Tracking Biomarkers for the Health and Welfare of Aquaculture Fish
Abstract
:1. Introduction
2. Biomarkers
3. Biomarkers Used for Fish Health and Welfare
3.1. Metabolism Biomarkers
3.2. Oxidative Stress Biomarkers
3.3. Immunological Biomarkers
3.4. Biochemical Biomarkers
3.5. Mucosal and Mucin-Associated Biomarkers
4. Application of Biomarkers in Aquaculture Studies
4.1. Nutrition
4.2. Stress
4.3. Infectious Diseases
4.4. Chemicals, Antibiotics and Vaccines
Biomarker | Impact Studied | Organism Tissue | Species | Non-Lethal Potential | References |
---|---|---|---|---|---|
3-hydroxysovaleric acid | Nutrition | Serum | Sparus aurata | Yes | [24] |
4- hydroxy-2-nonenal | Stress | Gill, Brain, Liver, Spleen | Dicentrarchus labrax | Unknown | [44] |
Alanine transaminase (ALT) | Nutrition, Chemical, Disease | Serum, Mucus, Skin, Liver | Oreochromis niloticus, Oncorhynchus mykiss, Salmo salar, Argyrosomus regius | Yes | [43,83,90,105,113,115] |
Alkaline phosphatase | Nutrition, Disease | Serum, Mucus, Skin, Intestine | Salmo salar, Argyrosomus regius | Yes | [91,105] |
Alkaline protease | Nutrition | Intestine | Argyrosomus regius | Unknown | [84,90] |
Amylase | Nutrition | Intestine | Cyprinus carpio, Argyrosomus regius | Unknown | [80,84,90] |
Aspartate transaminase (AST) | Nutrition, Chemical, Disease | Serum, Mucus, Skin, Liver | Oreochromis niloticus, Oncorhynchus mykiss, Salmo salar, Argyrosomus regius | Yes | [43,83,90,105,113,115] |
Carbonyl proteins | Nutrition, Chemical | Intestine, Gill, Liver, Brain, Muscle, Heart | Acipenser stellatus, Oncorhynchus mykiss | Yes | [40,43,116] |
Catalase (CAT) | Nutrition, Chemical | Liver, Kidney, Intestine, Serum, Mucus, Skin, Heart | Cyprinus carpio, Oncorhynchus mykiss, Acipenser baerii, Acipenser stellatus, Oreochromis niloticus, Salmo salar, Cirrhinus mrigala | Yes | [33,34,40,80,81,82,88,105,112,116] |
Catecholamines | Nutrition | Serum | Sparus aurata | Yes | [24] |
Cholinesterases (ChE) | Chemicals | Brain, Muscle | Sparus aurata | Unknown | [12] |
Complement system activity (ACH50) | Chemical | Serum, Intestine | Oreochromis niloticus, Argyrosomus regius | Yes | [91,115] |
Cortisol | Nutrition, Stress | Serum | Oreochromis niloticus, Hypomesus transpacificus | Yes | [81,97] |
C-reactive protein (CRP) | Chemical | Serum | Oreochromis niloticus | Yes | [113] |
Creatine kinase | Disease, Chemical | Serum | Salmo salar, Oncorhynchus mykiss | Yes | [43,102] |
Cytokine IL-22 | Disease | Gill | Salmo salar | Unknown | [103] |
Enolase | Disease | Serum | Salmo salar | Yes | [101] |
Ethoxyresorufin O-deethylase (EROD) | Nutrition | Liver, Kidney | Oncorhynchus mykiss | Unknown | [33,88] |
Extracellular vesicles (EVs) (+ cargo) | Stress, Disease | Serum, Skin (Epidermal mucus) | Gadus morhua, Salmo salar, Cynoglossus semilaeuis | Yes | [61,106,107] |
Glucose | Nutrition, Stress, Chemical | Serum | Oreochromis niloticus, Cirrhinus mrigala, Oncorhynchus mykiss, Argyrosomus regius | Yes | [34,43,81,83,113] |
Glucose 6-phosphate dehydrogenase (G6PDH) | Nutrition | Intestine, Liver | Acipenser stellatus, Argyrosomus regius | Unknown | [40,83] |
Glutamate dehydrogenase (GDH) | Nutrition | Liver | Argyrosomus regius | Unknown | [83,90] |
Glutathione | Nutrition | Serum, Liver | Oreochromis niloticus | Yes | [82] |
Glutathione peroxidase (GPx) | Nutrition, Stress, Chemical | Liver, Kidney, Intestine, Serum, Brain, Muscle, Gill, Heart | Cyprinus carpio, Oncorhynchus mykiss, Acipenser baerii, Acipenser stellatus, Oreochromis niloticus, Perca flavescens, Cirrhinus mrigala | Yes | [33,34,40,43,80,81,88,95,116] |
Glutathione reductase (GR) | Nutrition, Stress | Liver, Kidney, Intestine, Brain, Gill, Muscle, Heart | Oncorhynchus mykiss, Acipenser baerii, Acipenser stellatus, Perca flavescens | Yes | [33,40,43,88,95,116] |
Glutathione S-transferase (GST) | Nutrition, Chemical | Liver, Kidney, Intestine, Gill | Oncorhynchus mykiss, Acipenser baerii, Acipenser stellatus, Sparus aurata, Oreochromis niloticus | Yes | [12,33,40,88,112] |
Goblet cells | Nutrition | Intestine | Oreochromis niloticus | Unknown | [81,82] |
Hematocrit | Chemical | Plasma | Oreochromis niloticus, Cirrhinus mrigala | Yes | [34,112] |
Hemoglobin concentration | Nutrition, Chemical | Plasma | Oreochromis niloticus, Cirrhinus mrigala | Yes | [34,81,112,115] |
Heat shock protein (Hsp) | Nutrition, Stress, Chemical | Liver, Gills, Kidney, Serum, Muscle | Oreochromis niloticus, Dicentrarchus labrax, Salvelinus alpinus, Perca flavescens, Sparus aurata | Yes | [12,44,81,95,96] |
Insulin-like growth factor (Igf1) | Stress | Serum, Liver | Perca flavescens | Yes | [95] |
