Mercury Levels in the Crab Grapsus grapsus across the Galápagos Archipelago
Abstract
:1. Introduction
2. Materials and Methods
Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Krabbenhoft, D.P. Methylmercury contamination of aquatic ecosystems: A widespread problem with many challenges for the chemical sciences. In Water and Sustainable Development Opportunities for the Chemical Sciences—A Workshop Report to the Chemical Sciences Roundtable; National Academies Press: Washington, DC, USA, 2004; pp. 19–26. [Google Scholar]
- Hong, Y.-S.; Kim, Y.-M.; Lee, K.-E. Methylmercury exposure and health effects. J. Prev. Med. Public Health 2012, 45, 353. [Google Scholar] [CrossRef] [PubMed]
- Henriques, M.C.; Loureiro, S.; Fardilha, M.; Herdeiro, M.T. Exposure to mercury and human reproductive health: A systematic review. Reprod. Toxicol. 2019, 85, 93–103. [Google Scholar] [CrossRef] [PubMed]
- Basu, N.; Bastiansz, A.; Dórea, J.G.; Fujimura, M.; Horvat, M.; Shroff, E.; Weihe, P.; Zastenskaya, I. Our evolved understanding of the human health risks of mercury. Ambio 2023, 52, 877–896. [Google Scholar] [CrossRef] [PubMed]
- Eagles-Smith, C.A.; Silbergeld, E.K.; Basu, N.; Bustamante, P.; Diaz-Barriga, F.; Hopkins, W.A.; Kidd, K.A.; Nyland, J.F. Modulators of mercury risk to wildlife and humans in the context of rapid global change. Ambio 2018, 47, 170–197. [Google Scholar] [PubMed]
- Evers, D.C.; Ackerman, J.T.; Åkerblom, S.; Bally, D.; Basu, N.; Bishop, K.; Bodin, N.; Braaten, H.F.V.; Burton, M.E.; Bustamante, P. Global mercury concentrations in biota: Their use as a basis for a global biomonitoring framework. Ecotoxicology, 2024; Online ahead of print. [Google Scholar]
- Kushner, D.; Lopez, T.M.; Wallace, K.L.; Damby, D.E.; Kern, C.; Cameron, C.E. Estimates of volcanic mercury emissions from Redoubt Volcano, Augustine Volcano, and Mount Spurr eruption ash. Front. Earth Sci. 2023, 11, 1054521. [Google Scholar] [CrossRef]
- Torres-Rodriguez, N.; Yuan, J.; Petersen, S.; Dufour, A.; González-Santana, D.; Chavagnac, V.; Planquette, H.; Horvat, M.; Amouroux, D.; Cathalot, C. Mercury fluxes from hydrothermal venting at mid-ocean ridges constrained by measurements. Nat. Geosci. 2024, 17, 51–57. [Google Scholar] [CrossRef]
- Łuczyńska, J.; Łuczyński, M.J.; Nowosad, J.; Kowalska-Góralska, M.; Senze, M. Total mercury and fatty acids in selected fish species on the Polish market: A risk to human health. Int. J. Environ. Res. Public Health 2022, 19, 10092. [Google Scholar] [CrossRef] [PubMed]
- Blackmore, G.; Wang, W.-X. The transfer of cadmium, mercury, methylmercury, and zinc in an intertidal rocky shore food chain. J. Exp. Mar. Biol. Ecol. 2004, 307, 91–110. [Google Scholar] [CrossRef]
- Coelho, J.; Policarpo, E.; Pardal, M.; Millward, G.; Pereira, M.; Duarte, A. Mercury contamination in invertebrate biota in a temperate coastal lagoon (Ria de Aveiro, Portugal). Mar. Pollut. Bull. 2007, 54, 475–480. [Google Scholar] [CrossRef]
- Coelho, J.; Nunes, M.; Dolbeth, M.; Pereira, M.; Duarte, A.; Pardal, M. The role of two sediment-dwelling invertebrates on the mercury transfer from sediments to the estuarine trophic web. Estuar. Coast. Shelf Sci. 2008, 78, 505–512. [Google Scholar] [CrossRef]
- Evers, D.C.; Mason, R.P.; Kamman, N.C.; Chen, C.Y.; Bogomolni, A.L.; Taylor, D.L.; Hammerschmidt, C.R.; Jones, S.H.; Burgess, N.M.; Munney, K. Integrated mercury monitoring program for temperate estuarine and marine ecosystems on the North American Atlantic coast. EcoHealth 2008, 5, 426–441. [Google Scholar] [CrossRef] [PubMed]
- Thera, J.C.; Rumbold, D.G. Biomagnification of mercury through a subtropical coastal food web off Southwest Florida. Environ. Toxicol. Chem. 2014, 33, 65–73. [Google Scholar] [CrossRef]
