Knowledge Mapping of the Development Trend of Smart Fisheries in China: A Bibliometric Analysis
Abstract
:1. Introduction
2. Materials and Research Methods
2.1. Data Sources
- A.
- Take “Fisheries” as the theme, add “Artificial Intelligence” as the keyword or “Internet of Things” as the keyword.
- B.
- Take “Fisheries” as the theme, add “Artificial Intelligence” as the keyword or “Big Data” as the keyword;
- C.
- Take “fisheries” as the theme, add “cloud computing” as the keyword OR “Internet of Things” as the keyword;
- D.
- Take “fisheries” as the theme, add “artificial intelligence” as the keyword OR “satellite remote sensing” as the keyword;
- E.
- Take “Fisheries” as the theme, add “Satellite Remote Sensing” as the keyword OR “Intelligent Fisheries” as the abstract;
- F.
- Take “Fisheries” as the theme, add “Intelligent Fisheries” as the title OR “Internet of Things” as the abstract;
2.2. Research Methodology
2.3. Analysis Procedures
3. Results
3.1. Volume and Trends of Publications in WoS and CNKI
3.2. Analysis of Authors in the Research Field of “Smart Fishery” in CNKI
3.3. Institutional Analysis of the “Smart Fisheries” Research Field in CNKI
3.4. Knowledge Mapping Analysis of Keywords in the “ Smart Fisheries” Research Area of CNKI
4. Discussion
4.1. Comparison and Analysis of Authors by WoS
4.2. Comparison and Analysis of Institutional Data Using WoS
4.3. Comparison and Analysis of Keywords Using WoS
4.4. Smart Fisheries Promote Industry Performance
4.4.1. Smart Aquaculture Performance
4.4.2. Smart Fishing Performance
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rock, D.; Guerin, D. Applying AI to statistical process control. AI Expert 1992, 7, 30–35. [Google Scholar]
- Tian, D. Research on Expert Systems for Freshwater Shrimp Farming. Master’s Thesis, China Agricultural University, Yantai City, China, 2001. (In Chinese). [Google Scholar]
- Jollymore, A.; Haines, M.J.; Satterfield, T.; Johnson, M.S. Citizen science for water quality monitoring: Data implications of citizen perspectives. J. Environ. Manag. 2017, 200, 456–457. [Google Scholar] [CrossRef]
- Ceng, Y.Y.; Kuang, Y.C.; Sheng, Y.; Xiang, H.; Liu, X.T. Study status and developmental trend of water quality monitoring technology for aquaculture. Fish. Mod. 2013, 40, 40–44. (In Chinese) [Google Scholar]
- Lee, P.G. A review of automated control systems for aquaculture and design criteria for their implementation. Aquac. Eng. 1995, 14, 205–227. [Google Scholar] [CrossRef]
- Schlieder, R.A. Environmentally controlled sea water systems for maintaining large marine finfish. Prog. Fish Cult. 1984, 46, 285–288. [Google Scholar] [CrossRef]
- Plaia, W.C. A computerized environmental monitoring and control system for use in aquaculture. Aquacult. Eng. 1987, 6, 27–37. [Google Scholar] [CrossRef]
- Madenjian, C.M.; Rogers, G.L.; Fast, A.W. Predicting nighttime dissolved oxygen loss in aquaculture ponds. Can. J. Fish. Aquat. Sci. 1988, 45, 1842–1847. [Google Scholar] [CrossRef]
- Simbeye, D.S.; Yang, S. Water quality monitoring and control for aquaculture based on wireless sensor networks. J. Netw. 2014, 9, 840–849. [Google Scholar] [CrossRef]
- Liu, S.; Yu, G.Y. Progress of research on automatic feeding system in factory aquaculture. Fish. Mod. 2017, 44, 1–5. (In Chinese) [Google Scholar]
- Sharma, V.; Tripathi, A.K.; Mittal, H. Technological revolutions in smart farming: Current trends, challenges and future directions. Comput. Electron. Agric. 2022, 201, 107217. [Google Scholar] [CrossRef]
- Danish, S.; Ali, H.; Datta, R. Introductory Chapter: Smart Farming. In Smart Farming—Integrating Conservation Agriculture, Information Technology, and Advanced Techniques for Sustainable Crop Production; IntechOpen: Rijeka, Croatia, 2023. [Google Scholar] [CrossRef]
- Li, D.L.; Li, C.H. Intelligent aquaculture. J. World Aquac. Soc. 2020, 51, 808–814. [Google Scholar] [CrossRef]
- Vo, T.T.E.; Ko, H.; Huh, J.H.; Kim, Y. Overview of smart aquaculture system: Focusing on applications of machine learning and computer vision. Electronics 2021, 10, 2882. [Google Scholar] [CrossRef]
- Mustafa, F.H.; Bagul, A.H.B.P.; Senoo, S.; Shapawi, R. A Review of smart fish farming systems. J. Aquac. Eng. Fish. Res. 2016, 2, 193–200. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, S.; Liu, J.; Gao, Q.; Dong, S.; Zhou, C. Deep learning for smart fish farming: Applications, opportunities and challenges. Rev. Aquac. 2020, 13, 66–90. [Google Scholar] [CrossRef]
- Belkin, I.M. Remote sensing of ocean fronts in marine ecology and fisheries. Remote Sens. 2021, 13, 883. [Google Scholar] [CrossRef]
- Sahrhage, D.; Lundbeck, J. Development of Modern Fisheries. In A History of Fishing; Springer: Berlin/Heidelberg, Germany, 1992. [Google Scholar] [CrossRef]