Intestinal pro-inflammatory cytokines (IL-1β, IL-8 and TNF-α) | Disease | Intestine | Ctenopharyngodon idella | Unknown | [109] |
Lactate | Chemical | Serum | Oncorhynchus mykiss | Yes | [43] |
Lactate dehydrogenase (LDH) | Disease, Chemical | Serum | Salmo salar, Oncorhynchus mykiss | Yes | [43,102] |
Leukocyte respiratory burst activity | Chemical | Serum | Oreochromis niloticus | Yes | [115] |
Lipase | Nutrition | Intestine | Cyprinus carpio, Argyrosomus regius | Unknown | [80,84,90] |
Lysozyme | Nutrition, Disease, Chemical | Serum, Mucus, Skin, Intestine | Oreochromis niloticus, Salmo salar, Argyrosomus regius | Yes | [81,82,91,105,115] |
Malondialdehyde (MDA) | Nutrition | Liver, Kidney, Intestine, Serum | Oncorhynchus mykiss, Acipenser stellatus, Oreochromis niloticus, Dicentrarchus labrax | Yes | [33,40,44,81,82,88] |
Mucins | Nutrition, Stress, Disease | Intestine, Gill, Skin | Sparus aurata, Salmo salar, Oreochromis niloticus | Yes | [68,69,92,103] |
Myeloperoxidase (MPO) | Disease | Intestine | Ctenopharyngodon idella | Unknown | [109] |
Nitrotyrosine | Stress | Liver, Kidney, Muscle | Dicentrarchus labrax | Unknown | [44] |
Peroxidase | Disease, Nutrition | Plasma, Mucus, Skin | Salmo salar, Argyrosomus regius | Yes | [91,105] |
Peroxidation of lipids (LOP) | Chemical | Plasma, Liver, Intestine, Gill, Brain, Muscle | Cirrhinus mrigala, Oncorhynchus mykiss | Yes | [34,43] |
Protease | Nutrition | Intestine | Cyprinus carpio | Unknown | [80] |
Protein thiol groups | Nutrition | Intestine | Acipenser stellatus | Unknown | [40] |
Red blood cells (RBCs) | Nutrition, Chemical | Plasma | Oreochromis niloticus, Cirrhinus mrigala, Argyrosomus regius | Yes | [34,81,91,112,115] |
RNA/DNA ratio | Chemical | Muscle | Sparus aurata | Unknown | [12] |
Rodlet cells | Stress | Intestine, Renal tubes, Gill | Dicentrarchus labrax | Unknown | [44] |
Superoxide dismutase (SOD) | Nutrition, Stress, Disease, Chemical | Liver, Kidney, Intestine, Serum, Mucus, Skin, Brain, Muscle, Gill, Heart | Cyprinus carpio, Oncorhynchus mykiss, Acipenser baerii, Acipenser stellatus, Oreochromis niloticus, Perca flavescens, Salmo salar, Cirrhinus mrigala | Yes | [33,34,40,43,80,81,82,88,95,105,116] |
Thiobarbituric acid reactive substances (TBARS) | Chemical | Brain, Heart | Sparus aurata, Oncorhynchus mykiss | Unknown | [12,116,117] |
Trypsin | Nutrition | Intestine | Argyrosomus regius | Unknown | [84,90] |
White blood cells (WBCs) | Nutrition, Chemical | Plasma | Oreochromis niloticus, Cirrhinus mrigala, Argyrosomus regius | Yes | [34,81,91,112] |
5. Advancing Biomarkers through Omics Technologies
Omics | Analytical Method | Reference |
---|---|---|
Genomics | SNP technology | [122] |
GWAS | ||
Transcriptomics | RT-PCR | [44] |
cDNA microarray | [13] | |
RNA-seq technology | [74] | |
Proteomics | 2D-PAGE | [124] |
LC-MS/MS | [120,124] | |
1D-SDS-PAGE | [124] | |
HPLC-ESI-MS/MS | [124] | |
DIGE | [120,124] | |
MALDI-TOF/TOF | [120,124] | |
Immunohistochemistry | [44] | |
Metabolomics | NMR | [129] |
Mass spectrometry (MS)-based | [129] |
6. Conclusions and Future Remarks
Author Contributions
Funding
Conflicts of Interest
References
- Standing Commitee on Agricultural Research. Strategic Research and Innovation Agenda: For the European Partnership on Animal Health and Welfare (EUP AH&W SRIA); Standing Commitee on Agricultural Research: Brussels, Belgium, 2023. [Google Scholar]
- Katharios, P. Disease Prevention in Farmed Fish: New Developments and Research Needs; Standing Commitee on Agricultural Research: Brussels, Belgium, 2019; p. 48. [Google Scholar]
- FAO. Fishery and Aquaculture Statistics—Yearbook 2021. In FAO Yearbook of Fishery and Aquaculture Statistics; Food and Agriculture Organization of United Nations: Rome, Italy, 2024. [Google Scholar]
- Manfrin, A.; Messori, S.; Arcangeli, G. Strengthening Fish Welfare Research through a Gap Analysis Study; Standing Committee on Agricultural Research: Brussels, Belgium, 2018. [Google Scholar]
- Barreto, M.O.; Planellas, S.R.; Yang, Y.; Phillips, C.; Descovich, K. Emerging indicators of fish welfare in aquaculture. Rev. Aquac. 2022, 14, 343–361. [Google Scholar] [CrossRef]
- Witeska, M.; Kondera, E.; Ługowska, K.; Bojarski, B. Hematological methods in fish—Not only for beginners. Aquaculture 2022, 547, 737498. [Google Scholar] [CrossRef]
- Kiron, V. Fish immune system and its nutritional modulation for preventive health care. Anim. Feed Sci. Technol. 2012, 173, 111–133. [Google Scholar] [CrossRef]
- WHO. Biomarkers and Risk Assessment: Concepts and Principles. Available online: http://www.inchem.org/documents/ehc/ehc/ehc155.htm#SectionNumber:1.2 (accessed on 31 May 2021).
