Use of Salt, Anesthetics, and Stocking Density in Transport of Live Fish: A Review
Abstract
:1. Introduction
2. Water Quality during Fish Transport
3. The Use of Salt during Fish Transport
4. The Use of Anesthetics during Fish Transport
5. Stocking Density and Fish Transport
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Costa, D.C.; Silva, W.S.; Melillo Filho, R.; Miranda Filho, K.C.; dos Santos, J.C.E.; Luz, R.K. Capture, adaptation and artificial control of reproduction of Lophiosilurus alexandri: A carnivorous freshwater species. Anim. Reprod. Sci. 2015, 159, 148–154. [Google Scholar] [CrossRef] [PubMed]
- Yesaki, T.Y.; Ek, R.; Siple, J.; Van Eenennaam, J.P.; Doroshov, S.I. The effects of iodophor disinfection and transportation on the survival to hatch of fertilized white sturgeon (Acipenser transmontanus) eggs. J. Appl. Ichthyol. 2002, 18, 639–641. [Google Scholar] [CrossRef]
- Abadian, R.; Amiri, B.M.; Manouchehri, H.; Rezvani, A. Effects of stages of embryonic development on the viability of angel fish eggs in transportation to hatcheries. Int. J. Res. Fish. Aquac. 2012, 2, 1–3. [Google Scholar]
- Estudillo, C.B.; Duray, M.N. Transport of hatchery-reared and wild grouper larvae, Epinephelus sp. Aquaculture 2003, 219, 279–290. [Google Scholar] [CrossRef]
- Bui, T.M.; Phuong, N.T.; Nguyen, G.H.; Silva, S.S.D. Fry and fingerling transportation in the striped catfish, Pangasianodon hypophthalmus, farming sector, Mekong delta, Vietnam: A pivotal link in the production chain. Aquaculture 2013, 388, 70–75. [Google Scholar] [CrossRef]
- Gomes, L.C.C.; Araujo-Lima, A.R.M.; Roubach, R.; Urbinati, E.C. Avaliação dos efeitos da adição de sal e da densidade no transporte de tambaqui. Pesqui. Agropec. Bras. 2003, 38, 283–290. [Google Scholar] [CrossRef]
- Brandão, F.R.; Gomes, L.C.; Crescêncio, R.; Carvalho, E.S. Uso de sal durante o transporte de juvenis (1 kg) de pirarucu (Arapaima gigas). Acta Amaz. 2008, 38, 767–772. [Google Scholar] [CrossRef]
- Sherif, A.H.; Eldessouki, E.A.; Sabry, N.M.; Ali, N.G. The protective role of iodine and MS-222 against stress response and bacterial infections during Nile tilapia (Oreochromis niloticus) transportation. Aquac. Int. 2023, 31, 401–416. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, Q.; Dong, Y.; Mei, J.; Xie, J. Effects of tricaine methanesulphonate (MS-222) on physiological stress and fresh quality of sea bass (Lateolabrax maculatus) under simulated high-density and long-distance transport stress. Biology 2023, 12, 223. [Google Scholar] [CrossRef]
- Azambuja, C.R.; Mattiazzi, J.; Riffel, A.P.K.; Finamor, I.A.; Garcia, L.O.; Heldwein, C.G.; Heinzmann, B.M.; Baldisserotto, B.; Pavaneto, M.A.; Llesuy, S.F. Effect of the essential oil of Lippia alba on oxidative stress parameters in silver catfish (Rhamdia quelen) subjected to transport. Aquaculture 2011, 319, 156–161. [Google Scholar] [CrossRef]
- Bortoletti, M.; Fonsatti, E.; Leva, F.; Maccatrozzo, L.; Ballarin, C.; Radaelli, G.; Cabelotto, S.; Bertotto, D. Influence of transportation on stress response and cellular oxidative stress markers in juvenile meagre (Argyrosomus regius). Animals 2023, 13, 3288. [Google Scholar] [CrossRef]
- Brandão, F.R.; Duncan, W.P.; Farias, C.F.S.; Souza, D.C.M.; Oliveira, M.I.B.; Rocha, M.J.S.; Monteiro, P.C.; Majolo, C.; Chaves, F.C.M.; O’Sullivan, F.L.A.; et al. Essential oils of Lippia sidoides and Mentha piperita as reducers of stress during the transport of Colossoma macropomum. Aquaculture 2022, 560, 738515. [Google Scholar] [CrossRef]
- Correia, J.P.S.; Graça, J.T.C.; Hirofumi, M.; Kube, N. Long-term transportation, by road and air, of chub mackerel (Scomber japonicus) and Atlantic bonito (Sarda sarda). Zoo Biol. 2011, 30, 459–472. [Google Scholar] [CrossRef] [PubMed]
- Abreu, J.S.; Brinn, R.P.; Gomes, L.C.; McComb, D.M.; Baldisserotto, B.; Zaiden, S.F.; Urbinati, E.C.; Marcon, J. Effect of beta 1,3 glucan in stress responses of the pencilfish (Nannostomus trifasciatus) during transport within the rio Negro basin L. Neotrop. Icthyol. 2014, 12, 623–628. [Google Scholar] [CrossRef]
- Baldisserotto, B.; Brinn, R.P.; Brandão, F.R.; Gomes, L.C.; Abreu, J.S.; McComb, D.M.; Marcon, J.L. Ion flux and cortisol responses of cardinal tetra, Paracheirodon axelrodi (Schultz, 1956), to additives (tetracycline, tetracycline + salt or Amquel®) used during transportation: Contributions to Amazonian ornamental fish trade. J. Appl. Ichthyol. 2014, 30, 86–92. [Google Scholar] [CrossRef]
- Gomes, L.C.; Brinn, R.P.; Marcon, J.L.; Dantas, L.A.; Brandaão, F.R.; Abreu, J.S.; McComb, D.M.; Baldisserotto, B. Using Efinol®L during transportation of marbled hatchetfish, Carnegiella strigata (Günther). Aquac. Res. 2008, 39, 1292–1298. [Google Scholar] [CrossRef]
- Iversen, M.; Finstad, B.; McKinley, R.S.; Eliassen, R.A.; Carlsen, K.T.; Evjen, T. Stress responses in Atlantic salmon (Salmo salar L.) smolts during commercial well boat transports, and effects on survival after transfer to sea. Aquaculture 2005, 243, 373–382. [Google Scholar] [CrossRef]
- Gatica, M.C.; Monti, G.; Gallo, C.; Knowles, T.G.; Warriss, P.D. Effects of well-boat transportation on the muscle pH and onset of rigor mortis in Atlantic salmon. Vet. Record 2008, 163, 111–116. [Google Scholar] [CrossRef]
- Gatica, M.C.; Monti, G.E.; Knowles, T.G.; Warriss, P.D.; Gallo, C.B. Effects of commercial live transportation and preslaughter handling of Atlantic salmon on blood constituents. Arch. Med. Vet. 2010, 42, 73–78. [Google Scholar] [CrossRef]
- Jobling, M.; Arnesen, A.M.; Benfey, T.; Carter, C.; Hardy, R.; Le François, N.R. The salmonids (Family: Salmonidae). In Finfish Aquaculture Diversification; Le François, N.R., Jobling, M., Carter, C., Blier, P., Eds.; CAB International: Oxfordshire, UK, 2010; pp. 234–289. [Google Scholar]
- Harmon, T.S. Methods for reducing stressors and maintaining water quality associated with live fish transport in tanks: A review of the basics. Rev. Aquac. 2009, 1, 58–66. [Google Scholar] [CrossRef]
- Metar, S.; Chagale, N.; Shinde, K.; Satam, S.; Sadawarte, V.; Sawant, A.; Nirmale, V.; Pagarkar, A.; Singh, H. Transportation of live marine ornamental fish. Adv. Agric. Res. Technol. J. 2018, 2, 206–208. [Google Scholar]
- Lim, L.C.; Dhert, P.; Sorgelloos, P. Recent developments and improvements in ornamental fish packaging systems for air transport. Aquac. Res. 2003, 34, 923–935. [Google Scholar] [CrossRef]
- Silva, T.V.N.; Gomes, R.M.M.; Torres, M.F.; Barbas, L.A.L.; Sampaio, L.A.; Monserrat, J.M. Water quality and oxidative stress in fish Colossoma macropomum fed with dietary Amazonian fruit Euterpe oleracea Mart. after transport simulation. Chem. Ecol. 2024, 40, 351–368. [Google Scholar] [CrossRef]
- Fang, D.; Mei, J.; Xie, J.; Qiu, W. The effects of transport stress (temperature and vibration) on blood biochemical parameters, oxidative stress, and gill histomorphology of pearl gentian groupers. Fishes 2023, 8, 218. [Google Scholar] [CrossRef]