- Gamboa-García, D.E.; Duque, G.; Cogua, P.; Marrugo-Negrete, J.L. Mercury dynamics in macroinvertebrates in relation to environmental factors in a highly impacted tropical estuary: Buenaventura Bay, Colombian Pacific. Environ. Sci. Pollut. Res. 2020, 27, 4044–4057. [Google Scholar] [CrossRef] [PubMed]
- Macedo, T.P.; Arai, T.I.; Pinheiro, H.T.; Freire, A.S. On a trip to the mainland: Occasional records of the rocky crab Grapsus grapsus (Linnaeus, 1758) (Decapoda: Grapsidae) on the Brazilian coast. Nauplius 2021, 29, e2021040. [Google Scholar] [CrossRef]
- Arai, T.I.; Brandão, M.C.; Freire, A.S. First record of Grapsus grapsus (Linnaeus, 1758) (Brachyura: Decapoda: Grapsidae) in freshwater habitat. Nauplius 2017, 25, e2017032. [Google Scholar] [CrossRef]
- Freire, A.; Pinheiro, M.; Karam-Silva, H.; Teschima, M. Biology of Grapsus grapsus (Linnaeus, 1758) (Brachyura, Grapsidae) in the Saint Peter and Saint Paul Archipelago, Equatorial Atlantic Ocean. Helgol. Mar. Res. 2011, 65, 263–273. [Google Scholar] [CrossRef]
- Freire, A.S.; Teschima, M.M.; Brandao, M.C.; Iwasa-Arai, T.; Sobral, F.C.; Sasaki, D.K.; Agostinis, A.O.; Pie, M.R. Does the transport of larvae throughout the south Atlantic support the genetic and morphometric diversity of the Sally Lightfoot Crabs Grapsus grapsus (Linnaeus, 1758) and Grapsus adscensionis (Osbeck, 1765) (Decapoda: Grapsidae) among the oceanic islands? J. Mar. Syst. 2021, 223, 103614. [Google Scholar] [CrossRef]
- Teschima, M.M.; Ströher, P.R.; Firkowski, C.R.; Pie, M.R.; Freire, A.S. Large-scale connectivity of Grapsus grapsus (Decapoda) in the Southwestern Atlantic oceanic islands: Integrating genetic and morphometric data. Mar. Ecol. 2016, 37, 1360–1372. [Google Scholar] [CrossRef]
- Holthuis, L. The decapod and stomatopod Crustacea of St Paul’s Rocks. Zool. Meded. 1980, 56, 27–51. [Google Scholar]
- Gianuca, D.; Vooren, C.M. Abundance and behavior of the sally lightfoot crab (Grapsus grapsus) in the colony of the brown booby (Sula leucogaster) in the São Pedro and São Paulo Archipelago. Investig. Mar. 2007, 35, 121–125. [Google Scholar] [CrossRef]
- Franco-Fuentes, E.; Moity, N.; Ramírez-González, J.; Andrade-Vera, S.; Hardisson, A.; Paz, S.; Rubio, C.; Martín, V.; Gutiérrez, Á.J. Mercury in fish tissues from the Galapagos marine reserve: Toxic risk and health implications. J. Food Compos. Anal. 2023, 115, 104969. [Google Scholar] [CrossRef]
- Taylor, D.L.; Calabrese, N.M. Mercury content of blue crabs (Callinectes sapidus) from southern New England coastal habitats: Contamination in an emergent fishery and risks to human consumers. Mar. Pollut. Bull. 2018, 126, 166–178. [Google Scholar] [CrossRef]
- McCormick, A.; Robertson, M.D.; Brasso, R.; Midway, S.R. Mercury concentrations in store-bought shrimp. Food Sci. Nutr. 2020, 8, 3731–3737. [Google Scholar] [CrossRef] [PubMed]
- Denkinger, J.; Gordillo, L.; Montero-Serra, I.; Murillo, J.C.; Guevara, N.; Hirschfeld, M.; Fietz, K.; Rubianes, F.; Dan, M. Urban life of Galapagos sea lions (Zalophus wollebaeki) on San Cristobal Island, Ecuador: Colony trends and threats. J. Sea Res. 2015, 105, 10–14. [Google Scholar] [CrossRef]
- Zarn, A.M.; Valle, C.A.; Brasso, R.; Fetzner, W.D.; Emslie, S.D. Stable isotope and mercury analyses of the Galápagos Islands seabird community. Mar. Ornithol. 2020, 48, 71–80. [Google Scholar]
- Calle, P.; Alava, J.J.; Tirape, A.; Domínguez, G.A.; Fair, P.; Alvarado, O.; Freire, M.; Torres, J.; Ruiz, O.; Garcés, D. Total Mercury and Stable Isotopes (Δ13c and Δ15n) in Pups of Endangered Galapagos Pinnipeds as Tracers of Trophic Transfer: An Ecotoxicological Risk Assessment. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4217668 (accessed on 9 April 2024).