- Sim, D.; Brothers, M.C.; Slocik, J.M.; Islam, A.E.; Maruyama, B.; Grigsby, C.C.; Naik, R.R.; Kim, S.S. Biomarkers and Detection Platforms for Human Health and Performance Monitoring: A Review. Adv. Sci. 2022, 9, 2104426. [Google Scholar] [CrossRef] [PubMed]
- Lam, P.K.S. Use of biomarkers in environmental monitoring. Ocean Coast. Manag. 2009, 52, 348–354. [Google Scholar] [CrossRef]
- Sánchez, J.P.; Calduch-Giner, J.; Sitjà-Bobadilla, A.; Nácher-Mesyre, J.; Waagbo, R.; Berntssen, M.H.G.; Skiba, S.; Sándor, Z.; Montero, D.; Terova, G.; et al. Understanding Biomarkers in Fish Nutrition—Technical Booklet; ARRAINA—Advanced Research Initiatives for Nutrition and Aquaculture: Brussels, Belgium, 2016. [Google Scholar]
- Varó, I.; Navarro, J.C.; Nunes, B.; Guilhermino, L. Effects of dichlorvos aquaculture treatments on selected biomarkers of gilthead sea bream (Sparus aurata L.) fingerlings. Aquaculture 2007, 266, 87–96. [Google Scholar] [CrossRef]
- Raposo de Magalhães, C.S.F.; Cerqueira, M.A.C.; Schrama, D.; Moreira, M.J.V.; Boonanuntanasarn, S.; Rodrigues, P.M.L. A Proteomics and other Omics approach in the context of farmed fish welfare and biomarker discovery. Rev. Aquac. 2020, 12, 122–144. [Google Scholar] [CrossRef]
- Alfaro, A.C.; Young, T. Showcasing metabolomic applications in aquaculture: A review. Rev. Aquac. 2016, 10, 135–152. [Google Scholar] [CrossRef]
- Benninghoff, A. Toxicoproteomics—The next step in the evolution of environmental biomarkers. Toxicol. Sci. 2007, 95, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Rust, M.B. 7—Nutritional Physiology. In Fish Nutrition, 3rd ed.; Halver, J.E., Hardy, R.W., Eds.; Academic Press: San Diego, CA, USA, 2003; pp. 367–452. [Google Scholar] [CrossRef]
- Volkoff, H.; Rønnestad, I. Effects of temperature on feeding and digestive processes in fish. Temperature 2020, 7, 307–320. [Google Scholar] [CrossRef] [PubMed]
- Assan, D.; Kuebutornye, F.K.A.; Hlordzi, V.; Chen, H.; Mraz, J.; Mustapha, U.F.; Abarike, E.D. Effects of probiotics on digestive enzymes of fish (finfish and shellfish); status and prospects: A mini review. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2022, 257, 110653. [Google Scholar] [CrossRef] [PubMed]
- Picha, M.E.; Turano, M.J.; Beckman, B.R.; Borski, R.J. Endocrine Biomarkers of Growth and Applications to Aquaculture: A Minireview of Growth Hormone, Insulin-Like Growth Factor (IGF)-I, and IGF-Binding Proteins as Potential Growth Indicators in Fish. North Am. J. Aquac. 2008, 70, 196–211. [Google Scholar] [CrossRef]
- Farrell, A.P. Encyclopedia of Fish Physiology; Elsevier: Amsterdam, The Netherlands, 2011. [Google Scholar] [CrossRef]
- Beckman, B.R. Perspectives on concordant and discordant relations between insulin-like growth factor 1 (IGF1) and growth in fishes. Gen. Comp. Endocrinol. 2011, 170, 233–252. [Google Scholar] [CrossRef] [PubMed]
- Fabbri, E.; Capuzzo, A.; Moon, T.W. The role of circulating catecholamines in the regulation of fish metabolism: An overview. Comp. Biochem. Physiol. Part C Pharmacol. Toxicol. Endocrinol. 1998, 120, 177–192. [Google Scholar] [CrossRef] [PubMed]
- Sopinka, N.M.; Donaldson, M.R.; O’Connor, C.M.; Suski, C.D.; Cooke, S.J. 11—Stress Indicators in Fish. In Fish Physiology; Schreck, C.B., Tort, L., Farrell, A.P., Brauner, C.J., Eds.; Academic Press: Cambridge, MA, USA, 2016; Volume 35, pp. 405–462. [Google Scholar]
- Gil-Solsona, R.; Nácher-Mestre, J.; Lacalle-Bergeron, L.; Sancho, J.V.; Calduch-Giner, J.A.; Hernández, F.; Pérez-Sánchez, J. Untargeted metabolomics approach for unraveling robust biomarkers of nutritional status in fasted gilthead sea bream (Sparus aurata). PeerJ 2017, 5, e2920. [Google Scholar] [CrossRef] [PubMed]
- Zambonino Infante, J.L.; Cahu, C.L. Dietary modulation of some digestive enzymes and Metabolic processes in developing marine fish: Applications to diet formulation. Aquaculture 2007, 268, 98–105. [Google Scholar] [CrossRef]
- Bakke, A.M.; Glover, C.; Krogdahl, Å. 2—Feeding, digestion and absorption of nutrients. In Fish Physiology; Grosell, M., Farrell, A.P., Brauner, C.J., Eds.; Academic Press: Cambridge, MA, USA, 2010; Volume 30, pp. 57–110. [Google Scholar]
- Metón Teijeiro, I.; Salgado Martín, M.d.C.; Anemaet, I.G.; González, J.D.; Fernández González, F.J.; Vázquez Baanante, M.I. Alanine aminotransferase: A target to improve utilisation of dietary nutrients in aquaculture. In Recent Advances in Pharmaceutical Sciences V; Torrero, D.M., Vinardell, M.P., Palazón, J., Eds.; Research Signpost: Thiruvananthapuram, India, 2015; pp. 133–148. [Google Scholar]
- Chimela, W.; Mesua, N.; Abdulraheem, B.-A. Aspartate Transaminase (AST) Activity in Selected Tissues & Organs of Clarias gariepinus Exposed to Different Levels of Paraquat. J. Environ. Anal. Toxicol. 2014, 4, 1000214. [Google Scholar] [CrossRef]
- Liu, Z.; Zhou, Y.; Liu, S.; Zhong, H.; Zhang, C.; Kang, X.; Liu, Y. Characterization and dietary regulation of glutamate dehydrogenase in different ploidy fishes. Amino Acids 2012, 43, 2339–2348. [Google Scholar] [CrossRef] [PubMed]