- Beddington, J. The primary requirements. Nature 1995, 374, 213–214. [Google Scholar] [CrossRef]
- Garcia, S.M.; Newton, C. Current situation trend and prospects in world capture fisheries. In Global Trends: Fisheries Management; Pikitch, E., Huppert, D.D., Sissenwine, M., Eds.; American Fisheries Society Symposium: Bethesda, MD, USA, 1997; Volume 20, pp. 3–27. [Google Scholar]
- Roberts, C.M.; Hawkins, R. Species extinctions in marine ecosystems. Trends Ecol. Evol. 1999, 14, 241–246. [Google Scholar] [CrossRef] [PubMed]
- Pitcher, T.J. A cover story: Fisheries may drive stocks to extinction. Rev. Fish Biol. Fish. 1998, 8, 367–370. [Google Scholar] [CrossRef]
- Konstantinos, I. Stergiou, Overfishing, tropicalization of fish stocks, uncertainty and ecosystem management: Resharpening Ockham’s razor. Fish. Res. 2002, 55, 1–9. [Google Scholar]
- Ebrahimi, S.H.; Ossewaarde, M.; Need, A. Smart fishery: A systematic review and research agenda for sustainable fisheries in the age of AI. Sustainability 2021, 13, 6037. [Google Scholar] [CrossRef]
- Drakopulos, L.; Silver, J.; Eric Nost, E.; Gray, N.; Hawkins, R. Making global oceans governance in/visible with Smart Earth: The case of Global Fishing Watch. Environ. Plan. E: Nat. Space. 2022, 6, 251484862211117. [Google Scholar] [CrossRef]
- Hu, Z.H.; Li, R.Q.; Xia, X.; Yu, C.A.; Fan, X.; Zhao, Y.C. A method overview in smart aquaculture. Environ. Monit. Assess. 2020, 192, 493. [Google Scholar] [CrossRef] [PubMed]
- Verma, D.K.; Monika; Barad, R.R.; Singh, S.; Chandra, I.; Maurya, N.K.; Ranjan, D. Digitalization as innovative development in aquaculture and fisheries as future importance. In Futuristic Trends in Agriculture Engineering & Food Sciences Volume 3 Book 15; IIP Series: Karnataka, India, 2024. [Google Scholar] [CrossRef]
- Bradley, D.; Merrifield, M.; Miller, K.M.; LoMonico, S.; Wilson, J.R.; Gleason, M.G. Opportunities to improve fisheries management through innovative technology and advanced data systems. Fish Fish. 2019, 20, 564–583. [Google Scholar] [CrossRef]
- Granado, I.; Hernando, L.; Uriondo, Z.; Fernandes-Salvador, J.A. A fishing route optimization decision support system: The case of the tuna purse seiner. Eur. J. Oper. Res. 2024, 312, 718–732. [Google Scholar] [CrossRef]
- Cheng, X.; Zhang, F.; Chen, X.; Wang, J. Application of artificial intelligence in the study of fishing vessel behavior. Fishes 2023, 8, 516. [Google Scholar] [CrossRef]
- FAO. The Future of Food and Agriculture–Trends and Challenges; Annual Report; FAO: Rome, Italy, 2017; p. 296. [Google Scholar]
- Carvajal, J.; Sánchez, H.; Martí, J.C. Smart fisheries, a key player in ocean sustainability and fair fish trade. In Proceedings of the III Ibero-American Congress of Smart Cities (ICSC-CITIES 2020), San José, Costa Rica, 9–11 November 2020. [Google Scholar]
- Rowan, N.J. The role of digital technologies in supporting and improving fishery and aquaculture across the supply chain–Quo Vadis? Aquac. Fish. 2023, 8, 365–374. [Google Scholar] [CrossRef]
- Coronado Mondragon, A.E.; Coronado Mondragon, C.E.; Coronado, E.S. Managing the food supply chain in the age of digitalization: A conceptual approach in the fisheries sector. Prod. Plan. Control 2020, 32, 242–255. [Google Scholar] [CrossRef]
- Sharifi, A.; Allam, Z.; Bibri, S.E.; Khavarian-Garmsir, A.R. Smart cities and sustainable development goals (SDGs): A systematic literature review of co-benefits and trade-offs. Cities 2024, 146, 104659. [Google Scholar] [CrossRef]
- Rahman, L.F.; Alam, L.; Marufuzzaman, M.; Sumaila, U.R. Traceability of sustainability and safety in fishery supply chain management systems using Radio Frequency Identification Technology. Foods 2021, 10, 2265. [Google Scholar] [CrossRef]
- Hopkins, C.R.; Roberts, S.I.; Caveen, A.J.; Graham, C.; Burns, N.M. Improved traceability in seafood supply chains is achievable by minimising vulnerable nodes in processing and distribution networks. Mar. Policy 2024, 159, 105910. [Google Scholar] [CrossRef]
- Kresna, B.A.; Seminar, K.B.; Marimin, M. Developing a traceability system for tuna supply chains. Int. J. Supply Chain. Manag. 2017, 6, 52–62. [Google Scholar]
- Abad, E.; Palacio, F.; Nuin, M.; De Zarate, A.G.; Juarros, A.; Gómez, J.M.; Marco, S. RFID smart tag for traceability and cold chain monitoring of foods: Demonstration in an intercontinental fresh fish logistic chain. J. Food Eng. 2009, 93, 394–399. [Google Scholar] [CrossRef]
- Yan, B.; Hu, D.; Shi, P. A traceable platform of aquatic foods supply chain based on RFID and EPC Internet of Things. Int. J. RF Technol. 2012, 4, 55–70. [Google Scholar] [CrossRef]
- National Statistical Bulletin on the Fisheries Economy, 2022. Available online: http://www.yyj.moa.gov.cn/yqxx/202306/t20230628_6431131.htm (accessed on 10 March 2024).
