Critically Small Contemporaneous Effective Population Sizes Estimated for Stocks of the African Bonytongue in Western Africa
Abstract
:1. Introduction
2. Methods
2.1. Datasets
2.2. Evaluation of Ne Estimators for Genotype Data
3. Results
4. Discussion
Implications for Conservation and Management
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- FAO. The State of World Fisheries and Aquaculture 2022. Towards Blue Transformation; FAO: Rome, Italy, 2022; 226p. [Google Scholar] [CrossRef]
- Béné, C.; Heck, S. Fish and food security in Africa. NAGA, WorldFish Cent. Q. 2005, 28, 8–13. [Google Scholar]
- De Graaf, G.; Garibaldi, L. The value of African fisheries. FAO Fish. Aquac. Circ. 2015, 1093, 1–76. [Google Scholar]
- Funge-Smith, S.J. Review of the State of World Fishery Resources: Inland Fisheries; FAO Fisheries and Aquaculture Circular; FAO: Rome, Italy, 2018. [Google Scholar]
- Funge-Smith, S.; Bennett, A. A fresh look at inland fisheries and their role in food security and livelihoods. Fish Fish. 2019, 20, 1176–1195. [Google Scholar] [CrossRef]
- United Nations-Department of Economic and Social Affairs-Population Division. World Population Prospects 2019: Highlights, New York, USA (st/esa/ser. A/423). 2019. Available online: https://population.un.org/wpp/Publications/Files/WPP2019_Highlights.pdf (accessed on 18 May 2024).
- Abban, E.K. Considerations for the conservation of African fish genetic resources for their sustainable exploitation. Towards policies for conservation and sustainable use of aquatic genetic resources. ICLARM Conf. Proc. 1999, 59, 95–100. [Google Scholar]
- Lind, C.E.; Brummett, R.E.; Ponzoni, R.W. Exploitation and conservation of fish genetic resources in Africa: Issues and priorities for aquaculture development and research. Rev. Aquac. 2012, 4, 125–141. [Google Scholar] [CrossRef]
- Marshall, B.E. Inland fisheries of tropical Africa. In Freshwater Fisheries Ecology; Graig, J.F., Ed.; John Wiley & Sons, Ltd.: Chichester, UK, 2016; pp. 249–362. [Google Scholar] [CrossRef]
- Olaosebikan, B.D.; Bankole, N.O. An analysis of Nigerian freshwater fishes: Those under threat and conservation options. In Proceedings of the 19th Annual Conference of the Fisheries Society of Nigeria (FISON), Ilorin, Nigeria, 29 November–3 December 2004; pp. 754–762. [Google Scholar]
- Chan, C.Y.; Tran, N.; Pethiyagoda, S.; Crissman, C.C.; Sulser, T.B.; Phillips, M.J. Prospects and challenges of fish for food security in Africa. Glob. Food Secur. 2019, 20, 17–25. [Google Scholar] [CrossRef]
- Sonneveld, B.; Thoto, F.; Houessou, D.; Wesenbeeck, L. Tragedy of the inland lakes. Int. J. Commons 2019, 13, 609–636. [Google Scholar] [CrossRef]
- FAO. Review of the State of World Fishery Resources: Inland Fisheries; FAO: Rome, Italy, 2003. [Google Scholar]
- FAO. Fishery and Aquaculture Country Profiles. Cameroun, 2022. Country Profile Fact Sheets. In Fisheries and Aquaculture; Rome, Italy, Updated Feb 1, 2022. Available online: https://www.fao.org/fishery/en/facp/cmr?lang=fr (accessed on 17 May 2024).