- Vanderzwalmen, M.; McNeil, J.; Delieuvin, D.; Senes, S.; Sanchez-Lacalle, D.; Mullen, C.; McLellan, I.; Carey, P.; Snellgrove, D.; Foggo, A.; et al. Monitoring water quality changes and ornamental fish behaviour during commercial transport. Aquaculture 2021, 531, 735860. [Google Scholar] [CrossRef]
- King, H.R. Fish transport in the aquaculture sector: An overview of the road transport of Atlantic salmon in Tasmania. J. Vet. Behav. 2009, 4, 163–168. [Google Scholar] [CrossRef]
- Hughes, G.M.; Morgan, M. The structure of fish gills in relation to their respiratory function. Biol. Rev. 1973, 48, 419–475. [Google Scholar] [CrossRef]
- Berka, R. The Transport of Live Fish: A Review; Food and Agriculture Organization of the United Nations: Rome, Italy, 1986; Volume 48, pp. 1–52. [Google Scholar]
- López-Jiménez, D.; Espinosa-Chaurand, L.D.; Maeda-Martínez, A.N.; Peraza-Gómez, V. Combined effect of temperature, salinity and dissolved oxygen on the survival of Nile tilapia (Oreochromis niloticus) fry during transportation, at different densities and durations. Aquaculture 2024, 580, 740283. [Google Scholar] [CrossRef]
- Pelster, B.; Wood, C.M.; Braz-Mota, S.; Val, L.A. Gills and air-breathing organ in O2 uptake, CO2 excretion, N-waste excretion, and ionoregulation in small and large pirarucu (Arapaima gigas). J. Comp. Physiol. B 2020, 190, 569–583. [Google Scholar] [CrossRef]
- Mota, V.C.; Nilsen, T.O.; Gerwins, J.; Gallo, M.; Kolarevic, J.; Krasnov, A.; Terjesen, B.F. Molecular and physiological responses to long-term carbon dioxide exposure in Atlantic salmon (Salmo salar). Aquaculture 2020, 519, 734715. [Google Scholar] [CrossRef]
- Sampaio, F.D.F.; Freire, C.A. An overview of stress physiology of fish transport: Changes in water quality as a function of transport duration. Fish Fish. 2016, 17, 1055–1072. [Google Scholar] [CrossRef]
- Grottun, J.A.; Sigholt, T. Acute toxicity of carbon dioxide on European seabass (Dicentrarchus labrax): Mortality and effects on plasma ions. Comp. Biochem. Physiol. 1996, 115, 323–327. [Google Scholar] [CrossRef]
- Wedemeyer, G.A. Basic physiological functions. In Physiology of Fish in Intensive Culture Systems; Springer: Berlin/Heidelberg, Germany, 1996; pp. 10–59. [Google Scholar]
- Paterson, B.D.; Rimmer, M.A.; Meikle, G.M.; Semmens, G.L. Physiological responses of the Asian sea bass, Lates calcarifer to water quality deterioration during simulated live transport: Acidosis, red-cell swelling, and levels of ions and ammonia in the plasma. Aquaculture 2003, 218, 717–728. [Google Scholar] [CrossRef]
- Evans, D.H.; Piermarini, P.M.; Choe, K.P. The multifunctional fish gill: Dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Physiol. Rev. 2005, 85, 97–177. [Google Scholar] [CrossRef] [PubMed]
- Richardson, J. Acute ammonia toxicity for eight New Zealand indigenous freshwater species. N. Zeal. J. Mar. Fresh. Res. 1997, 31, 185–190. [Google Scholar] [CrossRef]
- Randall, D.J.; Tsui, T.K.N. Ammonia toxicity in fish. Mar. Poll. Bull. 2002, 45, 17–23. [Google Scholar] [CrossRef]
- Zhang, W.; Xia, S.; Zhu, J.; Miao, L.; Ren, M.; Lin, Y.; Ge, X.; Sun, S. Growth performance, physiological response and histology changes of juvenile blunt snout bream, Megalobrama amblycephala exposed to chronic ammonia. Aquaculture 2019, 506, 424–436. [Google Scholar] [CrossRef]
- Li, M.; Gong, S.; Li, Q.; Yuan, L.; Meng, F.; Wang, R. Ammonia toxicity induces glutamine accumulation, oxidative stress and immunosuppression in juvenile yellow catfish Pelteobagrus fulvidraco. Comp. Biochem. Physiol. C 2016, 183–184, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Shin, K.W.; Kim, S.-H.; Kim, J.-H.; Hwang, S.D.; Kang, J.-C. Toxic effects of ammonia exposure on growth performance, hematological parameters, and plasma components in rockfish, Sebastes schlegelii, during thermal stress. Fish. Aq. Sci. 2016, 19, 44. [Google Scholar] [CrossRef]
- Cheng, C.-H.; Yang, F.-F.; Ling, R.-Z.; Liao, S.-A.; Miao, Y.-T.; Ye, C.-X.; Wang, A.-L. Effects of ammonia exposure on apoptosis, oxidative stress and immune response in pufferfish (Takifugu obscurus). Aquatic Toxicol. 2015, 164, 61–71. [Google Scholar] [CrossRef]
- Wright, P.A.; Wood, C.M. Seven things fish know about ammonia and we don’t. Respir. Physiol. Neurobiol. 2012, 184, 231–240. [Google Scholar] [CrossRef] [PubMed]
- Ghasemi, Z.; Sourinejad, I.; Kazemian, H.; Rohani, S. Application of zeolites in aquaculture industry: A review. Rev. Aquac. 2018, 10, 75–95. [Google Scholar] [CrossRef]
- Singh, R.K.; Vartak, V.R.; Balange, A.K.; Ghughuskar, M.M. Water quality management during transportation of fry of Indian major carps, Catla catla (Hamilton), Labeo rohita (Hamilton) and Cirrhinus mrigala (Hamilton). Aquaculture 2004, 235, 297–302. [Google Scholar] [CrossRef]
- Ramírez-Duarte, W.F.; Pineda-Quiroga, C.; Martínez, N.; Eslava-Mocha, P.R. Use of sodium chloride and zeolite during shipment of Ancistrus triradiatus under high temperature. Neotrop. Ichthyol. 2011, 9, 909–914. [Google Scholar] [CrossRef]
- Kanyilmaz, M.; Koçer, M.A.T.; Sevgili, H.; Pak, F.; Aydin, I. Use of natural zeolite for ammonia removal during simulated transport of live juvenile sea bass (Dicentrarchus labrax). Isr. J. Aquac. 2014, 66, 1–6. [Google Scholar] [CrossRef]
- Mustahal, F.R.I.; Hermawan, D.; Syamsunarno, M.B. Zeolite and active carbon addition on closed system transportation for milkfish juvenile (Chanos chanos) survival rate. Adv. Biol. Sci. Res. 2021, 9, 90–93. [Google Scholar]
- Diricx, M.; Sinha, A.K.; Liew, H.J.; Mauro, N.; Blust, R.; De Boeck, G. Compensatory responses in common carp (Cyprinus carpio) under ammonia exposure: Additional effects of feeding and exercise. Aquat. Toxicol. 2013, 142–143, 123–137. [Google Scholar] [CrossRef] [PubMed]
- Liew, H.J.; Sinha, A.K.; Mauro, N.; Diricx, M.; Blust, R.; De Boeck, G. Fasting goldfish, Carassius auratus, and common carp, Cyprinus carpio, use different metabolic strategies when swimming. Comp. Biochem. Physiol. A 2012, 163, 327–335. [Google Scholar] [CrossRef] [PubMed]
- Shrivastava, J.; Sinha, A.K.; Cannaerts, S.; Blust, R.; De Boeck, G. Temporal assessment of metabolic rate, ammonia dynamics and ion-status in common carp during fasting: A promising approach for optimizing fasting episode prior to fish transportation. Aquaculture 2017, 481, 218–228. [Google Scholar] [CrossRef]
- Treasurer, J.W. Remediation of ammonia accumulation during live transport of juvenile cod, Gadus morhua L., and the effects of fast period on ammonia levels and water quality. Aquaculture 2010, 308, 190–195. [Google Scholar] [CrossRef]
- Treasurer, J.W. Changes in pH during transport of juvenile cod Gadus morhua L. and stabilisation using buffering agents. Aquaculture 2012, 330–333, 92–99. [Google Scholar] [CrossRef]
- Ali, B.A.; Mishra, A. Effects of dissolved oxygen concentration on freshwater fish: A review. Int. J. Fish. Aquat. Stud. 2022, 10, 113–127. [Google Scholar] [CrossRef]