- Wang, Q.Y. Research on the Application of Internet of Things in Intelligent Aquaculture Fishery in Zhejiang Province. Master’s Thesis, Zhejiang Ocean University, Zhoushan City, China, 2021. (In Chinese). [Google Scholar]
- Li, M.Z.; Fang, X.; Zheng, Z.F.; Hong, W.J.; Xu, J.M.; Luo, H.Y. Analysis of problems and countermeasures of aquaculture industry. Guangdong Sci. 2023, 57, 89–91+104. (In Chinese) [Google Scholar]
- Chen, K.P.; Ye, C.K.; Liu, J.; Zhang, D.M.; Bian, F.F.; Peng, Z.Q.; Long, L.D. Study on the countermeasures of aquaculture development. Guangdong Sci. 2022, 56, 58–60. (In Chinese) [Google Scholar]
- Xu, H.; Wang, W.W.; Mei, X.L.; Wang, M.M. An overview of the application of digital technology in modern fisheries in China. J. Aquacult. 2020, 41, 62–63+65. (In Chinese) [Google Scholar]
- Yang, Z.F.; Cao, H.Y.; Wang, J.G.; Zhou, A.M.; Liu, A.M. Progress in aquaculture smart fishery research. Agric. Eng. Technol. 2022, 42, 44–45+64. (In Chinese) [Google Scholar]
- Zhang, H.Y.; Yuan, Y.M.; He, Y.H.; Wang, H.W. Application of the Internet of Things technology in modern fisheries. Agric. Netw. Inf. 2014, 6, 8–11. (In Chinese) [Google Scholar]
- Ni, X.L. Zhoushan wisdom fishery. Econ. Trade 2015, 1, 63–64. (In Chinese) [Google Scholar]
- Wang, J.; Ou, C.Y.; Ning, L. “Internet+Marine Fishery”: Study on the innovation path of smart marine fishery mode. Rural Econ. Sci.-Technol. 2017, 28, 75–77. (In Chinese) [Google Scholar]
- Yin, Y.L.; Ouyang, X.H. Vigorously develop smart fishery and accelerate the promotion of modern fishery. Fish. Guide Rich 2018, 5, 12–13. (In Chinese) [Google Scholar]
- Wei, W.H. Application research status of machine vision technology in intelligent fishery. Hebei Fish. 2022, 10, 36–39+44. (In Chinese) [Google Scholar]
- Donthu, N.; Kumar, S.; Mukherjee, D.; Pandey, N.; Lim, W.M. How to conduct a bibliometric analysis: An overview and guidelines. J. Bus. Res. 2021, 133, 285–296. [Google Scholar] [CrossRef]
- Qiu, J.P. Definition of bibliometrics and its object of study. J. Libr. Sci. China 1986, 2, 71. (In Chinese) [Google Scholar]
- Han, J.; Kang, H.J.; Kim, M.; Kwon, G.H. Mapping the intellectual structure of research on surgery with mixed reality: Bibliometric network analysis (2000–2019). J. Biomed. Inform. 2020, 109, 103516. [Google Scholar] [CrossRef]
- AlRyalat, S.A.S.; Malkawi, L.W.; Momani, S.M. Comparing bibliometric analysis using PubMed, Scopus, and Web of Science databases. J. Vis. Exp. 2019, 152, e58494. [Google Scholar] [CrossRef]
- Sarkar, A.; Wang, H.; Rahman, A.; Memon, W.H.; Qian, L. A bibliometric analysis of sustainable agriculture: Based on the Web of Science (WoS) platform. Environ. Sci. Pollut. Res. 2022, 29, 38928–38949. [Google Scholar] [CrossRef]
- China National Knowledge Infrastructure (CNKI). Available online: https://www.cnki.net/ (accessed on 10 March 2024).