- Botham, K.M.; Mayes, P.A. Oxidation of Fatty Acids: Ketogenesis. In Harper’s Illustrated Biochemistry, 31st ed.; Rodwell, V.W., Bender, D.A., Botham, K.M., Kennelly, P.J., Weil, P.A., Eds.; McGraw-Hill Education: New York, NY, USA, 2018. [Google Scholar]
- Tocher, D.R.; Glencross, B.D. Lipids and Fatty Acids. In Dietary Nutrients, Additives, and Fish Health, 1st ed.; Lee, C.-S., Lim, C., III, D.M.G., Webster, C.D., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Halliwell, B. Free radicals, antioxidants, and human disease: Curiosity, cause, or consequence? Lancet 1994, 344, 721–724. [Google Scholar] [CrossRef] [PubMed]
- Caimi, C.; Gasco, L.; Biasato, I.; Malfatto, V.; Varello, K.; Prearo, M.; Pastorino, P.; Bona, M.C.; Francese, D.R.; Schiavone, A.; et al. Could Dietary Black Soldier Fly Meal Inclusion Affect the Liver and Intestinal Histological Traits and the Oxidative Stress Biomarkers of Siberian Sturgeon (Acipenser baerii) Juveniles? Animals 2020, 10, 155. [Google Scholar] [CrossRef] [PubMed]
- Ramesh, M.; Thilagavathi, T.; Rathika, R.; Poopal, R.K. Antioxidant status, biochemical, and hematological responses in a cultivable fish Cirrhinus mrigala exposed to an aquaculture antibiotic Sulfamethazine. Aquaculture 2018, 491, 10–19. [Google Scholar] [CrossRef]
- Quintas, A.; Freire, A.P.; Halpern, M.J. Bioquímica. Organização Molecular da Vida; LIDEL: Lisboa, Portugal, 2008. [Google Scholar]
- Berg, J.M.; Tymoczko, J.L.; Gregory, J.; Gatto, J.; Stryer, L. Biochemistry, 8th ed.; W. H. Freeman and Company: New York, NY, USA, 2015. [Google Scholar]
- Ciftci, M. Effects of some drugs on the activity of glucose 6-phosphate dehydrogenase from rainbow trout (Oncorhynchus mykiss) erythrocytes in vitro. J. Enzym. Inhib. Med. Chem. 2005, 20, 485–489. [Google Scholar] [CrossRef] [PubMed]
- Nelson, D.; Cox, M.; Hoskins, A. Lehninger Principles of Biochemistry, 8th ed.; W. H. Freeman and Company: New York, NY, USA; Macmillan Learning: New York, NY, USA, 2021. [Google Scholar]
- Dzoyem, J.P.; Kuete, V.; Eloff, J.N. 23—Biochemical Parameters in Toxicological Studies in Africa: Significance, Principle of Methods, Data Interpretation, and Use in Plant Screenings. In Toxicological Survey of African Medicinal Plants; Kuete, V., Ed.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 659–715. [Google Scholar] [CrossRef]
- Florescu, I.E.; Georgescu, S.E.; Dudu, A.; Balaș, M.; Voicu, S.; Grecu, I.; Dediu, L.; Dinischiotu, A.; Costache, M. Oxidative Stress and Antioxidant Defense Mechanisms in Response to Starvation and Refeeding in the Intestine of Stellate Sturgeon (Acipenser stellatus) Juveniles from Aquaculture. Animals 2021, 11, 76. [Google Scholar] [CrossRef] [PubMed]
- Baba, S.P.; Bhatnagar, A. Role of Thiols in Oxidative Stress. Curr. Opin. Toxicol. 2018, 7, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Catalán, V.; Frühbeck, G.; Gómez-Ambrosi, J. Chapter 8—Inflammatory and Oxidative Stress Markers in Skeletal Muscle of Obese Subjects. In Obesity; del Moral, A.M., Aguilera García, C.M., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 163–189. [Google Scholar] [CrossRef]
- Velisek, J.; Stara, A.; Li, Z.-H.; Silovska, S.; Turek, J. Comparison of the effects of four anaesthetics on blood biochemical profiles and oxidative stress biomarkers in rainbow trout. Aquaculture 2011, 310, 369–375. [Google Scholar] [CrossRef]
- Fiocchi, E.; Civettini, M.; Carbonara, P.; Zupa, W.; Lembo, G.; Manfrin, A. Development of molecular and histological methods to evaluate stress oxidative biomarkers in sea bass (Dicentrarchus labrax). Fish Physiol. Biochem. 2020, 46, 1577–1588. [Google Scholar] [CrossRef]
- Iwama, G.; Thomas, P.; Forsyth, R.; Vijayan, M. Heat shock expression in fish. Rev. Fish Biol. Fish. 1998, 8, 35–56. [Google Scholar] [CrossRef]
- Iwama, G.K.; Afonso, L.O.; Todgham, A.; Ackerman, P.; Nakano, K. Are hsps suitable for indicating stressed states in fish? J. Exp. Biol. 2004, 207, 15–19. [Google Scholar] [CrossRef]
- Gagnon, M.M.; Rawson, C.A. Bioindicator species for EROD activity measurements: A review with Australian fish as a case study. Ecol. Indic. 2017, 73, 166–180. [Google Scholar] [CrossRef]
- van Muiswinkel, W.B.; Vervoorn-Van der Wal, B. The immune system of fish. In Fish Diseases and Disorders: Protozoan and Metazoan Infections; Woo, P.T.K., Ed.; CAB International: Wallingford, UK, 2006; Volume 1, pp. 678–701. [Google Scholar]
- Rauta, P.R.; Nayak, B.; Das, S. Immune system and immune responses in fish and their role in comparative immunity study: A model for higher organisms. Immunol. Lett. 2012, 148, 23–33. [Google Scholar] [CrossRef]
- Salinas, I.; Ding, Y.; Fernández-Montero, Á.; Sunyer, J.O. Mucosal Immunity in Fish. In Principles of Fish Immunology: From Cells and Molecules to Host Protection; Buchmann, K., Secombes, C.J., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 387–443. [Google Scholar] [CrossRef]
- Roy, S.; Kumar, V.; Kumar, V.; Behera, B.K. Acute Phase Proteins and their Potential Role as an Indicator for Fish Health and in Diagnosis of Fish Diseases. Protein Pept. Lett. 2017, 24, 78–89. [Google Scholar] [CrossRef] [PubMed]