- Golombieski, J.I.; Silva, L.V.F.; Baldisserotto, B.; da Silva, J.H.S. Transport of silver catfish (Rhamdia quelen) fingerlings at different times, load densities, and temperatures. Aquaculture 2003, 216, 95–102. [Google Scholar] [CrossRef]
- Omeji, S.; Apochi, J.O.; Egwumah, K.A. Stress concept in transportation of live fishes—A review. J. Res. For. Wild. Envir. 2017, 9, 57–64. [Google Scholar]
- Zhao, J.; Zhu, Y.; He, Y.; Chen, J.; Feng, X.; Li, X.; Xiong, B. Effects of temperature reduction and MS-222 on water quality and blood biochemistry in simulated transport experiment of largemouth bronze gudgeon, Coreius guichenoti. J. World Aquac. Soc. 2014, 45, 493–507. [Google Scholar] [CrossRef]
- Tavares-Dias, M. Toxicity, physiological, histopathological, handling, growth and antiparasitic effects of the sodium chloride (salt) in the freshwater fish aquaculture. Aquac. Res. 2022, 53, 715–734. [Google Scholar] [CrossRef]
- Seale, A.P.; Cao, K.; Chang, R.J.A.; Goodearly, T.R.; Malintha, G.H.T.; Merlo, R.S.; Peterson, T.L.; Reighard, J.R. Salinity tolerance of fishes: Experimental approaches and implications for aquaculture production. Rev. Aquac. 2024, 16, 1351–1373. [Google Scholar] [CrossRef]
- Biswal, A.; Srivastava, P.P.; Pal, P.; Gupta, S.; Varghese, T.; Jayant, M. A multi-biomarker approach to evaluate the effect of sodium chloride in alleviating the long-term transportation stress of Labeo rohita fingerlings. Aquaculture 2021, 531, 735979. [Google Scholar] [CrossRef]
- Gomes, L.C.; Araujo-Lima, C.A.R.M.; Chippari-Gomes, A.R.; Roubach, R. Transportation of juvenile tambaqui (Colossoma macropomum) in a closed system. Braz. J. Biol. 2006, 66, 493–502. [Google Scholar] [CrossRef] [PubMed]
- Oyoo-Okoth, E.; Cherop, L.; Ngugi, C.C.; Chepkirui-Boit, V.; Manguya-Lusega, D.; Ani-Sabwa, J.; Charo-Karisa, H. Survival and physiological response of Labeo victorianus (Pisces: Cyprinidae, Boulenger 1901) juveniles to transport stress under a salinity gradient. Aquaculture 2011, 319, 226–231. [Google Scholar] [CrossRef]
- Salaro, A.L.; Camplelo, D.A.V.; Tavares, M.M.; Braga, L.G.T.; Pontes, M.D.; Zuanon, J.A.S. Transport of Astyanax altiparanae Garutti and Britski, 2000 in saline water. Acta Sci. 2015, 37, 137–142. [Google Scholar] [CrossRef]
- Tacchi, L.; Lowrey, L.; Musharrafieh, R.; Crossey, K.; Larragoite, E.T.; Salinas, I. Effects of transportation stress and addition of salt to transport water on the skin mucosal homeostasis of rainbow trout (Oncorhynchus mykiss). Aquaculture 2015, 435, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Paranhos, C.O.; Neves, L.C.; Silva, W.S.; Luz, R.K. Transport of killifish Hypsolebias flagellatus: Effects of salt use and previous feeding in association with transport time. J. Appl. Aquac. 2023, 35, 100–111. [Google Scholar] [CrossRef]
- Gomes, L.C.; Chagas, E.C.; Brinn, R.P.; Roubach, R.; Coppati, C.E.; Baldisserotto, B. Use of salt during transportation of air breathing pirarucu juveniles (Arapaima gigas) in plastic bags. Aquaculture 2006, 256, 521–528. [Google Scholar] [CrossRef]
- Souza, R.T.Y.B.; Oliveira, S.R.; Ono, E.A.; Andrade, J.I.A.; Brasil, E.M.; Marcon, J.L.; Tavares-Dias, M.; Affonso, E.G. Respostas Fisiológicas Em Pirarucu Arapaima gigas Cuvier, 1829 (Osteoglossidae) Transportados Com Diferentes Concentrações De Cloreto De Sódio. Comunicación Científica—CIVA 2006. pp. 1–6. Available online: http://www.civa2006.org (accessed on 4 March 2024).
- Favero, G.C.; Silva, W.S.; Boaventura, T.P.; Leme, F.O.P.; Luz, R.K. Eugenol or salt to mitigate stress during the transport of juvenile Lophiosilurus alexandri, a Neotropical carnivorous freshwater catfish. Aquaculture 2019, 512, 734321. [Google Scholar] [CrossRef]
- Boaventura, T.P.; Pedras, P.P.C.; Júlio, G.S.C.; Santos, F.A.C.; Ferreira, A.L.; Silva, W.S.; Luz, R.K. Use of eugenol, benzocaine or salt during the transport of panga, Pangasianodon hypophthalmus (Sauvage, 1878): Effects on water quality, haematology and blood biochemistry. Aquac. Res. 2022, 53, 1395–1403. [Google Scholar] [CrossRef]
- Rosa, S.S.; Baldan, A.P.; Bendhack, F.; Paschoal, A.F.L.; Cordeiro, A.L.A.; Kirschnik, P.G.; Borges, T.D.; Macedo, R.E.F. Transporting live silver catfish (Rhamdia quelen) with salt addition does not mitigate fish stress and negatively affects meat quality. Food Sci. Technol. 2019, 39, 482–490. [Google Scholar] [CrossRef]
- Gomes, L.C.; Golombieski, J.I.; Chippari-Gomes, A.R.; Baldisserotto, B. Effect of salt in the water for transport on survival and on Na+ and K+ body levels of silver catfish, Rhamdia quelen, fingerlings. J. Appl. Aquacult. 1999, 9, 1–9. [Google Scholar] [CrossRef]
- Vásquez-Piñeros, M.A.; Gómez, D.A.; Ramírez-Duarte, W.F.; Eslava-Mocha, P.R. Concentración óptima de sustancias de bajo costo para mejorar el transporte de dos especies de peces ornamentales. Orinoquia 2012, 16, 187–202. [Google Scholar] [CrossRef]
- Urbinati, E.C.; Carneiro, P.C.F. Sodium chloride added to transport water and physiological responses of Matrinxã Brycon amazonicus (Teleost: Characidae). Acta Amaz. 2006, 36, 569–572. [Google Scholar] [CrossRef]
- Carneiro, P.C.F.; Urbinati, E.C. Salt as a stress response mitigator of matrinxã, Brycon cephalus (Gunther), during transport. Aquac. Res. 2001, 32, 297–304. [Google Scholar] [CrossRef]
- Anjos, G.M.; Soares, E.C.; Dantas, L.H.N.; Santos, R.B.; Pinheiro, D.M.; Albuquerque, A.A. Eugenol, sal e gesso no transporte de tambaqui em sistemas fechados. Pubvet 2011, 5, 1058–1064. [Google Scholar] [CrossRef]
- Johnson, D.L.; Metcalf, M.T. Causes and controls of freshwater drum mortality during transportation. Trans. Am. Fish. Soc. 1982, 111, 58–62. [Google Scholar] [CrossRef]
- Grizzle, J.M.; Mauldin II, A.C.; Ashfield, C.J. Effects of sodium chloride and calcium chloride on survival of larval striped bass. J. Aquat. Anim. Health 1992, 4, 281–285. [Google Scholar] [CrossRef]
- Mazik, P.M.; Simco, B.A.; Parker, N.C. Influence of water hardness and salts on survival and physiological characteristics of striped Bass during and after transport. Trans. Am. Fish. Soc. 1991, 120, 121–126. [Google Scholar] [CrossRef]
- Nikinmaa, M.; Soivio, A.; Nakari, T.; Lingren, S. Hauling stress in brown trout (Salmo trutta): Physiological responses to transport in fresh water or salt water, and recovery in natural brackish water. Aquaculture 1983, 34, 93–99. [Google Scholar] [CrossRef]
- Sneddon, L.U. Clinical anesthesia and analgesia in fish. J. Exotic Pet Med. 2012, 21, 32–43. [Google Scholar] [CrossRef]
- Zhal, I.H.; Samuelsen, O.; Kiessling, A. Anaesthesia of farmed fish: Implications for welfare. Fish Physiol. Biochem. 2012, 38, 201–212. [Google Scholar] [CrossRef] [PubMed]
- Melillo Filho, R.; Gheller, V.A.; Chaves, G.V.; Silva, W.S.; Costa, D.C.; Figueiredo, L.G.; Julio, G.S.C.; Luz, R.K. Early sexing techniques in Lophiosilurus alexandri (Steindachner, 1876), a freshwater carnivorous catfish. Theriogenology 2016, 88, 1523–1529. [Google Scholar] [CrossRef]