- Chen, C.M. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. J. Am. Soc. Inf. Sci. Technol. 2006, 57, 359–377. [Google Scholar] [CrossRef]
- Chen, Y.-H.; Chen, Y.-J.; Zhang, Y.-P.; Chu, T.-J. Revealing the current situation and strategies of marine ranching development in China based on knowledge graphs. Water 2023, 15, 2740. [Google Scholar] [CrossRef]
- Nacimento, R.A.; Rezende, V.T.; Ortega, F.J.M.; Carvalho, S.A.; Buckeridge, M.S.; Gameiro, A.H.; Rennó, F.P. Sustainability and Brazilian agricultural production: A bibliometric analysis. Sustainability 2024, 16, 1833. [Google Scholar] [CrossRef]
- Abafe, E.A.; Bahta, Y.T.; Jordaan, H. Exploring biblioshiny for historical assessment of global research on sustainable use of water in agriculture. Sustainability 2022, 14, 10651. [Google Scholar] [CrossRef]
- Gao, L.L.; Li, D.L.; Liang, Y.; Li, J.; Ma, C.; Chen, Y.Y. Internet of Things application system construction and management for aquaculture. Shandong Agric. Sci. 2013, 45, 1–4. (In Chinese) [Google Scholar]
- Li, D.L. The Internet of Things supports modern fishery, and big data boosts industrial upgrading. Sci. Technol. Ind. China 2016, 2, 78–79. (In Chinese) [Google Scholar]
- Li, D.L.; Liu, C. Recent advances and future outlook for artificial intelligence in aquaculture. Smart Agric. 2020, 2, 1–20. (In Chinese) [Google Scholar]
- Li, D.L.; Wang, S.X.; Wang, C. Application of flexible wearable sensing technology in smart fishery. Trans. Chin. Soc. Agric. Eng. 2023, 39, 1–13. (In Chinese) [Google Scholar]
- Zhang, W.B.; Xie, S.Q.; Xu, H.; Shan, X.J.; Xue, C.H.; Li, D.L.; Yang, H.S.; Zhou, H.H.; Mai, K.S. High-quality development strategy of fisheries in China. Strateg. Study CAE 2023, 25, 137–148. (In Chinese) [Google Scholar] [CrossRef]
- Ye, L.L. Marine aquaculture data analysis and cloud computing research. China Comput. Commun. 2016, 7, 123–124. (In Chinese) [Google Scholar]
- Ye, L.L. Aquaculture Internet of Things system based on mobile agent technology. Digital Technol. Appl. 2013, 5, 73–74. (In Chinese) [Google Scholar]
- Ye, L.L. Research on marine aquaculture Internet of Things system. China New Telecommun. 2014, 16, 30. (In Chinese) [Google Scholar]
- Ye, L.L.; Lin, Y.W. Research on price analysis and prediction system based on big data of marine fishery. Wireless Internet Technol. 2020, 17, 38–39. (In Chinese) [Google Scholar]
- Liu, X.Q.; Zhang, C. Study on fish tracking based on embedded image processing system. Jiangsu Agric. Sci. 2018, 46, 203–207. (In Chinese) [Google Scholar]
- Huan, J.; Liu, X.Q.; Cheng, L.Q.; Sun, L.B.; Li, C.C. Design of a wireless water environment monitoring system based on ZigBee in aquaculture. Fish. Mod. 2012, 39, 34–39. (In Chinese) [Google Scholar]
- Li, H.; Liu, X.Q.; Li, J.; Ni, W. The monitoring and alarming system of fishery water quality parameter in many water areas based on IoT. Hubei Agric. Sci. 2014, 53, 437–440+452. (In Chinese) [Google Scholar]
- Zhu, C.Y.; Liu, X.Q.; Li, H.; Huan, J.; Yang, N. Optimization of prediction model of dissolved oxygen in industrial aquaculture. Trans. Chin. Soc. Agric. Mach. 2016, 47, 273–278. (In Chinese) [Google Scholar]
- Fan, W.; Zhou, S.F.; Cui, X.S.; Wang, D.; Shen, X.Q. The application research and development of satellite remote sensing for marine fisheries. J. Ocean Technol. 2002, 1, 15–21. (In Chinese) [Google Scholar]
- Wang, L.H.; Ge, C.S. A technique for releasing fishery statistics information on Internet. J. Fish. Sci. China 2003, 1, 87–88. (In Chinese) [Google Scholar]
- Chen, C.H.; Wu, Y.C.; Zhang, J.X.; Chen, Y.H. IoT-based fish farm water quality monitoring system. Sensors 2022, 22, 6700. [Google Scholar] [CrossRef]
- Lin, Z.Y. A brief discussion on the impact of Shuangpantu reclamation in Ninghai County, Zhejiang Province on the sea area. China Water Transp. 2014, 14, 156–159. (In Chinese) [Google Scholar]
- Xu, X.S. Based on the Internet and 3G technology of intelligent monitoring system design and application of aquaculture environment. Netw. Secur. Technol. APPL 2014, 9, 235–236. (In Chinese) [Google Scholar]
- Tong, S.M.; Zhong, H.F.; Wu, X.B.; Li, S.H.; Feng, X.X.; Huang, H.K. A preliminary study on smart fishery technology. Hebei Fish. 2016, 11, 58–60. (In Chinese) [Google Scholar]
- Li, Y.S. Ten ministries and commissions jointly issued “on accelerating the green development of aquaculture a number of opinions” aquaculture adhere to “ecological priority”. Ocean Fish. 2019, 3, 12–13. (In Chinese) [Google Scholar]