- Husemann, M.; Zachos, F.E.; Paxton, R.J.; Habel, J.C. Effective population size in ecology and evolution. Heredity 2016, 117, 191–192. [Google Scholar] [CrossRef]
- Waples, R.S. What Is Ne, Anyway? J. Hered. 2022, 113, 371–379. [Google Scholar] [CrossRef]
- Allendorf, F.W.; Luikart, G.H.; Aitken, S.N. Conservation and the Genetics of Populations; John Wiley & Sons: Chichester, UK, 2013. [Google Scholar]
- Franklin, I.R. Conservation biology: An evolutionary-ecological perspective. In Conservation Biology: An Evolutionary-Ecological Perspective; Soulé, M.E., Wilcox, B.A., Eds.; Sinauer Associates: Sunderland, MA, USA, 1980; pp. 135–149. [Google Scholar]
- Soulé, M.E. Thresholds for survival: Maintaining fitness and evolutionary potential. In Conservation Biology: An Evolutionary-Ecological Perspective; Soulé, M.E., Wilcox, B.A., Eds.; Sinauer Associates: Sunderland, MA, USA, 1980; pp. 151–169. [Google Scholar]
- Gilpin, M.E.; Soulé, M.E. Minimum viable populations: Processes of species extinction. In Conservation Biology: The Science of Scarcity and Diversity; Soulé, M.E., Ed.; Sinauer Associates: Sunderland, MA, USA, 1986; pp. 19–34. [Google Scholar]
- Jamieson, I.G.; Allendorf, F.W. How does the 50/500 rule apply to MVPs? Trends Ecol. Evol. 2012, 27, 578–584. [Google Scholar] [CrossRef]
- Frankham, R.; Bradshaw, C.J.A.; Brook, B.W. Genetics in conservation management: Revised recommendations for the 50/500 rules, Red List criteria and population viability analyses. Biol. Conserv. 2014, 170, 56–63. [Google Scholar] [CrossRef]
- Caballero, A.; Bravo, I.; Wang, J. Inbreeding load and purging: Implications for the short-term survival and the conservation management of small populations. Heredity 2017, 118, 177–185. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Pereira, N.; Wang, J.; Quesada, H.; Caballero, A. Prediction of the minimum effective size of a population viable in the long term. Biodivers. Conserv. 2022, 31, 2763–2780. [Google Scholar] [CrossRef]
- Lande, R. Mutation and Conservation. Conserv. Biol. 1995, 9, 782–791. [Google Scholar] [CrossRef]
- Lynch, M.; Lande, R. The critical effective size for a genetically secure population. Anim. Conserv. 1998, 1, 70–72. [Google Scholar] [CrossRef]
- FAO. Global Capture Production Quantity (1950–2021). 2021. Available online: https://www.fao.org/fishery/statistics-query/en/capture/capture_quantity (accessed on 5 November 2023).
- Brummett, R.; Nguenga, D.; Tiotsop, F.; Abina, J.-C. The Commercial Fishery of the Middle Nyong River, Cameroon: Productivity and Environmental Threats. Smithiana Bull. 2010, 11, 3–16. [Google Scholar]
- Moreau, J. Expose Synoptique des Donnees Biologiques sur Heterotis niloticus (Cuvier, 1829); FAO Synopsis sur les Pèches: Rome, Italy, 1982; pp. 1–45. Available online: https://openknowledge.fao.org/items/ab20fb70-bc00-42c4-a497-cb78936c05da (accessed on 18 May 2024).
- Blache, J.; Miton, F. Première contribution à la connaissance de la pêche dans le bassin hydrographique Logone-Chari-Lac Tchad: Aspect général des activités de la pêche et de la commercialisation des produits. Description des engins de pêche et leur emploi. Mémoires Off. Sci. Tech. Res. Overseas (ORSTOM) 1962, 4, 1–143. [Google Scholar]
- Stauch, A. Le bassin Camerounais de la Benoue et sa Peche; IRD Editions; Office of Scientific and Technical Research Overseas (ORSTOM): Paris, France, 1966; pp. 1–152. Available online: https://horizon.documentation.ird.fr/exl-doc/pleins_textes/pleins_textes_2/memoires/10593.pdf (accessed on 18 May 2024).