- Xu, J.-H.; Liu, Y.; Zhou, X.-W.; Ding, H.-T.; Dong, X.-J.; Qu, L.-T.; Xia, T.; Chen, X.-M.; Chen, H.-L.; Ding, Z.-J. Anaesthetic effects of eugenol on preservation and transportation of yellow catfish (Pelteobagrus fulvidraco). Aquac. Res. 2021, 52, 3796–3803. [Google Scholar] [CrossRef]
- Ghanawi, J.; Monzer, S.; Saoud, I.P. Anaesthetic efficacy of clove oil, benzocaine, 2-phenoxyethanol and tricaine methanesulfonate in juvenile marbled spinefoot (Siganus rivulatus). Aquac. Res. 2013, 44, 359–366. [Google Scholar] [CrossRef]
- Al-Taee, S.K.; Annaz, M.T.; Al-Badrany, M.S.; Al-Hamdani, A.H. Biochemical and behavioral responses in carp fish exposed to tricaine methane sulfonate (MS-222) as anesthetic drug under transport conditions. Iraqi J. Vet. Sci. 2021, 35, 719–723. [Google Scholar] [CrossRef]
- Pramod, P.K.; Ramachandran, A.; Sajeevan, T.P.; Thampy, S.; Pai, S.S. Comparative efficacy of MS-222 and benzocaine as anaesthetics under simulated transport conditions of a tropical ornamental fish Puntius filamentosus (Valenciennes). Aquac. Res. 2010, 41, 309–314. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, X.-W.; Ding, H.-T.; Dong, X.-J.; Zhang, J.J.; Zheng, Y.-C.; Chen, X.-N.; Cheng, H.-L.; Ding, Z.-J.; Xu, J.-H. Effects of tricaine methanesulfonate (MS-222) on sedation and responses of yellow catfish (Pelteobagrus fulvidraco) subjected to simulated transportation stress. Aquaculture 2022, 549, 737789. [Google Scholar] [CrossRef]
- Cao, X.; Wang, Y.; Yu, N.; Le, Q.; Hu, J.; Yang, Y.; Kuang, S.; Zhang, M.; Sun, Y.; Gu, W.; et al. Transcriptome analysis reveals the influence of anaesthetic stress on the immune system of crucian carp (Carassius auratus) under the process of treatment and low concentration transport by MS-222 and Eugenol. Aquac. Res. 2019, 50, 3138–3153. [Google Scholar] [CrossRef]
- Navarro, R.D.; França, R.P.; Paludo, G.R. Physiological and hematological responses of Nile tilapia (Oreochromis niloticus) to different anesthetics during simulated transport conditions. Acta Sci. 2016, 38, 301–306. [Google Scholar] [CrossRef]
- Ferreira, J.T.; Schoonbee, H.J.; Smit, G.L. The use of benzocaine-hydrochloride as an aid in the transport of fish. Aquaculture 1984, 42, 169–174. [Google Scholar] [CrossRef]
- Kenter, L.W.; Gunn, M.A.; Berlinsky, D.L. Transport stress mitigation and the effects of preanesthesia on striped bass. North Am. J. Aquac. 2019, 81, 67–73. [Google Scholar] [CrossRef]
- Ross, L.G.; Blanco, J.S.; Martínez-Palacíos, C.; Racotta, I.S.; Cuevas, M.T. Anaesthesia, sedation and transportation of juvenile Menidia estor (Jordan) using benzocaine and hypothermia. Aquac. Res. 2007, 38, 909–917. [Google Scholar] [CrossRef]
- Crosby, T.C.; Petty, B.D.; Hamlin, H.J.; Guillette, L.J., Jr.; Hill, J.E.; Hartman, K.H.; Yanong, R.P.E. Plasma cortisol, blood glucose, and marketability of Koi transported with metomidate hydrochloride. N. Am. J. Aquac. 2010, 72, 141–149. [Google Scholar] [CrossRef]
- Sandodden, R.; Finstad, B.; Iversen, M. Transport stress in Atlantic salmon (Salmo salar L.): Anaesthesia and recovery. Aquac. Res. 2001, 32, 87–90. [Google Scholar] [CrossRef]
- Park, I.S.; Park, M.O.; Hur, J.W.; Kim, D.S.; Chang, Y.J.; Park, J.Y.; Johnson, S.C. Anesthetic effects of lidocaine-hydrochloride on water parameters in simulated transport experiment of juvenile winter flounder, Pleuronectes americanus. Aquaculture 2009, 294, 76–79. [Google Scholar] [CrossRef]
- Félix, L.; Correia, R.; Sequeira, R.; Ribeiro, C.; Monteiro, S.; Antunes, L.; Silva, J.; Venâncio, C.; Valentim, A. MS-222 and propofol sedation during and after the simulated transport of Nile tilapia (Oreochromis niloticus). Biology 2021, 10, 1309. [Google Scholar] [CrossRef]
- Gressler, L.T.; Sutili, F.J.; Loebens, L.; Medianeira, E.; Saccol, H.; Pês, T.S.; Parodi, T.V.; Costa, S.T.; Pavanato, M.A.; Baldisserotto, B. Histological and antioxidant responses in Rhamdia quelen sedated with propofol. Aquac. Res. 2016, 47, 2297–2306. [Google Scholar] [CrossRef]
- Schroder, C.S.; Ventura, A.S.; Oliveira, S.N.; Santos, L.D. Potential of natural anesthetic Ocimum basilicum essential oil and eugenol in the preslaughter transport of Nile tilapia Oreochromis niloticus and its effect on fillet quality. J. Aquat. Food Prod. Technol. 2022, 31, 399–409. [Google Scholar] [CrossRef]
- Ventura, A.S.; Jerônimo, G.T.; Oliveira, S.N.; Gabriel, A.M.A.; Cardoso, C.A.L.; Teodoro, G.C.; Filho, R.A.C.C.; Povh, J.A. Natural anesthetics in the transport of Nile tilapia: Hematological and biochemical responses and residual concentration in the fillet. Aquaculture 2020, 526, 735365. [Google Scholar] [CrossRef]
- Oliveira, C.P.B.; Lemos, C.H.P.; Silva, A.F.; Souza, S.A.; Albinati, A.C.L.; Lima, A.O.; Copatti, C.E. Use of eugenol for the anaesthesia and transportation of freshwater angelfish (Pterophyllum scalare). Aquaculture 2019, 513, 734409. [Google Scholar] [CrossRef]
- He, Y.; Fu, Z.; Dai, S.; Yu, G.; Guo, Y.; Ma, Z. Effects of eugenol on water quality and the metabolism and antioxidant capacity of juvenile greater amberjack (Seriola dumerili) under simulated transport conditions. Animals 2022, 12, 2880. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Dong, H.; Sun, Y.; Cao, M.; Duan, Y.; Li, H.; Liu, Q.; Gu, Q.; Zhang, J. The efficacy of eugenol and tricaine methanesulphonate as anaesthetics for juvenile Chinese sea bass (Lateolabrax maculatus) during simulated transport. J. Appl. Ichthyol. 2018, 35, 551–557. [Google Scholar] [CrossRef]
- Salbego, J.; Toni, C.; Becker, A.G.; Zeppenfeld, C.C.; Menezes, C.C.; Loro, V.L.; Heinzmann, B.M.; Baldisserotto, B. Biochemical parameters of silver catfish (Rhamdia quelen) after transport with eugenol or essential oil of Lippia alba added to the water. Braz. J. Biol. 2017, 77, 696–702. [Google Scholar] [CrossRef]
- Santos, E.L.R.; Rezende, F.P.; Moron, S.E. Stress-related physiological and histological responses of tambaqui (Colossoma macropomum) to transportation in water with tea tree and clove essential oil anesthetics. Aquaculture 2020, 523, 735164. [Google Scholar] [CrossRef]
- Martins, K.V.B.; Silva, S.B.; Cardoso, A.J.S.; Salaro, A.L.; Ferreira, P.M.F.; Freitas, M.B.; Zuanon, J.A.S. Effectiveness and safety of clove oil and common salt in the long-term transport of Cyprinus carpio. Aquaculture 2024, 583, 740532. [Google Scholar] [CrossRef]
- El-Dakar, A.Y.; Shalaby, S.M.; Abdelshafy, H.T.; Abdel-Aziz, M.F. Using clove and mint oils as natural sedatives to increase the transport quality of the Nile tilapia (Oreochromis niloticus) broodstock. Egypt J. Aquat. Biol. Fish. 2021, 25, 437–446. [Google Scholar] [CrossRef]
- Husen, M.A.; Sharma, S. Immersion of rohu fingerlings in clove oil reduced handling and confinement stress and mortality. Int. J. Fish. Aquat. Stud. 2015, 2, 299–305. [Google Scholar]