- Wang, M.X.; Ying, Z.F. Discussion on some issues of realizing high-quality development of China’s modern fishery industry. Hebei Fish. 2020, 1, 51–53. (In Chinese) [Google Scholar]
- Shen, B. “Internet+Marine Fishery”: Study on the innovation path of smart marine fishery mode. Agric. Eng. Technol. 2021, 41, 69–70. (In Chinese) [Google Scholar]
- Zhang, Y.J.; Ma, J. The development status and future trend of smart fishery. Henan Fiah. 2023, 2, 43–44. (In Chinese) [Google Scholar]
- Wang, Q.; Qao, D.Y.; Weng, S.Z. Exploration of the mode of Internet of Things technology empowering smart fishery. IoT Technol. 2023, 13, 67–70. (In Chinese) [Google Scholar]
- Sarkar, U.K.; Roy, K.; Karnatak, G.; Nandy, S.K. Adaptive climate change resilient indigenous fisheries strategies in the floodplain wetlands of West Bengal, India. J. Water Clim. Change 2018, 9, 449–462. [Google Scholar] [CrossRef]
- Jaric, I.; Roll, U.; Arlinghaus, R.; Belmaker, J.; Chen, Y.; China, V.; Douda, K.; Essl, F.; Jahnig, S.C.; Jeschke, J.M.; et al. Expanding conservation culturomics and iEcology from terrestrial to aquatic realms. PLoS Biol. 2020, 18, 1–13. [Google Scholar] [CrossRef]
- Lennox, R.J.; Sbragaglia, V.; Vollset, K.W.; Sortland, L.K.; McClenachan, L.; Jaric, I.; Guckian, M.L.; Ferter, K.; Danylchuk, A.J.; Cooke, S.J.; et al. Digital fisheries data in the Internet age: Emerging tools for research and monitoring using online data in recreational fisheries. Fish Fish. 2022, 23, 926–940. [Google Scholar] [CrossRef]
- Johansen, K.; Olsen, E.M.; Haraldstad, T.; Arlinghaus, R.; Hoglund, E. Digital data help explain drivers of angler satisfaction: An example from southern Norway. North Am. J. Fish. Manag. 2022, 42, 1165–1172. [Google Scholar] [CrossRef]
- Sbragaglia, V.; Coco, S.; Correia, R.A.; Coll, M.; Arlinghaus, R. Analyzing publicly available videos about recreational fishing reveals key ecological and social insights: A case study about groupers in the Mediterranean Sea. Sci. Total Environ. 2021, 765, 1–12. [Google Scholar] [CrossRef]
- Sbragaglia, V.; Espasandin, L.; Coco, S.; Felici, A.; Correia, R.A.; Coll, M.; Arlinghaus, R. Recreational angling and spearfishing on social media: Insights on harvesting patterns, social engagement and sentiments related to the distributional range shift of a marine invasive species. Rev. Fish Biol. Fish. 2022, 32, 687–700. [Google Scholar] [CrossRef]
- Sbragaglia, V.; Brownscombe, J.W.; Cooke, S.J.; Buijse, A.D.; Arlinghaus, R.; Potts, W.M. Preparing recreational fisheries for the uncertain future: An update of progress towards answering the 100 most pressing research questions. Fish. Res. 2023, 263, 1–9. [Google Scholar] [CrossRef]
- Dr. E. Delory. Available online: https://www.researchgate.net/profile/Eric-Delory (accessed on 16 June 2024).
- Thiel, M.; Penna-Diaz, M.A.; Luna-Jorquera, G.; Salas, S.; Sellanes, J.; Stotz, W. Citizen scientists and marine research: Volunteer participants, their contributions, and projection for the future. Oceanogr. Mar. Biol.: Annu. Rev. 2014, 52, 257–314. [Google Scholar]
- Sullivan, B.L.; Phillips, T.; Dayer, A.A.; Wood, C.L.; Farnsworth, A.; Iliff, M.J.; Davies, I.J.; Wiggins, A.; Fink, D.; Hochachka, W.M.; et al. Using open access observational data for conservation action: A case study for birds. Biol. Conserv. 2017, 208, 5–14. [Google Scholar] [CrossRef]
- McKinley, D.C.; Miller-Rushing, A.J.; Ballard, H.L.; Bonney, R.; Brown, H.; Cook-Patton, S.; Evans, D.M.; French, R.A.; Parrish, J.K.; Phillips, T.B.; et al. Citizen science can improve conservation science, natural resource management, and environmental protection. Biol. Conserv. 2017, 208, 15–28. [Google Scholar] [CrossRef]
- Bonney, R.; Byrd, J.; Carmichael, J.T.; Cunningham, L.; Oremland, L.; Shirk, J.; Harten, A.V. Sea change: Using citizen science to inform fisheries management. Bioscience 2021, 71, 519–530. [Google Scholar] [CrossRef] [PubMed]
- Fairclough, D.V.; Brown, J.I.; Carlish, B.J.; Crisafulli, B.M.; Keay, I.S. Breathing life into fisheries stock assessments with citizen science. Sci. Rep. 2014, 4, 7249. [Google Scholar] [CrossRef] [PubMed]
- Yoshitomi, B.; Embutsu, I. Development of an automatic feeder by image processing. Fish. Sci. 2002, 68, 947–950. [Google Scholar] [CrossRef] [PubMed]