- Depierre, D.; Vivien, J. Une réussite du Service Forestier du Cameroun: L’introduction d’Heterotis niloticus dans le Nyong. Rev. Bois Et Forêts Des Trop. 1977, 173, 59–68. [Google Scholar]
- Mustapha, M.K. Heterotis niloticus (Cuvier, 1829) a threatened fish species in Oyun reservoir, Offa, Nigeria; the need for its conservation. Asian J. Exp. Biol. Sci. 2010, 1, 1–7. [Google Scholar]
- Adite, A.; Winemiller, K.O.; Fiogbe, E.D. Population structure and reproduction of the African bonytongue Heterotis niloticus in the Sô River-floodplain system (West Africa): Implications for management. Ecol. Freshw. Fish 2006, 15, 30–39. [Google Scholar] [CrossRef]
- Laë, R. Climatic and anthropogenic effects on fish diversity and fish yields in the Central Delta of the Niger River. Aquat. Living Resour. 1995, 8, 43–58. [Google Scholar] [CrossRef]
- Hurtado, L.A.; Carrera, E.; Adite, A.; Winemiller, K.O. Genetic differentiation of a primitive teleost, the African bonytongue Heterotis niloticus, among river basins and within a floodplain river system in Benin, West Africa. J. Fish Biol. 2013, 83, 682–690. [Google Scholar] [CrossRef] [PubMed]
- Oladimeji, T.E.; Caballero, I.C.; Mateos, M.; Awodiran, M.O.; Winemiller, K.O.; Adite, A.; Hurtado, L.A. Genetic identification and diversity of stocks of the African bonytongue, Heterotis niloticus (Osteoglossiformes: Arapaiminae), in Nigeria, West Africa. Sci. Rep. 2022, 12, 8417. [Google Scholar] [CrossRef]
- Wikondi, J.; Ngono, E.P.J.; Nana, A.T.; Meutchieye, F.; Tomedi, M.E.T. Farming Features of African Bonytongue Fish Heterotis niloticus in Cameroon, Central Africa. Open J. Anim. Sci. 2023, 13, 232–248. [Google Scholar] [CrossRef]
- Peakall, R.; Smouse, P.E. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research—An update. Bioinformatics 2012, 28, 2537–2539. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, M.B.; Tartakovsky, M.; Battocletti, A. speed-ne: Software to simulate and estimate genetic effective population size (Ne) from linkage disequilibrium observed in single samples. Mol. Ecol. Resour. 2018, 18, 714–728. [Google Scholar] [CrossRef] [PubMed]
- Waples, R.S. A bias correction for estimates of effective population size based on linkage disequilibrium at unlinked gene loci. Conserv. Genet. 2006, 7, 167–184. [Google Scholar] [CrossRef]
- Simulation and Estimation Gametic Disequilibrium Genetic Effective Population Size (Ne). Available online: https://github.com/mbhamilton/SpEED-Ne (accessed on 16 May 2024).
- Waples, R.S.; Do, C. LDNE: A program for estimating effective population size from data on linkage disequilibrium. Mol. Ecol. Resour. 2008, 8, 753–756. [Google Scholar] [CrossRef] [PubMed]
- Do, C.; Waples, R.S.; Peel, D.; Macbeth, G.M.; Tillett, B.J.; Ovenden, J.R. NeEstimator v2: Re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol. Ecol. Resour. 2014, 14, 209–214. [Google Scholar] [CrossRef]
- Waples, R.S.; Do, C.H.I. Linkage disequilibrium estimates of contemporary Ne using highly variable genetic markers: A largely untapped resource for applied conservation and evolution. Evol. Appl. 2010, 3, 244–262. [Google Scholar] [CrossRef]
- Gilbert, K.J.; Whitlock, M.C. Evaluating methods for estimating local effective population size with and without migration. Evolution 2015, 69, 2154–2166. [Google Scholar] [CrossRef] [PubMed]
- Waples, R.S.; Antao, T.; Luikart, G. Effects of overlapping generations on linkage disequilibrium estimates of effective population size. Genetics 2014, 197, 769–780. [Google Scholar] [CrossRef] [PubMed]
- Almodóvar, A.; Nicola, G.G.; Ayllón, D.; Leal, S.; Marchán, D.F.; Elvira, B. A Benchmark for Atlantic Salmon Conservation: Genetic Diversity and Structure in a Southern European Glacial Refuge before the Climate Changed. Fishes 2023, 8, 321. [Google Scholar] [CrossRef]