- Tort, L.; Balasch, J.; Mackenzie, S. Fish Immune System. A crossroads between innate and adaptive responses. Inmunologia 2003, 22, 277–286. [Google Scholar]
- Kreutz, L.C.; Gil Barcellos, L.J.; de Faria Valle, S.; de Oliveira Silva, T.; Anziliero, D.; Davi dos Santos, E.; Pivato, M.; Zanatta, R. Altered hematological and immunological parameters in silver catfish (Rhamdia quelen) following short term exposure to sublethal concentration of glyphosate. Fish Shellfish Immunol. 2011, 30, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Ellis, A.E. Immunity to bacteria in fish. Fish Shellfish Immunol. 1999, 9, 291–308. [Google Scholar] [CrossRef]
- Gabay, C.; Kushner, I. Acute-phase proteins and other systemic responses to inflammation. N. Engl. J. Med. 1999, 340, 448–454. [Google Scholar] [CrossRef] [PubMed]
- Gruys, E.; Toussaint, M.J.; Niewold, T.A.; Koopmans, S.J. Acute phase reaction and acute phase proteins. J. Zhejiang Univ. Sci. B 2005, 6, 1045–1056. [Google Scholar] [CrossRef] [PubMed]
- Rieger, A.M.; Hall, B.E.; Barreda, D.R. Macrophage activation differentially modulates particle binding, phagocytosis and downstream antimicrobial mechanisms. Dev. Comp. Immunol. 2010, 34, 1144–1159. [Google Scholar] [CrossRef] [PubMed]
- Biller-Takahashi, J.D.; Takahashi, L.S.; Saita, M.V.; Gimbo, R.Y.; Urbinati, E.C. Leukocytes respiratory burst activity as indicator of innate immunity of pacu Piaractus mesopotamicus. Braz. J. Biol. 2013, 73, 425–429. [Google Scholar] [CrossRef] [PubMed]
- Lai, F.; Royan, M.R.; Gomes, A.S.; Espe, M.; Aksnes, A.; Norberg, B.; Gelebart, V.; Rønnestad, I. The stress response in Atlantic salmon (Salmo salar L.): Identification and functional characterization of the corticotropin-releasing factor (crf) paralogs. Gen. Comp. Endocrinol. 2021, 313, 113894. [Google Scholar] [CrossRef]
- Lemos, L.S.; Angarica, L.M.; Hauser-Davis, R.A.; Quinete, N. Cortisol as a Stress Indicator in Fish: Sampling Methods, Analytical Techniques, and Organic Pollutant Exposure Assessments. Int. J. Environ. Res. Public Health 2023, 20, 6237. [Google Scholar] [CrossRef] [PubMed]
- Magnadóttir, B.; Uysal-Onganer, P.; Kraev, I.; Dodds, A.W.; Guðmundsdóttir, S.; Lange, S. Extracellular vesicles, deiminated protein cargo and microRNAs are novel serum biomarkers for environmental rearing temperature in Atlantic cod (Gadus morhua L.). Aquac. Rep. 2020, 16, 100245. [Google Scholar] [CrossRef]
- Ramirez, S.H.; Andrews, A.M.; Paul, D.; Pachter, J.S. Extracellular vesicles: Mediators and biomarkers of pathology along CNS barriers. Fluids Barriers CNS 2018, 15, 19. [Google Scholar] [CrossRef] [PubMed]
- Doyle, L.M.; Wang, M.Z. Overview of Extracellular Vesicles, Their Origin, Composition, Purpose, and Methods for Exosome Isolation and Analysis. Cells 2019, 8, 727. [Google Scholar] [CrossRef] [PubMed]
- Zaborowski, M.; Balaj, L.; Breakefield, X.; Lai, C. Extracellular Vesicles: Composition, Biological Relevance, and Methods of Study. BioScience 2015, 65, 783–797. [Google Scholar] [CrossRef]
- Cabillon, N.A.R.; Lazado, C.C. Mucosal Barrier Functions of Fish under Changing Environmental Conditions. Fishes 2019, 4, 2. [Google Scholar] [CrossRef]
- Yu, Y.; Wang, Q.; Huang, Z.; Ding, L.; Xu, Z. Immunoglobulins, Mucosal Immunity and Vaccination in Teleost Fish. Front. Immunol. 2020, 11, 567941. [Google Scholar] [CrossRef] [PubMed]
- Caipang, C.M.A.; Lazado, C.C. 9—Nutritional impacts on fish mucosa: Immunostimulants, pre- and probiotics. In Mucosal Health in Aquaculture; Beck, B.H., Peatman, E., Eds.; Academic Press: San Diego, CA, USA, 2015; pp. 211–272. [Google Scholar] [CrossRef]
- Pérez-Sánchez, J.; Estensoro, I.; Redondo, M.J.; Calduch-Giner, J.A.; Kaushik, S.; Sitjà-Bobadilla, A. Mucins as Diagnostic and Prognostic Biomarkers in a Fish-Parasite Model: Transcriptional and Functional Analysis. PLoS ONE 2013, 8, e65457. [Google Scholar] [CrossRef] [PubMed]
- Sveen, L.R.; Grammes, F.T.; Ytteborg, E.; Takle, H.; Jørgensen, S.M. Genome-wide analysis of Atlantic salmon (Salmo salar) mucin genes and their role as biomarkers. PLoS ONE 2017, 12, e0189103. [Google Scholar] [CrossRef] [PubMed]
- Salinas, I.; Parra, D. 6—Fish Mucosal Immunity: Intestine. In Mucosal Health in Aquaculture; Academic Press: Cambridge, MA, USA, 2015. [Google Scholar] [CrossRef]
- Leino, R.L. Ultrastructure of immature, developing, and secretory rodlet cells in fish. Cell Tissue Res. 1974, 155, 367–381. [Google Scholar] [CrossRef] [PubMed]
- Reite, O.B. The rodlet cells of teleostean fish: Their potential role in host defence in relation to the role of mast cells/eosinophilic granule cells. Fish Shellfish Immunol. 2005, 19, 253–267. [Google Scholar] [CrossRef] [PubMed]
- Martin, S.A.M.; Król, E. Nutrigenomics and immune function in fish: New insights from omics technologies. Dev. Comp. Immunol. 2017, 75, 86–98. [Google Scholar] [CrossRef] [PubMed]
- Martin, S.A.M.; Dehler, C.E.; Król, E. Transcriptomic responses in the fish intestine. Dev. Comp. Immunol. 2016, 64, 103–117. [Google Scholar] [CrossRef] [PubMed]
- Herrera, M.; Mancera, J.M.; Costas, B. The Use of Dietary Additives in Fish Stress Mitigation: Comparative Endocrine and Physiological Responses. Front. Endocrinol. 2019, 10, 447. [Google Scholar] [CrossRef] [PubMed]