- Tango, M.S.; Gagnon, G.A. Impact of ozonation on water quality in marine recirculation systems. Aquacult. Eng. 2003, 29, 125–137. [Google Scholar] [CrossRef]
- Srithongouthai, S.; Endo, A.; Lnoue, A.; Kinoshita, K.; Yoshioka, M.; Sato, A.; Lwasaki, T.; Teshiba, I.; Nashiki, H.; Hama, D.; et al. Control of dissolved oxygen levels of water in net pens for fish farming by a microscopic bubble generating system. Fish. Sci. 2006, 72, 485–493. [Google Scholar] [CrossRef]
- Alver, M.O.; Tennoy, T.; Afredsen, J.A.; Øie, G.; Olsen, Y. Automatic control of rotifer density in larval first feeding tanks. Control Eng. Pract. 2008, 16, 347–355. [Google Scholar] [CrossRef]
- Haron, N.S.; Mahamad, M.K.B.; Aziz, I.A.; Mehat, M. A System architecture for water quality monitoring system using wired sensors. In Proceedings of the International Symposium on Information Technology, Kuala Lumpur, Malasia, 26–29 August 2008. [Google Scholar]
- Luo, S.H.; Li, X.C.; Wang, D.D.; Li, J.M.; Sun, C.M. Automatic fish recognition and counting in video footage of fishery operations. In Proceedings of the 7th International Conference on Computational Intelligence and Communication Networks (CICN), Jabalpur, India, 12–14 December 2015. [Google Scholar]
- Clough, S.; Mamo, J.; Hoevenaars, K.; Bardocz, T.; Petersen, P.; Rosendorf, P.; Atiye, T.; Gukelberger, E.; Guya, E.; Hoinkis, J. Innovative technologies to promote sustainable recirculating aquaculture in eastern Africa—A case study of a Nile Tilapia (Oreochromis niloticus) Hatchery in Kisumu, Kenya. Integr. Environ. Assess. Manag. 2020, 16, 934–941. [Google Scholar] [CrossRef] [PubMed]
- Manoharan, H.; Teekaraman, Y.; Kshirsagar, P.R.; Sundaramurthy, S.; Manoharan, A. Examining the effect of aquaculture using sensor-based technology with machine learning algorithm. Aquacult. Res. 2020, 51, 4748–4758. [Google Scholar] [CrossRef]
- Chukkapalli, S.S.L.; Aziz, S.B.; Alotaibi, N.; Mittal, S.; Gupta, M.; Abdelsalam, M. Ontology driven AI and access control systems for smart fisheries. In Proceedings of the 2021 ACM Workshop on Secure and Trustworthy Cyber-Physical Systems, Virtual Event, 28 April 2021. [Google Scholar]
- Ristolainen, A.; Piho, L.; Kruusmaa, M. Feasibility study on distributed flow sensing with inertial sensors in aquaculture fish cages. Aquacult. Eng. 2022, 98, 1–9. [Google Scholar] [CrossRef]
- Rastegari, H.; Nadi, F.; Lam, S.S.; Ikhwanuddin, M.; Kasan, N.A.; Rahmat, R.F.; Mahari, W.A.W. Internet of Things in aquaculture: A review of the challenges and potential solutions based on current and future trends. Smart Agric. Technol. 2023, 4, 100187. [Google Scholar] [CrossRef]
- Yue, K.N.; Shen, Y.B. An overview of disruptive technologies for aquaculture. Aquac. Fish. 2022, 7, 111–120. [Google Scholar] [CrossRef]
- Industry 4.0: The Fourth Industrial Revolution—Guide to Industries 4.0. 2017. Available online: https://www.i-scoop.eu/industry-4–0/ (accessed on 20 June 2024).
- Biazi, V.; Marques, C. Industry 4.0-based smart systems in aquaculture: A comprehensive review. Aquacult. Eng. 2023, 103, 102360. [Google Scholar] [CrossRef]
- Føre, M.; Frank, K.; Norton, T.; Svendsen, E.; Alfredsen, J.A.; Dempster, T.; Eguiraun, H.; Watson, W.; Stahl, A.; Sunde, L.M.; et al. Precision fish farming: A new framework to improve production in aquaculture. Biosyst. Eng. 2018, 173, 176–193. [Google Scholar] [CrossRef]
- Rajesh, V.; Chudasama, R.V.; Tandel, J.M.; Zala, N.A.; Tandel, D.C.; Patel, P.H.; Alam, M.D.S. Automization in aquaculture—A short review. Biol. Forum—Int. J. 2023, 15, 688–698. [Google Scholar]
- Pedersen, L.F.; Pedersen, P.B.; Tyson, R. Precision Aquaculture: Precision Feeding in Fish Farming. In Big Data in Aquaculture; Rui, Y., Wang, Y., Hou, H.J., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 87–105. [Google Scholar]
- Dhivya, B.; Jayaraman, R.; Sangeetha, D. Smart Sensors for Aquaculture. In Smart Aquaculture; Arumugam, P., Thirumurugan, R., Palanivel, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2021; pp. 139–156. [Google Scholar]
- Squires, D.; Vestergaard, N. Technical change in fisheries. Mar. Policy 2013, 42, 286–292. [Google Scholar] [CrossRef]
- Lucchetti, A.; Melli, V.; Brčić, J. Editorial: Innovations in fishing technology aimed at achieving sustainable fishing. Front. Mar. Sci. 2023, 10, 1310318. [Google Scholar] [CrossRef]