- Lin, M.; Wang, Q.; Xia, Y. Effects of two anesthetics on survival of juvenile Culter mongolicus during a simulated transport experiment. N. Am. J. Aquac. 2012, 74, 541–546. [Google Scholar] [CrossRef]
- Inoue, L.A.K.A.; Afonso, L.O.B.; Iwama, G.K.; Moraes, G. Effects of clove oil on the stress response of matrinxã (Brycon cephalus) subjected to transport. Acta Amaz. 2005, 35, 289–295. [Google Scholar] [CrossRef]
- Cooke, S.J.; Suski, C.D.; Ostrand, K.G.; Tufts, B.L.; Wall, D.H. Behavioral and physiological assessment of low concentrations of clove oil anaesthetic for handling and transporting largemouth bass (Micropterus salmoides). Aquaculture 2004, 239, 509–529. [Google Scholar] [CrossRef]
- Hohlenwerger, J.C.; Baldisserotto, B.; Couto, R.D.; Heinzmann, B.M.; Silva, D.T.; Caron, B.O.; Schmidt, D.; Copatti, C.E. Essential oil of Lippia alba in the transport of Nile tilapia. Cienc. Rural 2017, 47, e20160040. [Google Scholar] [CrossRef]
- Becker, A.G.; Parodi, T.V.; Heldwein, C.G.; Zeppenfeld, C.C.; Heinzmann, B.M.; Baldisserotto, B. Transportation of silver catfish, Rhamdia quelen, in water with eugenol and the essential oil of Lippia alba. Fish Physiol. Biochem. 2012, 38, 789–796. [Google Scholar] [CrossRef] [PubMed]
- Sena, A.C.; Teixeira, R.R.; Ferreira, E.L.; Heinzmann, B.M.; Baldisserotto, B.; Caron, B.O.; Schmidt, D.; Couto, R.D.; Copatti, C.E. Essential oil from Lippia alba has anaesthetic activity and is effective in reducing handling and transport stress in tambacu (Piaractus mesopotamicus × Colossoma macropomum). Aquaculture 2016, 465, 374–379. [Google Scholar] [CrossRef]
- Cunha, M.A.; Silva, B.F.; Delunardo, F.A.C.; Benovit, S.C.; Gomes, L.C.; Heinzmann, B.M.; Baldisserotto, B. Anesthetic induction and recovery of Hippocampus reidi exposed to the essential oil of Lippia alba. Neot. Ichthyol. 2011, 9, 683–688. [Google Scholar] [CrossRef]
- Oliveira, I.C.; Oliveira, R.S.M.; Lemos, C.H.P.; Oliveira, C.P.B.; Silva, A.F.; Lorenzo, V.P.; Lima, A.O.; Cruz, A.L.; Copatti, C.E. Essential oils from Cymbopogon citratus and Lippia sidoides in the anesthetic induction and transport of ornamental fsh Pterophyllum scalare. Fish Physiol. Biochem. 2022, 48, 501–519. [Google Scholar] [CrossRef] [PubMed]
- Fang, D.; Zhang, C.; Mei, J.; Qiu, W.; Xie, J. Effects of Ocimum basilicum essential oil and ginger extract on serum biochemistry, oxidative stress and gill tissue damage of pearl gentian grouper during simulated live transport. Vet. Res. Commun. 2024, 48, 139–152. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, A.L.; Silva, W.S.; Silva, H.N.P.; Milarch, C.F.; Palheta, G.D.A.; Heinzmann, B.M.; Pinheiro, C.G.; Baldisserotto, B.; Favero, G.C.; Luz, R.K. Oxidative responses in small juveniles of Colossoma macropomum anesthetized and sedated with Ocimum gratissimum L. essential oil. Fish Physiol. Biochem. 2024; Early view. [Google Scholar] [CrossRef]
- Ferreira, A.L.; Favero, G.C.; Boaventura, T.P.; Souza, C.F.; Ferreira, N.S.; Descovi, S.N.; Baldisserotto, B.; Heinzmann, B.M.; Luz, R.K. Essential oil of Ocimum gratissimum (Linnaeus, 1753): Efficacy for anesthesia and transport of Oreochromis niloticus. Fish Physiol. Biochem. 2021, 47, 135–152. [Google Scholar] [CrossRef] [PubMed]
- Boaventura, T.P.; Souza, C.F.; Ferreira, A.L.; Favero, G.C.; Baldissera, M.D.; Heinzmann, B.M.; Baldisserotto, B.; Luz, R.K. The use of Ocimum gratissimum L. essential oil during the transport of Lophiosilurus alexandri: Water quality, hematology, blood biochemistry and oxidative stress. Aquaculture 2021, 531, 735964. [Google Scholar] [CrossRef]
- Benovit, S.C.; Gressler, L.T.; Silva, L.L.; Garcia, L.O.; Okamoto, M.H.; Pedron, J.S.; Sampaio, L.A.; Rodrigues, R.V.; Heinzmann, B.M.; Baldisserotto, B. Anesthesia and transport of Brazilian flounder, Paralichthys orbignyanus, with essential oils of Aloysia gratissima and Ocimum gratissimum. J. World Aquac. Soc. 2012, 43, 896–900. [Google Scholar] [CrossRef]
- Teixeira, R.R.; Souza, R.C.; Sena, A.C.; Baldisserotto, B.; Heinzmann, B.M.; Copatti, C.E. Essential oil of Aloysia triphylla is effective in Nile tilapia transport. Bol. Int. Pesca 2018, 44, 17–24. [Google Scholar] [CrossRef]
- Zeppenfeld, C.C.; Toni, C.; Becker, A.G.; Miron, D.S.; Parodi, T.V.; Heinzmann, B.M.; Barcellos, L.J.G.; Koakoski, G.; Rosa, J.G.S.; Loro, V.L.; et al. Physiological and biochemical responses of silver catfish, Rhamdia quelen, after transport in water with essential oil of Aloysia triphylla (L’Herit) Britton. Aquaculture 2014, 418–419, 101–107. [Google Scholar] [CrossRef]
- Parodi, T.V.; Cunha, M.A.; Becker, A.G.; Zeppenfeld, C.C.; Martins, D.I.; Koakoski, G.; Barcellos, L.G.; Heinzmann, B.M.; Baldisserotto, B. Anesthetic activity of the essential oil of Aloysia triphylla and effectiveness in reducing stress during transport of albino and gray strains of silver catfish, Rhamdia quelen. Fish Physiol. Biochem. 2014, 40, 323–334. [Google Scholar] [CrossRef]
- Tondolo, J.S.M.; Amaral, L.P.; Simões, L.N.; Garlet, Q.I.; Schindler, B.; Oliveira, T.M.; Silva, B.F.; Gomes, L.C.; Baldisserotto, B.; Mallmann, C.A.; et al. Anesthesia and transport of fat snook Centropomus parallelus with the essential oil of Nectandra megapotamica (Spreng.) Mez. Neot. Ichthyol. 2013, 11, 667–674. [Google Scholar] [CrossRef]
- Saccol, E.M.H.; Jerez-Cepa, I.; Ourique, G.M.; Pês, T.S.; Gressler, L.T.; Mourão, R.H.V.; Martínez-Rodríguez, G.; Mancera, J.M.; Baldisserotto, B.; Pavanato, M.A.; et al. Myrcia sylvatica essential oil mitigates molecular, biochemical and physiological alterations in Rhamdia quelen under different stress events associated to transport. Res. Vet. Sci. 2018, 117, 150–160. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, A.L.; Santos, F.A.C.; Souza, A.S.; Favero, G.C.; Baldisserotto, B.; Pinheiro, C.G.; Heinzmann, B.M.; Luz, R.K. Efficacy of Hesperozygis ringens essential oil as an anesthetic and for sedation of juvenile tambaqui (Colossoma macropomum) during simulated transport. Aquac. Int. 2022, 30, 1549–1561. [Google Scholar] [CrossRef]
- Mirzargar, S.S.; Mirghaed, A.T.; Hoseini, S.M.; Ghelipour, M.; Shahbazi, M.; Yousefi, M. Biochemical responses of common carp, Cyprinus carpio, to transportation in plastic bags using thymol as a sedative agent. Aquac. Res. 2022, 53, 191–198. [Google Scholar] [CrossRef]
- Wang, J.; Xiong, G.; Bai, C.; Liao, T. Anesthetic efficacy of two plant phenolics and the physiological response of juvenile Ictalurus punctatus to simulated transport. Aquaculture 2021, 538, 736566. [Google Scholar] [CrossRef]
- Liu, Y.-H.; Zhao, Y.; Zhu, D.; Wang, X.; Yang, Y. 1,8-cineole and ginger extract (Zingiber officinale Rosc) as stress mitigator for transportation of largemouth bass (Micropterus salmoides L.). Aquaculture 2022, 561, 738622. [Google Scholar] [CrossRef]
- Popovic, N.T.; Strunjak-Perovic, I.; Coz-Rakovac, R.; Barisic, J.; Jadan, M.; Berakovic, A.P.; Klobucar, R.S. Tricaine methane-sulfonate (MS-222) application in fish anaesthesia. J. Appl. Ichthyol. 2012, 28, 553–564. [Google Scholar] [CrossRef]