- Herrera, M.; Matias, A.C.; Soares, F.; Ribeiro, L.; Moreira, M.; Salamanca, N.; Jerez-Cepa, I.; Mancera, J.M.; Astola, A. Effect of amino acid supplementation and stress on expression of molecular markers in meagre (Argyrosomus regius). Aquaculture 2021, 534, 736238. [Google Scholar] [CrossRef]
- Li, P.; Mai, K.; Trushenski, J.; Wu, G. New developments in fish amino acid nutrition: Towards functional and environmentally oriented aquafeeds. Amino Acids 2009, 37, 43–53. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, M.; Sousa, C.; Coutinho, F.; Castro, C.; Fontinha, F.; Guerreiro, I.; Pousão, P.; Matos, E.; Díaz-Rosales, P.; Oliva-Teles, A.; et al. Functional Feeds to Tackle Meagre (Argyrosomus regius) Stress: Physiological Responses under Acute Stressful Handling Conditions. Mar. Drugs 2021, 19, 598. [Google Scholar] [CrossRef] [PubMed]
- Krogdahl, Å.; Penn, M.; Thorsen, J.; Refstie, S.; Bakke, A.M. Important antinutrients in plant feedstuffs for aquaculture: An update on recent findings regarding responses in salmonids. Aquac. Res. 2010, 41, 333–344. [Google Scholar] [CrossRef]
- Abdel-Tawwab, M.; Monier, M.N.; Abdelrhman, A.M.; Dawood, M.A.O. Effect of dietary multi-stimulants blend supplementation on performance, digestive enzymes, and antioxidants biomarkers of common carp, Cyprinus carpio L. and its resistance to ammonia toxicity. Aquaculture 2020, 528, 735529. [Google Scholar] [CrossRef]
- Dawood, M.A.O.; Eweedah, N.M.; Elbialy, Z.I.; Abdelhamid, A.I. Dietary sodium butyrate ameliorated the blood stress biomarkers, heat shock proteins, and immune response of Nile tilapia (Oreochromis niloticus) exposed to heat stress. J. Therm. Biol. 2020, 88, 102500. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, R.E.; Ahmed, S.A.A.; Amer, S.A.; Al-Gabri, N.A.; Ahmed, A.I.; Abdel-Warith, A.-W.A.; Younis, E.-S.M.I.; Metwally, A.E. Influence of vitamin C feed supplementation on the growth, antioxidant activity, immune status, tissue histomorphology, and disease resistance in Nile tilapia, Oreochromis niloticus. Aquac. Rep. 2020, 18, 100545. [Google Scholar] [CrossRef]
- Guerreiro, I.; Castro, C.; Antunes, B.; Coutinho, F.; Rangel, F.; Couto, A.; Serra, C.R.; Peres, H.; Pousão-Ferreira, P.; Matos, E.; et al. Catching black soldier fly for meagre: Growth, whole-body fatty acid profile and metabolic responses. Aquaculture 2020, 516, 734613. [Google Scholar] [CrossRef]
- Guerreiro, I.; Serra, C.R.; Coutinho, F.; Couto, A.; Castro, C.; Rangel, F.; Peres, H.; Pousão-Ferreira, P.; Matos, E.; Gasco, L.; et al. Digestive enzyme activity and nutrient digestibility in meagre (Argyrosomus regius) fed increasing levels of black soldier fly meal (Hermetia illucens). Aquac. Nutr. 2020, 27, 142–152. [Google Scholar] [CrossRef]
- Moutinho, S.; Pedrosa, R.; Magalhães, R.; Oliva-Teles, A.; Parisi, G.; Peres, H. Black soldier fly (Hermetia illucens) pre-pupae larvae meal in diets for European seabass (Dicentrarchus labrax) juveniles: Effects on liver oxidative status and fillet quality traits during shelf-life. Aquaculture 2021, 533, 736080. [Google Scholar] [CrossRef]
- Fawole, F.J.; Adeoye, A.A.; Tiamiyu, L.O.; Ajala, K.I.; Obadara, S.O.; Ganiyu, I.O. Substituting fishmeal with Hermetia illucens in the diets of African catfish (Clarias gariepinus): Effects on growth, nutrient utilization, haemato-physiological response, and oxidative stress biomarker. Aquaculture 2020, 518, 734849. [Google Scholar] [CrossRef]
- Fawole, F.J.; Labh, S.N.; Hossain, M.S.; Overturf, K.; Small, B.C.; Welker, T.L.; Hardy, R.W.; Kumar, V. Insect (black soldier fly larvae) oil as a potential substitute for fish or soy oil in the fish meal-based diet of juvenile rainbow trout (Oncorhynchus mykiss). Anim. Nutr. 2021, 7, 1360–1370. [Google Scholar] [CrossRef] [PubMed]
- Elia, A.C.; Capucchio, M.T.; Caldaroni, B.; Magara, G.; Dörr, A.J.M.; Biasato, I.; Biasibetti, E.; Righetti, M.; Pastorino, P.; Prearo, M.; et al. Influence of Hermetia illucens meal dietary inclusion on the histological traits, gut mucin composition and the oxidative stress biomarkers in rainbow trout (Oncorhynchus mykiss). Aquaculture 2018, 496, 50–57. [Google Scholar] [CrossRef]
- Magalhães, R.; Sánchez-López, A.; Leal, R.S.; Martínez-Llorens, S.; Oliva-Teles, A.; Peres, H. Black soldier fly (Hermetia illucens) pre-pupae meal as a fish meal replacement in diets for European seabass (Dicentrarchus labrax). Aquaculture 2017, 476, 79–85. [Google Scholar] [CrossRef]
- Couto, A.; Barroso, C.; Guerreiro, I.; Pousão-Ferreira, P.; Matos, E.; Peres, H.; Oliva-Teles, A.; Enes, P. Carob seed germ meal in diets for meagre (Argyrosomus regius) juveniles: Growth, digestive enzymes, intermediary metabolism, liver and gut histology. Aquaculture 2016, 451, 396–404. [Google Scholar] [CrossRef]
- Guardiola, F.A.; Barroso, C.; Enes, P.; Couto, A.; Díaz-Rosales, P.; Afonso, A.; Kanashiro, E.; Peres, H.; Matos, E.; Oliva-Teles, A.; et al. Humoral and mucosal immune responses in meagre (Argyrosomus regius) juveniles fed diets with varying inclusion levels of carob seed germ meal. Fish Shellfish Immunol. 2018, 79, 209–217. [Google Scholar] [CrossRef] [PubMed]