- Girard, P.; Du Payrat, T. An inventory of new technologies in fisheries. In Proceedings of the Green Growth and Sustainable Development (GGSD) Forum, Greening the Ocean Economy, Paris, France, 20–24 November 2017; OECD: Paris, France, 2017. [Google Scholar]
- Kennelly, S.J.; Broadhurst, M.K. A review of bycatch reduction in demersal fish trawls. Rev. Fish Biol. Fish. 2021, 31, 289–318. [Google Scholar] [CrossRef]
- Hilborn, R.; Amoroso, R.; Collie, J.; Hiddink, J.G.; Kaiser, M.J.; Mazor, T. Evaluating the sustainability and environmental impacts of trawling compared to other food production systems. ICES J. Mar. Sci. 2023, 80, 1567–1579. [Google Scholar] [CrossRef]
- Ingolfsson, O.A.; Breen, M.; Rosen, S.; Sistiaga, M.; Jørgensen, T.; Lilleng, D.; Saltskår, J.; Kvalvik, L.; Hannaas, S.; Pettersen, H. A catch limitation device to avoid excessive catches in the blue whiting (Micromesistius poutassou) Northeast Atlantic pelagic trawl fishery. Front. Mar. Sci. 2022, 9, 1011862. [Google Scholar] [CrossRef]
- Wienbeck, H.; Herrmann, B.; Moderhak, W.; Stepputtis, D. Effect of netting direction and number of meshes around on size selection in the codend for baltic cod (Gadus morhua). Fish. Res. 2011, 109, 80–88. [Google Scholar] [CrossRef]
- Petetta, A.; Herrmann, B.; Virgili, M.; Li, V.D.; Brinkhof, J.; Lucchetti, A. Effect of extension piece design on catch patterns in a Mediterranean bottom trawl fishery. Front. Mar. Sci. 2022, 9, 876569. [Google Scholar] [CrossRef]
- Sardo, G.; Vecchioni, L.; Milisenda, G.; Falsone, F.; Geraci, M.L.; Massi, D.; Rizzo, P.; Scannella, D.; Vitale, S. Guarding net effects on landings and discards in Mediterranean trammel net fishery: Case analysis of Egadi Islands Marine Protected Area (Central Mediterranean Sea, Italy). Front. Mar. Sci. 2023, 10, 1011630. [Google Scholar] [CrossRef]
- Fujita, R.; Cusack, C.; Karasik, R.; Takade-Heumacher, H.; Baker, C. Technologies for Improving Fisheries Monitoring; Environmental Defense Fund: San Francisco, CA, USA, 2018; p. 71. [Google Scholar]
No. | Number of Publications | Year | Author | No. | Number of Publications | Year | Author |
---|---|---|---|---|---|---|---|
1 | 6 | 2013 | Dao-Liang, Li | 14 | 2 | 2016 | Yi, Liu |
2 | 4 | 2013 | Liang-Liang, Ye | 15 | 2 | 2017 | Zhe, Yu |
3 | 4 | 2014 | Xing-Qiao, Liu | 16 | 2 | 2021 | Juan, Chen |
4 | 4 | 2018 | Feng, Liu | 17 | 2 | 2016 | Jian, Zou |
5 | 3 | 2018 | Yu-Qing, Liu | 18 | 2 | 2023 | Jin-Hua, Lin |
6 | 3 | 2013 | Shou-Qi, Cao | 19 | 2 | 2021 | Shou-Li, Xiong |
7 | 2 | 2016 | Jing-Hui, Fang | 20 | 2 | 2013 | Yong-Ming, Yuan |
8 | 2 | 2017 | Fan, Wu | 21 | 2 | 2021 | Xin-Miao, Pang |
9 | 2 | 2006 | Xue-Sen, Cui | 22 | 2 | 2016 | Sheng-Nan, Zhang |
10 | 2 | 2019 | Hui, Guan | 23 | 2 | 2018 | Jia-Jia, Li |
11 | 2 | 2015 | Yan-Zhong, Liu | 24 | 2 | 2011 | Qiang, Yao |
12 | 2 | 2013 | Jun, Xia | 25 | 2 | 2016 | Ming-Hua, Shang |
13 | 2 | 2023 | Mao-Chun, Wei |
No. | Number of Publications | Year | Institution |
---|---|---|---|
1 | 13 | 2013 | College of Engineering Science and Technology, Shanghai Ocean University |
2 | 10 | 2013 | College of Information and Electrical Engineering, China Agricultural University |
3 | 8 | 2013 | Xiamen Oceanic Vocational College |
4 | 6 | 2017 | Fishery Machinery and Instrument Research Institute, Chinese Academy of Fishery Sciences |
5 | 4 | 2018 | Yantai Institute of China Agricultural University |
6 | 4 | 1997 | Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences |
7 | 4 | 2017 | College of Marine Sciences Shanghai Ocean University |
8 | 3 | 2014 | College of Engineering Science and Technology, Shanghai Ocean University |
9 | 3 | 2022 | School of Information Science & Engineering, Dalian Ocean University |
10 | 3 | 2015 | Institute of Science and Technology Information, Shandong Academy of Agricultural Sciences |
11 | 3 | 2017 | Faculty of Mathematics and Computer Science, Guangdong Ocean University |
12 | 3 | 2014 | School Electrical and Information Engineering, Jiangsu University |
13 | 3 | 2018 | University of Chinese Academy of Sciences |
No. | Year | Clusters | Keywords | Frequency |
---|---|---|---|---|
#0 | 2016 | Aquaculture | Aquaculture; Internet of Things technology; Intelligent Sensors; Water quality monitoring and control | 47 |
#1 | 2017 | Internet of Things | Internet of Things; Remote control; Intelligent management; Time synchronization; Intelligent services | 40 |
#2 | 2018 | Smart fishing tank | Smart Fishing Tank; Remote control; Aquaponics automatization; Single chip microcomputer | 25 |