- Jones, A.T.; Ovenden, J.R.; Wang, Y.-G. Improved confidence intervals for the linkage disequilibrium method for estimating effective population size. Heredity 2016, 117, 217–223. [Google Scholar] [CrossRef] [PubMed]
- Lind, C.E.; Agyakwah, S.K.; Attipoe, F.Y.; Nugent, C.; Crooijmans, R.P.; Toguyeni, A. Genetic diversity of Nile tilapia (Oreochromis niloticus) throughout West Africa. Sci. Rep. 2019, 9, 16767. [Google Scholar] [CrossRef] [PubMed]
- Waples, R.S.; England, P.R. Estimating contemporary effective population size on the basis of linkage disequilibrium in the face of migration. Genetics 2011, 189, 633–644. [Google Scholar] [CrossRef] [PubMed]
- Lonsinger, R.C.; Adams, J.R.; Waits, L.P. Evaluating effective population size and genetic diversity of a declining kit fox population using contemporary and historical specimens. Ecol. Evol. 2018, 8, 12011–12021. [Google Scholar] [CrossRef] [PubMed]
- Farias, I.P.; Willis, S.; Leao, A.; Verba, J.T.; Crossa, M.; Foresti, F.; Porto-Foresti, F.; Sampaio, I.; Hrbek, T. The largest fish in the world’s biggest river: Genetic connectivity and conservation of Arapaima gigas in the Amazon and Araguaia-Tocantins drainages. PLoS ONE 2019, 14, e0220882. [Google Scholar] [CrossRef] [PubMed]
- Araripe, J.; Rêgo, P.S.D.; Queiroz, H.; Sampaio, I.; Schneider, H. Dispersal capacity and genetic structure of Arapaima gigas on different geographic scales using microsatellite markers. PLoS ONE 2013, 8, e54470. [Google Scholar] [CrossRef]
- Gurdak, D.J.; Stewart, D.J.; Klimley, A.P.; Thomas, M. Local fisheries conservation and management works: Implications of migrations and site fidelity of Arapaima in the Lower Amazon. Environ. Biol. Fishes 2022, 105, 2119–2132. [Google Scholar] [CrossRef]
- Agbugui, M.O.; Egbo, H.O.; Abhulimen, F.E. The Biology of the African Bonytongue Heterotis niloticus (Cuvier, 1829) from the Lower Niger River at Agenebode in Edo State, Nigeria. Int. J. Zool. 2021, 2021, 1748736. [Google Scholar] [CrossRef]
- Du-Feu, T.A.; Abiodun, J.A. Fisheries statistics of Kainji Lake, northern Nigeria, Nov. 1994 - Dec. 1998. 128p. Nigerian-German Kainji Lake Fisheries Promotion Project Technical Report Series 13. 1999. Available online: https://aquadocs.org/handle/1834/21520 (accessed on 18 May 2024).
- Yem, I.Y.; Sani, A.O.; Bankole, N.O.; Onimisi, H.U.; Musa, Y.M. Over fishing as a factor responsible for declined in fish species diversity of Kainji, Nigeria. In Proceedings of the 21st Annual Conference of the Fisheries Society of Nigeria (FISON), Calabar, Nigeria, 13–17 November 2007; pp. 79–85. Available online: http://hdl.handle.net/1834/37723 (accessed on 18 May 2024).
- Hauber, M.E.; Bierbach, D.; Linsenmair, K.E. A description of teleost fish diversity in floodplain pools (‘Whedos’) and the Middle-Niger at Malanville (north-eastern Benin). J. Appl. Ichthyol. 2011, 27, 1095–1099. [Google Scholar] [CrossRef]
- Allan, J.D.; Abell, R.; Hogan, Z.E.B.; Revenga, C.; Taylor, B.W.; Welcomme, R.L.; Winemiller, K. Overfishing of inland waters. Bioscience 2005, 55, 1041–1051. [Google Scholar] [CrossRef]
- Lederoun, D.; Lalèyè, K.R.; Boni, A.R.; Amoussou, G.; Vodougnon, H.; Adjibogoun, H.; Lalèyè, P.A. Length–weight and length–length relationships of some of the most abundant species in the fish catches of Lake Nokoué and Porto-Novo Lagoon (Benin, West Africa). Lakes Reserv. Res. Manag. 2018, 23, 351–357. [Google Scholar] [CrossRef]
- Olukolajo, S.O.; Hillary, E.C. Species diversity and growth pattern of the fish fauna of Epe Lagoon, Nigeria. J. Fish. Aquat. Sci. 2012, 7, 392–401. [Google Scholar] [CrossRef]
- Mshelia, M.B.; Okaeme, A.N.; Dantoro, N.O.; Abiodun, J.A.; Olowosegun, O.M.; Yemi, I.Y. Responsible fisheries enhancing poverty alleviation of fishing communities of Lake Kainji. In Proceedings of the 19th Annual Conference of the Fisheries Society of Nigeria (FISON), Ilorin, Nigeria, 29 November–3 December 2004; pp. 597–604. Available online: https://aquadocs.org/handle/1834/21737 (accessed on 18 May 2024).