- Carter, K.M.; Woodley, C.M.; Brown, R.S. A review of tricaine methanesulfonate for anesthesia of fish. Rev. Fish Biol. Fish. 2011, 21, 51–59. [Google Scholar] [CrossRef]
- Carneiro, P.C.F.; Urbinati, E.C.; Martins, M.L. Transport with different benzocaine concentrations and its consequences on hematological parameters and gill parasite population of matrinxã Brycon cephalus (Günther, 1869) (Osteichthyes, Characidae). Acta Scient. 2002, 24, 555–560. [Google Scholar]
- Pedron, J.S.; Miron, D.S.; Rodrigues, R.V.; Okamoto, M.H.; Tesser, M.B.; Sampaio, L.A. Stress response in transport of juvenile cobia Rachycentron canadum using the anesthetic benzocaine. J. Aquat. Res. 2016, 44, 638–642. [Google Scholar] [CrossRef]
- Kilgore, K.H.; Hill, J.E.; Powell, J.F.F.; Watson, C.A.; Yanong, R.P.E. Investigational use of metomidate hydrochloride as a shipping additive for two ornamental fishes. J. Aquat. Anim. Health 2013, 21, 133–139. [Google Scholar] [CrossRef]
- Yasar, T.O.; Yagciclar, C.; Yardimci, M. Comparative efficacy of propofol and clove oil as sedatives in transportation of Jack Dempsey fish (Rocio octofasciata). J. Vet. Sci. 2020, 36, 8–15. [Google Scholar]
- Javahery, S.; Nekoubin, H.; Moradlu, A.H. Effect of anaesthesia with clove oil in fish (review). Fish Physiol. Biochem. 2012, 38, 1545–1552. [Google Scholar] [CrossRef] [PubMed]
- Pascual, M.E.; Slowing, K.; Carretero, E.; Mata, D.S.; Villar, A. Lippia: Traditional uses, chemistry and pharmacology: A review. J. Ethnopharm. 2001, 76, 201–214. [Google Scholar] [CrossRef] [PubMed]
- Saaban, K.F.; Ang, C.H.; Chuah, C.H.; Khor, S.M. Chemical constituents and antioxidant capacity of Ocimum basilicum and Ocimum sanctum. Iran. J. Chem. Chem. Eng. 2019, 38, 139–152. [Google Scholar] [CrossRef]
- Becker, A.G.; Luz, R.K.; Mattioli, C.C.; Nakayama, C.L.; Silva, W.S.; Leme, F.O.P.; Mendes, H.C.P.M.; Heinzmann, B.M.; Baldisserotto, B. Can the essential oil of Aloysia triphylla have anesthetic effect and improve the physiological parameters of the carnivorous freshwater catfish Lophiosilurus alexandri after transport? Aquaculture 2017, 481, 184–190. [Google Scholar] [CrossRef]
- Manuel, R.; Boerrigter, J.; Roques, J.; Heul, J.; Bos, R.; Flik, G.; Vis, H. Stress in African catfish (Clarias gariepinus) following overland transportation. Fish Physiol. Biochem. 2014, 40, 33–44. [Google Scholar] [CrossRef] [PubMed]
- Brandt, T.M.; Jones, R.M.; Koke, J.R. Corneal cloudiness in transported largemouth bass. Progres. Fish-Cult. 1986, 48, 199–201. [Google Scholar] [CrossRef]
- Ubels, J.L.; Edelhauser, H.F. Effects of corneal epithelial abrasion on corneal transparency, aqueous humor composition, and lens of fish. Progres. Fish-Cult. 1987, 49, 219–224. [Google Scholar] [CrossRef]
- Santos, M.J.M.; Magalhães, F.O., Jr.; Manhães, J.V.; Soares, I.J., Jr.; Silva, A.G.; Ramos, A.P.; Schorer, M.; Braga, L.G.T. Effect of stocking density in plastic boxes without oxygenation on the transport of pirarucu, Arapaima gigas (Schinz, 1822). J. World Aquac. Soc. 2022, 53, 1031–1041. [Google Scholar] [CrossRef]
- Silva, H.N.P.; Souza, R.N.; Sousa, E.M.O.; Mourão, R.H.V.; Baldisserotto, B.; Silva, L.V.F. Citral chemotype of the Lippia alba essential oil as an additive in simulated transport with different loading densities of tambaqui juveniles. Cienc. Rural 2020, 50, e20190815. [Google Scholar] [CrossRef]
- Gomes, L.C.; Araujo-Lima, C.R.M.; Roubach, R.; Chippari-Gomes, A.R.; Lopes, N.P. Effect of fish density during transportation on stress and mortality of juvenile tambaqui Colossoma macropomum. J. World Aquac. Soc. 2003, 34, 76–84. [Google Scholar] [CrossRef]
- Abreu, J.S.; Sanabria-Ochoa, A.I.; Gonçalves, F.D.; Urbinati, E.C. Stress responses of juvenile matrinxã (Brycon amazonicus) after transport in a closed system under different loading densities. Cienc. Rural 2008, 38, 1413–1417. [Google Scholar] [CrossRef]
- Urbinati, E.C.; Abreu, J.S.; Camargo, A.C.S.; Parra, M.A.L. Loading and transport stress of juvenile matrinxã (Brycon cephalus, Characidae) at various densities. Aquaculture 2004, 229, 389–400. [Google Scholar] [CrossRef]
- Carneiro, P.C.F.; Urbinati, E.C. Transport stress in matrinxã, Brycon cephalus (Teleostei: Characidae), at different densities. Aquac. Int. 2002, 10, 221–229. [Google Scholar] [CrossRef]
- Adamante, W.B.; Nuñer, A.P.O.; Barcellos, L.J.G.; Soso, A.B.; Finco, J.A. Stress in Salminus brasiliensis fingerlings due to different densities and times of transportation. Arq. Bras. Med. Vet. Zootec. 2008, 60, 755–761. [Google Scholar] [CrossRef]
- Pakhira, C.; Nagesh, T.S.; Abraham, T.J.; Dash, G.; Behera, S. Stress responses in rohu, Labeo rohita transported at different densities. Aquac. Rep. 2015, 2, 39–45. [Google Scholar] [CrossRef]
- Abdel Aal, E.I.; Kishta, A.M.; Radwan, M.E.; Soliman, M.M. Evaluation of silver carp fry transportation methods on water quality and survival ratio. Misr. J. Agri. Eng. 2011, 28, 1141–1161. [Google Scholar] [CrossRef]
- Bittencourt, F.; Damasceno, D.Z.; Lui, T.A.; Signor, A.; Sanches, E.A.; Neu, D.H. Water quality and survival rate of Rhamdia quelen fry subjected to simulated transportation at different stock densities and temperatures. Acta Sci. Anim. Sci. 2018, 40, e37285. [Google Scholar] [CrossRef]
- Garcia, L.O.; Barcellos, L.J.G.; Baldisserotto, B. Net ion fluxes and ammonia excretion during transport of Rhamdia quelen juveniles. Cienc. Rural 2015, 45, 1854–1858. [Google Scholar] [CrossRef]
- Carneiro, P.C.F.; Kaiseler, P.H.S.; Swarofsky, E.A.C.; Baldisserotto, B. Transport of jundiá Rhamdia quelen juveniles at different loading densities: Water quality and blood parameters. Neotrop. Ichthyol. 2009, 7, 283–288. [Google Scholar] [CrossRef]
- Goes, E.S.R.; Lara, J.A.F.; Gasparino, E.; Goes, M.D.; Zuanazzi, J.S.G.; Lopera-Barrero, N.M.; Rodriguez, M.d.P.R.; de Castro, P.L.; Ribeiro, R.P. Effects of transportation stress on quality and sensory profiles of Nile tilapia fillets. Sci. Agric. 2018, 75, 321–328. [Google Scholar] [CrossRef]
- Navarro, R.D.; Costa, D.C.; Silva, W.S.; da Silva, B.C.; Luz, R.K. Long-term transportation of juvenile pacamãs Lophiosilurus alexandri at different densities. Acta Sci. Tech. 2017, 39, 211–214. [Google Scholar] [CrossRef]
- Braun, N.; Nuñer, A.P.O. Stress in Pimelodus maculatus (Siluriformes: Pimelodidae) at different densities and times in a simulated transport. Zoolog 2014, 31, 101–104. [Google Scholar] [CrossRef]
- Liu, H.; Fu, Z.; Yu, G.; Ma, Z.; Fu, Z. Effect of transport density on greater amberjack (Seriola dumerili) stress, metabolism, antioxidant capacity and immunity. Front. Mar. Sci. 2022, 9, 931816. [Google Scholar] [CrossRef]
- Hong, J.; Chen, X.; Liu, S.; Fu, Z.; Han, M.; Wang, Y.; Gu, Z.; Ma, Z. Impact of fish density on water quality and physiological response of Golden pompano (Trachinotus ovatus) flingerlings during transportation. Aquaculture 2019, 507, 260–265. [Google Scholar] [CrossRef]