#3 | 2018 | Dissolved oxygen | Dissolved oxygen; Intensity of illumination; Water quality testing; Detecting system; Illumination | 20 |
#4 | 2016 | Fishery industry | Fishery industry; Breeding; Processing; Intelligent; Cloud computing | 20 |
#5 | 2020 | Rural revitalization | Rural revitalization; Marine ranching; Recreational fishery; Government; Fishery industry; Industrial transformation | 20 |
#6 | 2016 | Big data | Big data; Cloud service; Data center; Data sharing; Scientific basis | 20 |
#7 | 2010 | Satellite remote sensing | Satellite Remote Sensing; Fishery forecast; Fishery resources; Artificial intelligence | 19 |
#8 | 2016 | Aquatic products | Aquatic Products; manage; Monitoring; Water Quality Information; Real-time | 17 |
#9 | 2022 | Smart fishery | Smart fishery; Information technology; Fishery industry; Fisheries development | 14 |
No. | Number of Publications | Year | Author |
---|---|---|---|
1 | 6 | 2021 | Uttam Kuma, Sarkar |
2 | 6 | 2020 | Robert, Arlinghaus |
3 | 4 | 2021 | Valerio, Sbragaglia |
4 | 4 | 2015 | Eric, Delory |
5 | 4 | 2007 | Patrice, Brehmer |
6 | 4 | 2012 | Md Yeamin, Hossain |
7 | 4 | 2012 | Jun, Ohtomi |
8 | 3 | 2012 | Elgorban M., Abdallah |
9 | 3 | 2009 | Yinlin, Chen |
No. | Number of Publications | Year | Institution |
---|---|---|---|
1 | 22 | 2013 | Indian Council of Agricultural Research (ICAR) |
2 | 19 | 2000 | National Oceanic Atmospheric Admin (NOAA)—USA |
3 | 12 | 2013 | ICAR—Central Inland Fisheries Research Institute |
4 | 12 | 2004 | Centre National de la Recherche Scientifique (CNRS) |
5 | 10 | 2003 | Ifremer |
6 | 9 | 2015 | Consejo Superior de Investigaciones Cientificas (CSIC) |
7 | 9 | 2005 | Chinese Academy of Sciences |
8 | 8 | 2003 | University of California System |
9 | 8 | 2014 | Consiglio Nazionale delle Ricerche (CNR) |
10 | 8 | 2001 | Commonwealth Scientific & Industrial Research Organisation (CSIRO) |
11 | 8 | 2013 | Chinese Academy of Fishery Sciences |
12 | 8 | 2015 | CSIC—Instituto de Ciencias del Mar (ICM) |
13 | 8 | 2015 | CSIC—Centro Mediterraneo de Investigaciones Marinas y Ambientales (CMIMA) |
No. | Year | Clusters | Keywords | Frequency |
---|---|---|---|---|
#0 | 2014 | Citizen science | Citizen science; Recreational fisheries; Deep learning; Community-based monitoring; Community mapping | 56 |
#1 | 2016 | Climate change | Climate change; Ensemble forecasting; Temporal changes; Species distribution model | 49 |
#2 | 2017 | Deep learning | Deep learning; Artificial intelligence; Smart fishery; Convolutional neural network; Artificial fish swarm algorithm | 39 |
#3 | 2008 | Biomass | Biomass; Recruitment; Anadromous alewives; Lake; Aquatic vegetation | 32 |
#4 | 2014 | Fisheries management | Fisheries management; Optical sensors; Underwater sound; Multifunctional ocean sensors; Standards development | 32 |
#5 | 2007 | Fisheries acoustics | Fisheries acoustics; Fishery; Fish species identification; Digital data | 32 |
#6 | 2007 | Blue economy | Blue economy; Active packaging; Circular economy Fish side stream; Smart sensors | 31 |
#7 | 2010 | Alaska | Video surveys; Alaska; Coral reef fishery; Sea expeditions | 29 |
#8 | 2013 | Condition factor | Condition factor; Length-weight relationship; Multimoment statistical analysis; Statistical forecasting | 28 |
#9 | 2010 | Fishing effort | Harvest estimation; Fishing effort; Recreational fishing; Seasonal forecast; Habitat; Nearshore fishing | 22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, Q.-Y.; Liu, J.-Y.; Chen, Y.-H.; Wang, X.-R.; Chu, T.-J. Knowledge Mapping of the Development Trend of Smart Fisheries in China: A Bibliometric Analysis. Fishes 2024, 9, 258. https://doi.org/10.3390/fishes9070258
Qin Q-Y, Liu J-Y, Chen Y-H, Wang X-R, Chu T-J. Knowledge Mapping of the Development Trend of Smart Fisheries in China: A Bibliometric Analysis. Fishes. 2024; 9(7):258. https://doi.org/10.3390/fishes9070258
Chicago/Turabian StyleQin, Qiu-Yuan, Jia-Ying Liu, Yong-He Chen, Xin-Ruo Wang, and Ta-Jen Chu. 2024. "Knowledge Mapping of the Development Trend of Smart Fisheries in China: A Bibliometric Analysis" Fishes 9, no. 7: 258. https://doi.org/10.3390/fishes9070258
APA StyleQin, Q. -Y., Liu, J. -Y., Chen, Y. -H., Wang, X. -R., & Chu, T. -J. (2024). Knowledge Mapping of the Development Trend of Smart Fisheries in China: A Bibliometric Analysis. Fishes, 9(7), 258. https://doi.org/10.3390/fishes9070258