- Akinsanya, B.; Ayanda, I.O.; Fadipe, A.O.; Onwuka, B.; Saliu, J.K. Heavy metals, parasitologic and oxidative stress biomarker investigations in Heterotis niloticus from Lekki Lagoon, Lagos, Nigeria. Toxicol. Rep. 2020, 7, 1075–1082. [Google Scholar] [CrossRef]
- Akinsanya, B.; Ayanda, I.O.; Onwuka, B.; Saliu, J.K. Bioaccumulation of BTEX and PAHs in Heterotis niloticus (Actinopterygii) from the Epe Lagoon, Lagos, Nigeria. Heliyon 2020, 6, e03272. [Google Scholar] [CrossRef] [PubMed]
- Arojojoye, O.A.; Oyagbemi, A.A.; Ola-Davies, O.E.; Asaolu, R.O.; Shittu, Z.O.; Hassan, B.A. Assessment of water quality of selected rivers in the Niger Delta region of Nigeria using biomarkers in Clarias gariepinus. Environ. Sci. Pollut. Res. 2021, 28, 22936–22943. [Google Scholar] [CrossRef] [PubMed]
- Ikomi, R.B.; Arimoro, F.O. Effects of recreational activities on the littoral macroinvertebrates of Ethiope River, Niger Delta, Nigeria. J. Aquat. Sci. 2014, 29, 155–170. [Google Scholar]
- Frankham, R.; Ballou, J.D.; Briscoe, D.A. Introduction to Conservation Genetics; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Palstra, F.P.; Ruzzante, D.E. Genetic estimates of contemporary effective population size: What can they tell us about the importance of genetic stochasticity for wild population persistence? Mol. Ecol. 2008, 17, 3428–3447. [Google Scholar] [CrossRef]
- Sovic, M.; Fries, A.; Martin, S.A.; Gibbs, H.L. Genetic signatures of small effective population sizes and demographic declines in an endangered rattlesnake, Sistrurus catenatus. Evol. Appl. 2019, 12, 664–678. [Google Scholar] [CrossRef] [PubMed]
- Wood, J.L.A.; Yates, M.C.; Fraser, D.J. Are heritability and selection related to population size in nature? Meta-analysis and conservation implications. Evol. Appl. 2016, 9, 640–657. [Google Scholar] [CrossRef] [PubMed]
- Diouf, K.; Akinyi, E.; Azeroual, A.; Entsua-Mensah, M.; Getahun, A.; Lalèyè, P.; Moelants, T.H. Heterotis niloticus. 2020. Available online: https://www.iucnredlist.org/species/182580/134764025 (accessed on 5 November 2023).