- Faudzi, N.M.; Sobri, M.I.; Othman, R.; Ching, F.F.; Shaleh, S.R.M. Water temperature and stocking density for longhour transportation of hybrid grouper Epinephelus fuscoguttatus × E. lanceolatus. AACL Bioflux 2021, 14, 1098–1106. [Google Scholar]
- Xavier, B.; Megarajan, S.; Ranjan, R.; Shiva, P.; Dash, B.; Ghosh, S. Effect of packing density on selected tissue biochemical parameters of hatchery produced fingerlings of orange spotted grouper Epinephelus coioides (Hamilton, 1822) during transportation. Indian J. Fish. 2018, 65, 138–143. [Google Scholar] [CrossRef]
- Sulikowski, J.A.; Fairchild, E.A.; Rennels, N.; Howell, W.H. The effects of transport density on cortisol levels in juvenile winter flounder, Pseudopleuronectes americanus. J. World Aquac. Soc. 2006, 37, 107–112. [Google Scholar] [CrossRef]
Freshwater Fish Species | Order:Family | Fish Weight, Length or Age | Transport Duration (h) | Recommended Salt (NaCl) Concentration (g/L) | References |
---|---|---|---|---|---|
Hypsolebias flagellatus | Cyprinodontiformes:Rivulidae | 1.38 ± 0.83 g | 12 | 6 | Paranhos et al. (2023) [66] |
Labeo rohita | Cypriniformes:Cyprinidae | 4.6 ± 0.5 g | 12 | 4 | Biswal et al. (2021) [61] |
Astyanax altiparanae | Characiformes:Characidae | 0.37 ± 0.05 g | 8 | 3 or 6 | Salaro et al. (2015) [64] |
Paracheirodon axelrodi | 0.34 ± 0.44 g | 12 and 24 | 1.5 | Vásquez-Piñeros et al. (2012) [73] | |
Brycon amazonicus | Characiformes:Bryconidae | 1.0 ± 0.2 kg | 4 | 6 | Urbinati and Carneiro (2006) [74] |
Brycon cephalus | 1000 ± 200 g | 4 | 6 | Carneiro and Urbinati (2001) [75] | |
Colossoma macropomum | Characiformes:Serrasalmidae | 12.5 ± 1.5 g | 16 | 2 | Anjos et al. (2011) [76] |
846 ± 25 g | 3 | 8 | Gomes et al. (2003) [6] | ||
Oncorhynchus mykiss | Salmoniformes:Salmonidae | 200 g | 5 | 5 | Tacchi et al. (2015) [65] |
Otocinclus sp. | Siluriformes:Loricariidae | 0.19 ± 0.08 g | 12 and 24 | 1.5 | Vásquez-Piñeros et al. (2012) [73] |
Ancistrus triradiatus | 10.4 ± 4.6 g | 48 | 1 | Ramírez-Duarte et al. (2011) [47] | |
Arapaima gigas | Osteoglossiformes:Arapaimidae | 752 ± 48 g | 5 | 3 | Souza et al. (2006) [68] |
Aplodinotus grunniens | Eupercaria:Sciaenidae | 365 mm | 6 | 5 | Johnson and Metcalf (1982) [77] |
Diadromous fish species | |||||
Morone saxatilis | Eupercaria:Moronidae | 5 days after hatching | 4 | 4–5 | Grizzle et al. (1992) [78] |
72 ± 2.5 g | 5 | 10 | Mazik et al. (1991) [79] | ||
Salmo trutta | Salmoniformes:Salmonidae | 76.2 ± 1.7 g | 14 | 6 | Nikinmaa et al. (1983) [80] |
Fish Species | Order:Family | Fish Weight or Length | Transport Duration (h) | Synthetic Anesthetic | Recommended Concentration | References |
---|---|---|---|---|---|---|
Oreochromis niloticus | Cichliformes:Cichlidae | 70.00 and 80.00 g | 2 | MS-222 + iodine | 40 mg/L + 10 ppm | Sherif et al. (2023) [8] |
Siganus rivulatus | Acanthuriformes:Siganidae | 1.03 ± 0.74 g | 24 | MS-222 | 10 mg/L 15 mg/L | Ghanawi et al. (2013) [85] |
Lateolabrax maculatus | Acropomatiformes:Lateolabracidae | 500.00 ± 50.00 g | 72 | 30 mg/L | Zhang et al. (2023) [9] | |
Cyprinus carpio | Cypriniformes:Cyprinidae | 125.00 ± 10.00 g | 1 | 150 mg/L | Al-Taee et al. (2021) [86] | |
Puntius filamentosus | 12.00 ± 1.00 g | 48 | 40 mg/L | Pramod et al. (2010) [87] | ||
Coreius guichenoti | Cypriniformes:Gobionidae | 165.80 ± 38.60 g | 14 | 30 mg/L | Zhao et al. (2014) [58] | |
Pelteobagrus fulvidraco | Siluriformes:Bagridae | 86.70 ± 11.40 g | 12 | 40 mg/L | Liu et al. (2022) [88] | |
Scophthalmus maximus | Pleuronectiformes:Scophtalmidae | 600.00 ± 50.00 g | 24 | 40 mg/L | Cao et al. (2021) [89] | |
Pangasianodon hypophthalmus | Siluriformes:Pangasiidae | 22.90 ± 5.30 g | 5 | Benzocaine | 5 mg/L | Boaventura et al. (2022) [70] |
Oreochromis niloticus | Cichliformes:Cichlidae | 5.0 ± 2.1 g | 3.5 | ≤20 mg/L | Navarro et al. (2016) [90] | |
Oreochromis mossambicus | 120.00 ± 12.00 g | 1 | 25 mg/L | Ferreira et al. (1984) [91] | ||
Morone saxatilis | Eupercaria:Moronidae | 1061.10 ± 75.60 g | 1 | 1 mg/L | Kenter et al. (2019) [92] | |
Puntius filamentosus | Cypriniformes:Cyprinidae | 12.00 ± 1.00 g | 48 | 20 mg/L | Pramod et al. (2010) [87] | |
Menidia estor | Atherinopsidae | 7.70 g | 3.5 and 8.5 | 12 mg/L | Ross et al. (2007) [93] | |
Cyprinus carpio | Cypriniformes:Cyprinidae | 127–152 mm | 24 | Metomidate-HCl | 3 mg/L | Crosby et al. (2010) [94] |
Salmo salar | Salmoniformes:Salmonidae | - | 2 | 1 mg/L | Sandodden et al. (2001) [95] | |
Pleuronectes americanus | Pleuronectiformes:Pleuronectidae | 16.30 ± 0.20 g | 5 | Lidocaine-HCl | 5 ppm 10 ppm 20 ppm | Park et al. (2009) [96] |
Siganus rivulatus | Acanthuriformes:Siganidae | 1.03 ± 0.74 g | 24 | 2-phenoxyethanol | 50 μL/L 100 μL/L | Ghanawi et al. (2013) [85] |
Catla catla Labeo rohita Cirrhinus mrigala | Cypriniformes:Cyprinidae | 0.41 ± 0.08 g | 48 | 90 μL/L | Singh et al. (2004) [46] | |
Oreochromis niloticus | Cichliformes:Cichlidae | 143.80 ± 20.90 g | 6 | Propofol | 0.8 mg/L | Félix et al. (2021) [97] |
Rhamdia quelen | Siluriformes:Heptapteridae | 91.44 ± 1.98 g | 1; 6 and 12 | 0.4 mg/L | Gressler et al. (2015) [98] | |
Fish species | Order:Family | Fish weight or length | Transport duration (h) | Natural Anesthetic | Recommended concentration | References |
Oreochromis niloticus | Cichliformes:Cichlidae | 816.36 ± 31.37 g | 2 | Eugenol | 20 μL/L | Schroder et al. (2022) [99] |
19.2 mg/L | Ventura et al. (2020) [100] | |||||
5.00 ± 2.10 g | 3.5 | ≤20 mg/L | Navarro et al. (2016) [90] | |||
Pterophyllum scalare | 1.75 ± 0.17 g | 4 and 7 | 15.9 mg/L | Oliveira et al. (2019) [101] | ||
Seriola dumerili | Carangiformes:Carangidae | 10.34 ± 1.33 g | 8 | 0.05 µL/mL | He et al. (2022) [102] | |
Lateolabrax maculatus | Acropomatiformes:Lateolabracidae | 100.00 ± 10.00 g | 5 | 6 mg/L | Wang et al. (2018) [103] | |
Rhamdia quelen | Siluriformes:Heptapteridae | 301.24 ± 21.40 g | 4 | 1.5 or 3.0 µL/L | Salbego et al. (2017) [104] | |
301.24 ± 21.40 g | 4 | 1.5 or 3.0 µL/L | Becker et al. (2012) [105] | |||
Pelteobagrus fulvidraco | Siluriformes:Bagridae | 87.50 ± 13.90 g | 12 | 10 mg/L | Xu et al. (2021) [84] | |
Pangasianodon hypophthalmus | Siluriformes:Pangasiidae | 22.90 ± 5.30 g | 5 | 10 mg/L | Boaventura et al. (2022) [70] | |
Cyprinus carpio | Cypriniformes:Cyprinidae | 9.26 ± 2.04 g | 24 | Clove EO + salt | 5 mg/L + 3 g/L | Martins et al. (2024) [106] |
Oreochromis niloticus | Cichliformes:Cichlidae | 117.07 ± 9.07 g | 3.5 | Clove EO * + mint EO | 100 µL/L + 20 µL/L | El-Dakar et al. (2021) [107] |
Labeo rohita | Cypriniformes:Cyprinidae | 3.24 ± 0.84 g | 6 12 | Clove EO | 5.0 µL/L | Husen and Sharma (2015) [108] |
Culter mongolicus | Cypriniformes | 0.75 ± 0.04 g | 24 | 5 mg/L | Lin et al. (2012) [109] | |
Brycon cephalus | Characiformes:Bryconidae | 80.10 ± 18.40 g | 4 | 5 mg/L | Inoue et al. (2005) [110] | |
Micropterus salmoides | Centrarchiformes:Centrarchidae | 93 ± 7 g | 0.5 | 5 to 9 mg/L | Cooke et al. (2004) [111] | |