- Aanyu, M.; Betancor, M.B.; Monroig, O. Effects of dietary limonene and thymol on the growth and nutritional physiology of Nile tilapia (Oreochromis niloticus). Aquaculture 2018, 488, 217–226. [Google Scholar] [CrossRef]
- Catalán, N.; Villasante, A.; Wacyk, J.; Ramírez, C.; Romero, J. Fermented Soybean Meal Increases Lactic Acid Bacteria in Gut Microbiota of Atlantic Salmon (Salmo salar). Probiotics Antimicrob. Proteins 2018, 10, 566–576. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Tawwab, M.; Monier, M.N.; Hoseinifar, S.H.; Faggio, C. Fish response to hypoxia stress: Growth, physiological, and immunological biomarkers. Fish Physiol. Biochem. 2019, 45, 997–1013. [Google Scholar] [CrossRef] [PubMed]
- Eissa, N.; Wang, H.-P.; Yao, H.; Shen, Z.-G.; Shaheen, A.A.; Abou-ElGheit, E.N. Expression of Hsp70, Igf1, and Three Oxidative Stress Biomarkers in Response to Handling and Salt Treatment at Different Water Temperatures in Yellow Perch, Perca flavescens. Front. Physiol. 2017, 8, 683. [Google Scholar] [CrossRef] [PubMed]
- Quinn, N.L.; McGowan, C.R.; Cooper, G.A.; Koop, B.F.; Davidson, W.S. Ribosomal genes and heat shock proteins as putative markers for chronic, sublethal heat stress in Arctic charr: Applications for aquaculture and wild fish. Physiol. Genom. 2011, 43, 1056–1064. [Google Scholar] [CrossRef] [PubMed]
- Hasenbein, M.; Fangue, N.A.; Geist, J.P.; Komoroske, L.M.; Connon, R.E. Physiological stress biomarkers reveal stocking density effects in late larval Delta Smelt (Hypomesus transpacificus). Aquaculture 2016, 450, 108–115. [Google Scholar] [CrossRef]
- Waiho, K.; Afiqah-Aleng, N.; Iryani, M.T.M.; Fazhan, H. Protein–protein interaction network: An emerging tool for understanding fish disease in aquaculture. Rev. Aquac. 2021, 13, 156–177. [Google Scholar] [CrossRef]
- Mohanty, B.; Mohanty, S.; Mitra, T.; Mahanty, A.; Ganguly, S.; Singh, S. Omics Technology in Fisheries and Aquaculture. In Advances in Fish Research; Narendra Publishing House: Delhi, India, 2019; pp. 1–30. [Google Scholar]
- Braceland, M.; Bickerdike, R.; Tinsley, J.; Cockerill, D.; McLoughlin, M.F.; Graham, D.A.; Burchmore, R.J.; Weir, W.; Wallace, C.; Eckersall, P.D. The serum proteome of Atlantic salmon, Salmo salar, during pancreas disease (PD) following infection with salmonid alphavirus subtype 3 (SAV3). J. Proteom. 2013, 94, 423–436. [Google Scholar] [CrossRef] [PubMed]
- Braceland, M.; McLoughlin, M.F.; Tinsley, J.; Wallace, C.; Cockerill, D.; McLaughlin, M.; Eckersall, P.D. Serum enolase: A non-destructive biomarker of white skeletal myopathy during pancreas disease (PD) in Atlantic salmon Salmo salar L. J. Fish Dis. 2015, 38, 821–831. [Google Scholar] [CrossRef] [PubMed]
- Yousaf, M.N.; Powell, M.D. The effects of heart and skeletal muscle inflammation and cardiomyopathy syndrome on creatine kinase and lactate dehydrogenase levels in Atlantic salmon (Salmo salar L.). Sci. World J. 2012, 2012, 741302. [Google Scholar] [CrossRef] [PubMed]
- Gjessing, M.C.; Krasnov, A.; Timmerhaus, G.; Brun, S.; Afanasyev, S.; Dale, O.B.; Dahle, M.K. The Atlantic Salmon Gill Transcriptome Response in a Natural Outbreak of Salmon Gill Pox Virus Infection Reveals New Biomarkers of Gill Pathology and Suppression of Mucosal Defense. Front. Immunol. 2020, 11, 2154. [Google Scholar] [CrossRef] [PubMed]
- Pionnier, N.; Adamek, M.; Miest, J.J.; Harris, S.J.; Matras, M.; Rakus, K.; Irnazarow, I.; Hoole, D. C-reactive protein and complement as acute phase reactants in common carp Cyprinus carpio during CyHV-3 infection. Dis. Aquat. Org. 2014, 109, 187–199. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Yi, M.; Xiao, P.; Meng, L.; Li, X.; Sun, G.; Liu, Y. The impact of Aeromonas salmonicida infection on innate immune parameters of Atlantic salmon (Salmo salar L). Fish Shellfish Immunol. 2015, 44, 307–315. [Google Scholar] [CrossRef] [PubMed]
- Lagos, L.; Tandberg, J.; Kashulin-Bekkelund, A.; Colquhoun, D.J.; Sørum, H.; Winther-Larsen, H.C. Isolation and Characterization of Serum Extracellular Vesicles (EVs) from Atlantic Salmon Infected with Piscirickettsia Salmonis. Proteomes 2017, 5, 34. [Google Scholar] [CrossRef] [PubMed]
- Zhao, N.; Zhang, B.; Xu, Z.; Jia, L.; Li, M.; He, X.; Bao, B. Detecting Cynoglossus semilaevis infected with Vibrio harveyi using micro RNAs from mucous exosomes. Mol. Immunol. 2020, 128, 268–276. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.; Huang, X.-Y.; Yang, M.-J.; Wang, S.; Ren, S.-T.; Li, H.; Peng, X.-X. GC/MS-based metabolomics approach to identify biomarkers differentiating survivals from death in crucian carps infected by Edwardsiella tarda. Fish Shellfish Immunol. 2014, 39, 215–222. [Google Scholar] [CrossRef]
- Song, X.; Zhao, J.; Bo, Y.; Liu, Z.; Wu, K.; Gong, C. Aeromonas hydrophila induces intestinal inflammation in grass carp (Ctenopharyngodon idella): An experimental model. Aquaculture 2014, 434, 171–178. [Google Scholar] [CrossRef]