- Kamath, P.L.; Haroldson, M.A.; Luikart, G.; Paetkau, D.; Whitman, C.; Van Manen, F.T. Multiple estimates of effective population size for monitoring a long-lived vertebrate: An application to Yellowstone grizzly bears. Mol. Ecol. 2015, 24, 5507–5521. [Google Scholar] [CrossRef] [PubMed]
- Pita, A.; Pérez, M.; Velasco, F.; Presa, P. Trends of the genetic effective population size in the Southern stock of the European hake. Fish. Res. 2017, 191, 108–119. [Google Scholar] [CrossRef]
- Frankham, R. Evaluation of proposed genetic goals and targets for the Convention on Biological Diversity. Conserv. Genet. 2022, 23, 865–870. [Google Scholar] [CrossRef]
- Hoban, S.; Bruford, M.W.; da Silva, J.M.; Funk, W.C.; Frankham, R.; Gill, M.J.; Grueber, C.E.; Heuertz, M.; Hunter, M.E.; Kershaw, F. Genetic diversity goals and targets have improved, but remain insufficient for clear implementation of the post-2020 global biodiversity framework. Conserv. Genet. 2023, 24, 181–191. [Google Scholar] [CrossRef]
Production (Average per Year) | Yearly Production | ||||||||
---|---|---|---|---|---|---|---|---|---|
Region | 1980s | 1990s | 2000s | 2010s | 2017 | 2018 | 2019 | 2020 | 2021 |
Africa | 1.47M | 1.89M | 2.33M | 2.87M | 3.01M | 3.02M | 3.24M | 3.21M | 3.49M |
Africa—Heterotis | 5961 | 12,653 | 23,876 | 31,815 | 29,257 | 28,649 | 27,818 | 27,777 | |
Nigeria % of Africa | 100,513 6.8% | 104,173 5.3% | 210,970 9.01% | 350,175 12.2% | 420,078 14.0% | 392,188 12.9% | 373,344 11.4% | 354,378 10.9% | 362,792 10.4% |
Nigeria—Heterotis % of Africa | 4770 80.0% | 10,877 86.0% | 20,606 86.3% | 27,896 87.7% | 25,689 87.8% | 24,626 86.0% | 23,375 84.0% | 23,875 86.0% | |
Benin | 31,823 | 31,830 | 28,664 | 28,969 | 33,415 | 28,900 | 28,775 | 28,815 | 29,000 |
Benin—Heterotis | 421 | 565 | 564 | 791 | 853 | 1398 | 925 | 1085 | 1095 |
Cameroon | 201,000 | 316,000 | 666,580 | 423,913 | 30,292 | 30,636 | 30,985 | 30,630 | 31,550 |
Country | Population | Year | SSRs | N | Nt | Na | Nea | Ho | He | uHe | F |
---|---|---|---|---|---|---|---|---|---|---|---|
Benin | |||||||||||
Ouemé-Sô river-floodplain system | 2008 2010 | 8 | 184 | 74 | 9.25 | 3.66 | 0.60 | 0.69 | 0.69 | 0.12 | |
Mono River | 2009 | 8 | 15 | 47 | 5.88 | 3.67 | 0.59 | 0.65 | 0.67 | 0.11 | |
Malanville, Niger River | 2009 | 6 (2) | 12 | 28 | 3.50 | 2.05 | 0.34 | 0.41 | 0.43 | 0.21 | |
Nigeria | |||||||||||
Kainji Lake | 2018 | 9 | 23 | 75 | 8.33 | 4.56 | 0.73 | 0.70 | 0.72 | −0.03 | |
Epe Lagoon | 2018 | 8 (1) | 20 | 46 | 5.11 | 2.65 | 0.44 | 0.47 | 0.48 | 0.06 | |
Igbokoda | 2018 | 9 | 15 | 51 | 5.67 | 2.55 | 0.47 | 0.54 | 0.56 | 0.18 | |
Ethiope River | 2018 | 8 (1) | 19 | 44 | 4.89 | 2.58 | 0.50 | 0.49 | 0.51 | −0.01 | |
Cameroon | |||||||||||
Logone River (Far-North) | 2020 | 7 | 18 | 41 | 5.86 | 3.20 | 0.71 | 0.64 | 0.66 | −0.14 | |
Benoue River (North) | 2020 | 7 | 24 | 42 | 6.00 | 3.67 | 0.66 | 0.69 | 0.71 | 0.04 | |
Nyong River (Centre) | 2020 | 7 | 20 | 25 | 3.57 | 2.67 | 0.63 | 0.56 | 0.58 | −0.07 | |
Nkam River (Littoral) | 2020 | 6 (1) | 22 | 26 | 3.71 | 2.70 | 0.51 | 0.53 | 0.55 | 0.03 | |