Colossoma macropomum | Characiformes:Serrasalmidae | 65.20 ± 1.20 g | 15 and 36 | Tea tree + clove EO | 10.4 mg/L | Santos et al. (2020) [105] |
Oreochromis niloticus | Cichliformes:Cichlidae | 80.79 ± 6.69 g | 8 | Lippia alba EO | 20.0 µL/L | Hohlenwerger et al. (2017) [112] |
Rhamdia quelen | Siluriformes:Heptapteridae | 301.24 ± 21.40 g | 4 | 1.5 or 3.0 µL/L | Salbego et al. (2017) [104] | |
301.24 ± 21.40 g | 4 | 1.5 or 3.0 µL/L | Becker et al. (2012) [113] | |||
64.50 ± 6.10 g | 5 6 7 | 10 µL/L | Azambuja et al. (2011) [10] | |||
Colossoma macropomum × Piaractus mesopotamicus | Characiformes:Serrasalmidae | 116.63 ± 4.38 g | 8 | 10 µL/L | Sena et al. (2016) [114] | |
Hippocampus reidi | Syngnathiformes:Syngnathidae | 2.30 ± 0.80 g | 4 24 | 15 µL/L | Cunha et al. (2011) [115] | |
Colossoma macropomum | Characiformes:Serrasalmidae | 127.55 ± 22.41 g | 4 | Lippia sidoides EO | 20 mg/L | Brandão et al. (2022) [12] |
Pterophyllum scalare | Cichliformes:Cichlidae | 2.40 ± 0.08 g | 8 | 10 mg/L | Oliveira et al. (2022) [116] | |
Epinephelus fuscoguttatus × Epinephelus lanceolatus | Perciformes/Serranoidei: Epinephelidae | 450.00 ± 50.00 g | 72 | Ocimum basilicum EO | 5 mg/L 10 mg/L | Fang et al. (2024) [117] |
Oreochromis niloticus | Cichliformes:Cichlidae | 816.36 ± 31.37 g | 2 | 20 μL/L | Schroder et al. (2022) [99] | |
17.4 mg/L | Ventura et al. (2020) [100] | |||||
Colossoma macropomum | Characiformes:Serrasalmidae | Juveniles I (0.91 ± 0.27 g) Juveniles II (14.76 ± 2.15 g) | 4 | Ocimum gratissimum EO | 5 mg/L 10 mg/L | Ferreira et al. (2024) [118] |
Oreochromis niloticus | Cichliformes:Cichlidae | 12.20 ± 3.40 g | 4.5 | 5 mg/L | Ferreira et al. (2021) [119] | |
Lophiosilurus alexandri | Siluriformes:Pseudopimelodidae | 123.44 ± 1.95 g | 4 | 10 mg/L | Boaventura et al. (2021) [120] | |
Paralichthys orbignyanus | Pleuronectiformes:Paralichthyidae | 13.10 ± 4.25 g | 7 | 10 mg/L | Benovit et al. (2012) [121] | |
Oreochromis niloticus | Cichliformes:Cichlidae | 92.66 ± 28.76 g | 8 | Aloysia triphylla EO | 30 μL/L | Teixeira et al. (2018) [122] |
Rhamdia quelen | Siluriformes:Heptapteridae | 262.00 ± 73.50 g | 6 | 40 µL/L | Zeppenfeld et al. (2014) [123] | |
Albino: 2.60 ± 1.00 g Gray: 3.00 ± 0.60 g | 5 | 30 µL/L 40 µL/L 50 µL/L | Parodi et al. (2014) [124] | |||
Centropomus parallelus | Carangaria:Centropomidae | 37.20 ± 4.03 g | 10 | Nectandra megapotamica EO | 15.0 µL/L 30.0 µL/L | Tondolo et al. (2013) [125] |
Rhamdia quelen | Siluriformes:Heptapteridae | 25.20 ± 2.90 g | 6 | Myrcia sylvatica EO | 25.0 µL/L 35.0 µL/L | Saccol et al. (2018) [126] |
Colossoma macropomum | Characiformes:Serrasalmidae | 1.46 ± 0.58 g | 4 | Hesperozygis ringens EO | 15.0 µL/L 30.0 µL/L | Ferreira et al. (2022) [127] |
Cyprinus carpio | Cypriniformes:Cyprinidae | 50.00 ± 2.65 g | 3 | Thymol EO | 5 mg/L | Mirzargar et al. (2022) [128] |
Ictalurus punctatus | Siluriformes:Ictaluridae | 135.30 ± 6.20 g | 5 | 10 mg/L | Wang et al. (2021) [129] | |
Oreochromis niloticus | Cichliformes:Cichlidae | 5.00 ± 2.10 g | 3.5 | Menthol EO | ≤75 mg/L | Navarro et al. (2016) [90] |
Colossoma macropomum | Characiformes:Serrasalmidae | 127.55 ± 22.41 g | 4 | Mentha piperita EO | 20 mg/L 40 mg/L | Brandão et al. (2022) [12] |
Micropterus salmoides | Centrarchiformes:Centrarchidae | 12.50 ± 1.00 g | 4 | 1,8-Cineole | 30 μg/L | Liu et al. (2022) [130] |
Epinephelus fuscoguttatus × Epinephelus lanceolatus | Perciformes/Serranoidei: Epinephelidae | 450.0 ± 50.0 g | 72 | Ginger extract | 3 mg/L 6 mg/L | Fang et al. (2024) [117] |
Micropterus salmoides | Centrarchiformes:Centrarchidae | 12.50 ± 1.00 g | 4 | 20 μg/L | Liu et al. (2022) [88] |
Freshwater Fish Species | Order:Family | Fish Weight or Length | Transport Duration (h) | Recommended Density | References |
---|---|---|---|---|---|
Arapaima gigas | Osteoglossiformes:Arapaimidae | 488 ± 26.5 g | 4 | 244 g/L | Santos et al. (2022) [144] |
Colossoma macropomum | Characiformes:Serrasalmidae | 1.12 ± 0.28 g | 17 | 60 fish/L + 20 µL Lippia alba essential oil 90 fish/L + 20 µL Lippia alba essential oil | Silva et al. (2020) [145] |
846 ± 25 g | 3 | 150 kg/m3 | Gomes et al. (2003) [6] | ||
51.9 ± 3.3 g | 10 | 78 kg/m3 | Gomes et al. (2003) [146] | ||
Brycon amazonicus | Characiformes:Bryconidae | 23.5 ± 0.4 g | 4 | 206 g/L | Abreu et al. (2008) [147] |
Brycon cephalus | 13.33 ± 4.93 g | 4 | 166 g/L | Urbinati et al. (2004) [148] | |
1000 ± 250 g | 4.5 | 300 kg/m3 | Carneiro and Urbinati (2002) [149] | ||
Salminus brasiliensis | 0.71 ± 0.53 g | 12 | 15 g/L | Adamante et al. (2008) [150] | |
Labeo rohita | Cypriniformes:Cyprinidae | 14–15 cm | 2–3 | 134 g/L | Pakhira et al. (2015) [151] |
Hypophthalmichthys molitrix | Cypriniformes:Xenocyprididae | 5 g | 2 | 30 g/L | Abdel Aal et al. (2011) [152] |
Rhamdia quelen | Siluriformes:Heptapteridae | 2.55 ± 0.44 g | 12 | 6 fish/L | Bittencourt et al. (2018) [153] |
76.6 ± 0.7 g | 5 | 365 g/L | Garcia et al. (2015) [154] | ||
23.2 ± 5.3 g | 4 | 350 g/L | Carneiro et al. (2009) [155] | ||
1–2.5 g | 6 | 168 g/L | Golombieski et al. (2003) [56] | ||
Oreochromis niloticus | Cichliformes:Cichlidae | 866.86 ± 143.98 g | 3 | 400 kg/m3 | Goes et al. (2018) [156] |
Lophiosilurus alexandri | Siluriformes:Pseudopimelodidae | 2.1 ± 0.6 g | 11 | 55 fish/bag | Navarro et al. (2017) [157] |
Pimelodus maculatus | Siluriformes:Pimelodidae | 5.72 ± 1.55 g | 12 | 12 fish/L | Braun and Nuñer (2014) [158] |
Marine Fish Species | |||||
Seriola dumerili | Carangiformes:Carangidae | 0.9 ± 0.05 g | 8 | 3.375 kg/m3 | Liu et al. (2022) [159] |
Trachinotus ovatus | 3.38 ± 0.36 g | 8 | 81 kg/m3 | Hong et al. (2019) [160] | |
Epinephelus fuscoguttatus × Epinephelus lanceolatus | Perciformes/Serranoidei: Epinephelidae | 5.11 ± 0.34 g | 12 | 240 g/L | Faudzi et al. (2021) [161] |
Epinephelus coioides | 3.0 ± 0.2 g | 6 | 50 no/L * | Xavier et al. (2018) [162] | |
Gadus morhua | Gadiformes:Gadidae | 11.9 ± 1.0 g | 24 | 10; 20 and 30 kg/m3 | Treasurer (2010) [53] |
Pseudopleuronectes americanus | Pleuronectiformes:Pleuronectidae | 42 mm | 1.5 | 400% | Sulikowski et al. (2006) [163] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luz, R.K.; Favero, G.C. Use of Salt, Anesthetics, and Stocking Density in Transport of Live Fish: A Review. Fishes 2024, 9, 286. https://doi.org/10.3390/fishes9070286
Luz RK, Favero GC. Use of Salt, Anesthetics, and Stocking Density in Transport of Live Fish: A Review. Fishes. 2024; 9(7):286. https://doi.org/10.3390/fishes9070286
Chicago/Turabian StyleLuz, Ronald Kennedy, and Gisele Cristina Favero. 2024. "Use of Salt, Anesthetics, and Stocking Density in Transport of Live Fish: A Review" Fishes 9, no. 7: 286. https://doi.org/10.3390/fishes9070286
APA StyleLuz, R. K., & Favero, G. C. (2024). Use of Salt, Anesthetics, and Stocking Density in Transport of Live Fish: A Review. Fishes, 9(7), 286. https://doi.org/10.3390/fishes9070286