- Careddu, G.; Calizza, E.; Costantini, M.L.; Rossi, L. Isotopic determination of the trophic ecology of a ubiquitous key species—The crab Liocarcinus depurator (Brachyura: Portunidae). Estuar. Coast. Shelf Sci. 2017, 191, 106–114. [Google Scholar] [CrossRef]
- Pereira, E.; Abreu, S.; Coelho, J.; Lopes, C.; Pardal, M.; Vale, C.; Duarte, A. Seasonal fluctuations of tissue mercury contents in the European shore crab Carcinus maenas from low and high contamination areas (Ria de Aveiro, Portugal). Mar. Pollut. Bull. 2006, 52, 1450–1457. [Google Scholar] [CrossRef]
- Ullrich, S.M.; Tanton, T.W.; Abdrashitova, S.A. Mercury in the aquatic environment: A review of factors affecting methylation. Crit. Rev. Environ. Sci. Technol. 2001, 31, 241–293. [Google Scholar] [CrossRef]
- IPIECA. Mercury Management in Petroleum Refining An IPIECA Good Practice Guide; IPIECA: London, UK, 2014; Volume 32. [Google Scholar]
- Conaway, C.H.; Mason, R.P.; Steding, D.J.; Flegal, A.R. Estimate of mercury emission from gasoline and diesel fuel consumption, San Francisco Bay area, California. Atmos. Environ. 2005, 39, 101–105. [Google Scholar] [CrossRef]
- Rua-Ibarz, A.; Bolea-Fernandez, E.; Maage, A.; Frantzen, S.; Valdersnes, S.; Vanhaecke, F. Assessment of Hg pollution released from a WWII submarine wreck (U-864) by Hg isotopic analysis of sediments and Cancer pagurus tissues. Environ. Sci. Technol. 2016, 50, 10361–10369. [Google Scholar] [CrossRef]
- Vieira, H.C.; Bordalo, M.D.; Osten, J.R.-v.; Soares, A.M.; Abreu, S.N.; Morgado, F. Can a 16th Century Shipwreck Be Considered a Mercury Source in the 21st Century?—A Case Study in the Azores Archipelago (Portugal). J. Mar. Sci. Eng. 2023, 11, 276. [Google Scholar] [CrossRef]
- Olivero-Verbel, J.; Johnson-Restrepo, B.; Baldiris-Avila, R.; Güette-Fernández, J.; Magallanes-Carreazo, E.; Vanegas-Ramírez, L.; Kunihiko, N. Human and crab exposure to mercury in the Caribbean coastal shoreline of Colombia: Impact from an abandoned chlor-alkali plant. Environ. Int. 2008, 34, 476–482. [Google Scholar] [CrossRef] [PubMed]
- Ervik, H.; Lierhagen, S.; Asimakopoulos, A.G. Elemental content of brown crab (Cancer pagurus)—Is it safe for human consumption? A recent case study from Mausund, Norway. Sci. Total Environ. 2020, 716, 135175. [Google Scholar] [CrossRef] [PubMed]
- Kakimoto, S.; Yoshimitsu, M.; Akutsu, K.; Kiyota, K.; Fujiwara, T.; Watanabe, T.; Kajimura, K.; Yamano, T. Concentrations of total mercury and methylmercury in red snow crabs (Chionoecetes japonicus) caught off the coast of Japan. Mar. Pollut. Bull. 2019, 145, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Amirbahman, A.; Fisher, N.; Harding, G.; Lamborg, C.; Nacci, D.; Taylor, D. Methylmercury in marine ecosystems: Spatial patterns and processes of production, bioaccumulation, and biomagnification. EcoHealth 2008, 5, 399–408. [Google Scholar] [CrossRef]
- Borum, D.; Manibusan, M.K.; Schoeny, R.; Winchester, E.L. Water quality criterion for the protection of human health: Methylmercury. 2001. Available online: https://udspace.udel.edu/items/810b6b9f-aa19-4323-9170-3a5818d3ce70 (accessed on 9 April 2024).