Dja and Lobo rivers (South) | 2020 | 7 | 12 | 24 | 3.43 | 2.31 | 0.42 | 0.47 | 0.49 | 0.06 |
Population | AFT Ne | AFW Ne | AFT Ne Waples |
---|---|---|---|
Nigeria Populations: | |||
Kainji Lake | 22.7 (20.8–25.6) (16.9–23.8) (20.4–28.1) | 24.9 (23.3–29.0) (19.3–24.9) (21.1–32.9) | 23.7 (9.3–278.0) n′ = 460.8 |
Epe Lagoon | 19.1 (17.5–22.2) (13.9–19.1) (17.5–21.7) | 19.6 (17.7–23.8) (13.9–21.3) (15.3–25.3) | 23.1 (8.4–∞) n′ = 351.5 |
Igbokoda | 36.1 (30.2–74.6) (15.0–49.3) (27.1–89.6) | 47.4 (38.6–624.8) (16.6–38.0) (32.0–∞) | 288.0 (11.6–∞) n′ = 249.0 |
Ethiope River | 24.4 (23.0–29.2) (16.3–31.2) (20.9–34.7) | 25.5 (23.1–45.4) (15.6–29.1) (20.3–∞) | 42.2 (8.2–∞) n′ = 464.9 |
Benin Populations: | |||
Ouemé-Sô river- floodplain | 1867.8 (1292.1–31,044.5) (1083.2–2750.7) (984.5–∞) | ∞ (∞–∞) (5583.6–∞) (1518.8–∞) | ∞ (448.0–∞) n′ = 545.8 |
Mono River | 15.0 (13.8–17.2) (10.3–13.7) (11.8–18.3) | 17.8 (16.3–20.1) (12.3–17.3) (15.9–23.2) | 22.9 (9.1–2310.1) n′ = 409.0 |
Malanville | 9.6 (7.8–35.1) (5.8–9.1) (5.9–∞) | 8.9 (7.3–13.8) (6.0–10.6) (7.0–44.1) | 27.0 (2.1–∞) n′ = 30.4 |
Cameroon Populations: | |||
Logone Riv. (Far-North) | 27.8 (24.7–37.3) (17.6–33.9) (21.7–40.0) | 40.6 (33.6–73.2) (23.1–41.5) (28.9–178.8) | 61.3 (11.1–∞) n′ = 376.0 |
Benoue River (North) | 36.2 (32.9–42.0) (23.8–36.1) (29.9–45.1) | 29.3 (27.5–36.1) (19.0–39.5) (23.2–40.9) | 48.0 (14.6–∞) n′ = 753.1 |
Nkam River (Littoral) | ∞ (181.7–∞) (57.1–∞) (71.4–∞) | 546.6 (125.9–∞) (41.5–∞) (70.9–∞) | ∞ (11.3–∞) n′ = 186.2 |
Dja and Lobo Riv. (South) | 5.1 (4.8–5.9) (3.5–6.1) (4.8–5.6) | 4.9 (4.5–5.6) (3.4–6.9) (4.5–5.8) | 2.6 (0.7–∞) n′ = 175.9 |
Nyong River (Centre) | 171.2 (112.1–2392.1) (40.8–∞) (64.2–∞) | 221.4 (103.9–∞) (30.5–∞) (109.1–∞) | ∞ (12.6–∞) n′ = 334.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hurtado, L.A.; Mateos, M.; Caballero, I.C.; Oladimeji, T.E.; Adite, A.; Awodiran, M.O.; Winemiller, K.O.; Hamilton, M.B. Critically Small Contemporaneous Effective Population Sizes Estimated for Stocks of the African Bonytongue in Western Africa. Fishes 2024, 9, 196. https://doi.org/10.3390/fishes9060196
Hurtado LA, Mateos M, Caballero IC, Oladimeji TE, Adite A, Awodiran MO, Winemiller KO, Hamilton MB. Critically Small Contemporaneous Effective Population Sizes Estimated for Stocks of the African Bonytongue in Western Africa. Fishes. 2024; 9(6):196. https://doi.org/10.3390/fishes9060196
Chicago/Turabian StyleHurtado, Luis A., Mariana Mateos, Isabel C. Caballero, Tofunmi E. Oladimeji, Alphonse Adite, Michael O. Awodiran, Kirk O. Winemiller, and Matthew B. Hamilton. 2024. "Critically Small Contemporaneous Effective Population Sizes Estimated for Stocks of the African Bonytongue in Western Africa" Fishes 9, no. 6: 196. https://doi.org/10.3390/fishes9060196
APA StyleHurtado, L. A., Mateos, M., Caballero, I. C., Oladimeji, T. E., Adite, A., Awodiran, M. O., Winemiller, K. O., & Hamilton, M. B. (2024). Critically Small Contemporaneous Effective Population Sizes Estimated for Stocks of the African Bonytongue in Western Africa. Fishes, 9(6), 196. https://doi.org/10.3390/fishes9060196