- Okoroiwu, H.U.; Iwara, I.A. Dichlorvos toxicity: A public health perspective. Interdiscip. Toxicol. 2018, 11, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Awaisheh, S.S.; Khalifeh, M.S.; Rahahleh, R.J.; Al-Khaza’leh, J.M.; Algroom, R.M. Sulfamethazine contamination level and exposure assessment in domestic and imported poultry meats in Jordan. Vet. World 2019, 12, 1992–1997. [Google Scholar] [CrossRef] [PubMed]
- Sampaio, F.G.; Carra, M.L.; Jonsson, C.M.; Gonçalves, V.T.; Dal’Bo, G.; Nunes, K.S.D.; Valim, J.H.; Dallago, B.S.L.; do Nascimento de Queiroz, S.C.; Reyes, F.G.R. Effects of Dietary Exposure to Sulfamethazine on the Hematological Parameters and Hepatic Oxidative Stress Biomarkers in Nile Tilapia (Oreochromis niloticus). Bull. Environ. Contam. Toxicol. 2016, 97, 528–535. [Google Scholar] [CrossRef]
- Julinta, R.B.; Abraham, T.J.; Roy, A.; Singha, J.; Boda, S.; Patil, P.K. Dietary influences of oxytetracycline on the growth and serum biomarkers of Oreochromis niloticus (L.). Ecotoxicol. Environ. Saf. 2019, 186, 109752. [Google Scholar] [CrossRef] [PubMed]
- Shiogiri, N.S.; Ikefuti, C.V.; Carraschi, S.P.; da Cruz, C.; Fernandes, M.N. Effects of azithromycin on tilapia (Oreochromis niloticus): Health status evaluation using biochemical, physiological and morphological biomarkers. Aquac. Res. 2017, 48, 3669–3683. [Google Scholar] [CrossRef]
- de Sousa, E.L.; Assane, I.M.; Santos-Filho, N.A.; Cilli, E.M.; de Jesus, R.B.; Pilarski, F. Haematological, biochemical and immunological biomarkers, antibacterial activity, and survival in Nile tilapia Oreochromis niloticus after treatment using antimicrobial peptide LL-37 against Streptococcus agalactiae. Aquaculture 2021, 533, 736181. [Google Scholar] [CrossRef]
- Tkachenko, H.; Kurhaluk, N.; Grudniewska, J. Biomarkers of oxidative stress and antioxidant defences as indicators of different disinfectants exposure in the heart of rainbow trout (Oncorhynchus mykiss Walbaum). Aquac. Res. 2015, 46, 679–689. [Google Scholar] [CrossRef]
- Tkachenko, H.; Kurhaluk, N.; Grudniewska, J.; Andriichuk, A. Tissue-specific responses of oxidative stress biomarkers and antioxidant defenses in rainbow trout Oncorhynchus mykiss during a vaccination against furunculosis. Fish Physiol. Biochem. 2014, 40, 1289–1300. [Google Scholar] [CrossRef] [PubMed]
- Coughlin, S.S. Toward a road map for global -omics: A primer on -omic technologies. Am. J. Epidemiol. 2014, 180, 1188–1195. [Google Scholar] [CrossRef] [PubMed]
- Chandhini, S.; Rejish Kumar, V.J. Transcriptomics in aquaculture: Current status and applications. Rev. Aquac. 2019, 11, 1379–1397. [Google Scholar] [CrossRef]
- Forné, I.; Abián, J.; Cerdà, J. Fish proteome analysis: Model organisms and non-sequenced species. Proteomics 2010, 10, 858–872. [Google Scholar] [CrossRef] [PubMed]
- Primrose, S.B.; Twyman, R. Principles of Genome Analysis and Genomics; Wiley: Hoboken, NJ, USA, 2002. [Google Scholar]
- Huete-Pérez, J.A.; Quezada, F. Genomic approaches in marine biodiversity and aquaculture. Biol. Res. 2013, 46, 353–361. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, P.M.; Silva, T.S.; Dias, J.; Jessen, F. PROTEOMICS in aquaculture: Applications and trends. J. Proteom. 2012, 75, 4325–4345. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, F.; Kumar, G.; Soliman, F.M.; Adly, M.A.; Soliman, H.A.M.; El-Matbouli, M.; Saleh, M. Proteomics for understanding pathogenesis, immune modulation and host pathogen interactions in aquaculture. Comp. Biochem. Physiol. Part D Genom. Proteom. 2019, 32, 100625. [Google Scholar] [CrossRef] [PubMed]
- Fiehn, O. Metabolomics—The link between genotypes and phenotypes. Plant Mol. Biol. 2002, 48, 155–171. [Google Scholar] [CrossRef] [PubMed]
- Dunn, W.B.; Ellis, D.I. Metabolomics: Current analytical platforms and methodologies. TrAC Trends Anal. Chem. 2005, 24, 285–294. [Google Scholar] [CrossRef]
- Young, T.; Alfaro, A.C. Metabolomic strategies for aquaculture research: A primer. Rev. Aquac. 2018, 10, 26–56. [Google Scholar] [CrossRef]
- Canellas, A.L.B.; Costa, W.F.; Freitas-Silva, J.; Lopes, I.R.; de Oliveira, B.F.R.; Laport, M.S. In sickness and in health: Insights into the application of omics in aquaculture settings under a microbiological perspective. Aquaculture 2022, 554, 738132. [Google Scholar] [CrossRef]
- Miller, M.G. Environmental metabolomics: A SWOT analysis (strengths, weaknesses, opportunities, and threats). J. Proteome Res. 2007, 6, 540–545. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliveira, J.; Oliva-Teles, A.; Couto, A. Tracking Biomarkers for the Health and Welfare of Aquaculture Fish. Fishes 2024, 9, 289. https://doi.org/10.3390/fishes9070289
Oliveira J, Oliva-Teles A, Couto A. Tracking Biomarkers for the Health and Welfare of Aquaculture Fish. Fishes. 2024; 9(7):289. https://doi.org/10.3390/fishes9070289
Chicago/Turabian StyleOliveira, Joana, Aires Oliva-Teles, and Ana Couto. 2024. "Tracking Biomarkers for the Health and Welfare of Aquaculture Fish" Fishes 9, no. 7: 289. https://doi.org/10.3390/fishes9070289
APA StyleOliveira, J., Oliva-Teles, A., & Couto, A. (2024). Tracking Biomarkers for the Health and Welfare of Aquaculture Fish. Fishes, 9(7), 289. https://doi.org/10.3390/fishes9070289