- Adams, D.H.; Engel, M.E. Mercury, lead, and cadmium in blue crabs, Callinectes sapidus, from the Atlantic coast of Florida, USA: A multipredator approach. Ecotoxicol. Environ. Saf. 2014, 102, 196–201. [Google Scholar] [CrossRef]
Species/Location | n | Collection Date | Size Range (mm) * |
---|---|---|---|
Crabs Grapsus grapsus | |||
Santa Cruz, Academy Bay (urban) | 10 | 17 August 2021 | 40.7–71.6 |
South Plaza (protected) | 10 | 12 August 2021 | 59.2–68.1 |
San Cristóbal near jetty (urban) | 10 | 13 August 2021 | 58.6–69.5 |
Isabela, rocks near jetty (protected) | 10 | 15 August 2021 | 40.3–56.7 |
Isabela, Playa Del amar several km out of town (protected) | 10 | 16 August 2021 | 43.6–66.2 |
Barnacles Tetraclita milleporosa | |||
Academy Bay (urban) | 10 | 11 August 2021 | 26.1–29.0 |
South Plaza (protected) | 10 | 12 August 2021 | 22.8–29.9 |
Oysters Saccostrea palmula | |||
Academy Bay (mangrove inlet, urban) | 9 | 11 August 2021 | 46.1–62.9 |
South Plaza (protected) | 1 | 12 August 2021 | 42.6 |
Site | n | Mercury Level mg kg−1 Dry Weight | Mercury Level mg kg−1 Wet Weight | ||||
---|---|---|---|---|---|---|---|
Mean | Median | Range | Mean | Median | Range | ||
San Cristóbal | 10 | 2.04 ± 0.69 | 1.78 | 1.34–3.53 | 0. 51 ± 0.1716 | 0.44 | 0.34–0.88 |
South Plaza | 10 | 1.19 ± 0.60 | 1.16 | 0.44–2.50 | 0.2981 ± 0.1501 | 0.29 | 0.11–0.63 |
Academy Bay | 12 | 0.56 ± 0.34 | 0.50 | 0.09–1.06 | 0.1404 ± 0.0859 | 0.13 | 0.023–0.26 |
Isabela U | 10 | 0.18 ± 0.15 | 0.13 | 0.082–0.57 | 0.0442 ± 0.0364 | 0.03 | 0.020–0.14 |
Isabela P | 10 | 0.06 ± 0.02 | 0.06 | 0.04–0.08 | 0.0144 ± 0.0038 | 0.01 | 0.01–0.02 |
Coefficient | Std. Error | t-Value | p-Value | |
---|---|---|---|---|
Intercept | −5.79 | 2.50 | –2.32 | 0.025 * |
Log Carapace Width | 0.73 | 0.63 | 1.16 | 0.251 |
Site: South Plaza | 2.809 | 0.27 | 10.18 | <0.001 *** |
Site: San Cristóbal | 3.42 | 0.27 | 12.86 | <0.001 *** |
Site: Isabela Urban | 0.89 | 0.25 | 3.62 | 0.001 *** |
Site: Academy Bay | 2.03 | 0.23 | 8.67 | <0.001 *** |
Multiple R-squared = 0.87 Adjusted R-squared = 0.85 |
Species | Mean Mercury Level (ppm/mg kg−1) Wet Weight | Range | Comments and, FDA Advice |
---|---|---|---|
Crab | 0.065 | ND–0.61 | From blue, king and snow crab |
South Plaza crab | 0.3 | 0.11–0.63 | Higher range in avoid level |
Marlin | 0.485 | 0.1–0.92 | Avoid |
San Cristóbal crab | 0.51 | 0.34–0.88 | Falls in level to avoid |
Orange roughy | 0.571 | 0.23–1.12 | Avoid |
Tuna | 0.69 | 0.13–1.82 | Fresh/frozen bigeye, Avoid |
King mackerel | 0.73 | 0.23–1.67 | Avoid |
Shark | 0.98 | ND–4.54 | Avoid |
Swordfish | 1.0 | ND–3.22 | Avoid |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jackson, G.D.; Jackson, C.H.; Brandao, M.; Jackson, A.K.; Espinoza, E.; Soria-Carvajal, M. Mercury Levels in the Crab Grapsus grapsus across the Galápagos Archipelago. Fishes 2024, 9, 233. https://doi.org/10.3390/fishes9060233
Jackson GD, Jackson CH, Brandao M, Jackson AK, Espinoza E, Soria-Carvajal M. Mercury Levels in the Crab Grapsus grapsus across the Galápagos Archipelago. Fishes. 2024; 9(6):233. https://doi.org/10.3390/fishes9060233
Chicago/Turabian StyleJackson, George D., Christine H. Jackson, Maura Brandao, Adam K. Jackson, Eduardo Espinoza, and Monica Soria-Carvajal. 2024. "Mercury Levels in the Crab Grapsus grapsus across the Galápagos Archipelago" Fishes 9, no. 6: 233. https://doi.org/10.3390/fishes9060233
APA StyleJackson, G. D., Jackson, C. H., Brandao, M., Jackson, A. K., Espinoza, E., & Soria-Carvajal, M. (2024). Mercury Levels in the Crab Grapsus grapsus across the Galápagos Archipelago. Fishes, 9(6), 233. https://doi.org/10.3390/fishes9060233