | R: TGTAAAAGCCACGGTCTCCA |
pcna | F: ACAAGGAGGATGAAGCGGTGAC | R: TGCTGAGCGTGACGGTCTTG |
cyp19a1a | F: GTACACCTCACGCTTTGGGA | R: AGGTTGTGGAAGTGGTGCAA |
dmrt1 | F: CTCAGTACCGCACACACTCC | R: AGTTGCTCTCACACTCCAGC |
Group | CK Group | LP Group | HP Group | LS Group | HS Group | |
---|---|---|---|---|---|---|
Indicators | ||||||
Body length (mm) | 93.47 ± 2.91 a | 96.46 ± 2.70 ab | 108.91 ± 2.71 c | 97.04 ± 2.51 ab | 100.07 ± 2.67 b | |
Weight (g) | 13.73 ± 1.98 a | 17.38 ± 0.91 b | 20.58 ± 2.53 c | 15.38 ± 2.81 ab | 18.47 ± 2.67 bc | |
CF (g/cm3) | 1.67 ± 0.15 a | 1.84 ± 0.12 a | 1.58 ± 0.07 a | 1.67 ± 0.19 a | 1.83 ± 0.14 a | |
HSI (%) | 2.04 ± 0.33 a | 2.37 ± 0.05 a | 2.21 ± 0.21 a | 2.00 ± 0.46 a | 2.00 ± 0.19 a | |
VSI (%) | 11.31 ± 0.31 a | 15.04 ± 2.57 b | 18.45 ± 0.52 c | 12.36 ± 0.04 a | 11.89 ± 6.61 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, Y.; Li, Q.; Cai, Z.; Ye, J.; Tong, W.; Ren, S.; Wu, X.; Chen, H.; Lü, M.; Zheng, S. Effects of Environmental Enrichment on the Growth, Gonadal Development, and Welfare of the Chinese Hooksnout Carp (Opsariichthys bidens). Fishes 2024, 9, 339. https://doi.org/10.3390/fishes9090339
Lin Y, Li Q, Cai Z, Ye J, Tong W, Ren S, Wu X, Chen H, Lü M, Zheng S. Effects of Environmental Enrichment on the Growth, Gonadal Development, and Welfare of the Chinese Hooksnout Carp (Opsariichthys bidens). Fishes. 2024; 9(9):339. https://doi.org/10.3390/fishes9090339
Chicago/Turabian StyleLin, Yurui, Qianhui Li, Zhuo Cai, Jiazheng Ye, Wanqing Tong, Siqi Ren, Xinrui Wu, Huixian Chen, Meidi Lü, and Shanjian Zheng. 2024. "Effects of Environmental Enrichment on the Growth, Gonadal Development, and Welfare of the Chinese Hooksnout Carp (Opsariichthys bidens)" Fishes 9, no. 9: 339. https://doi.org/10.3390/fishes9090339
APA StyleLin, Y., Li, Q., Cai, Z., Ye, J., Tong, W., Ren, S., Wu, X., Chen, H., Lü, M., & Zheng, S. (2024). Effects of Environmental Enrichment on the Growth, Gonadal Development, and Welfare of the Chinese Hooksnout Carp (Opsariichthys bidens). Fishes, 9(9), 339. https://doi.org/10.3390/fishes9090339