Partial Replacement of Fishmeal with Seafood Discards for Juvenile Penaeus japonicus: Effects on Growth, Flesh Quality, Chemical and Fatty Acid Composition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animal Ethics
2.2. Experimental Diets
2.3. Growth Trial
- -
- survival (%) = [final shrimp number/initial shrimp number] × 100;
- -
- average weight gain (AWG, g/d) = (final body weight − initial body weight)/days of trial;
- -
- weight gain (WG, %) = [(final body weight − initial body weight)/initial body weight] × 100;
- -
- specific growth rate (SGR, g/%) = [(ln final weight − ln initial weight)/days of trial] × 100;
- -
- meat yield (MY, %) = (weight of muscle/final weight) × 100;
- -
- condition factor (K, g/cm3) = [final body weight/(body length)3].
2.4. pH, Colour and Warner–Bratzler Shear Parameters in Shrimp Flesh
2.5. Chemical Composition and Fatty Acid Profile of Flesh Shrimp
2.6. Economic, Social and Governance Impact
- (a)
- the integration of feed for shrimps based on discards from both the fishery industry and aquaculture is a key driver of application in the circular economy and on sustainability;
- (b)
- the massive production and increasing demand for shrimps at the worldwide level can be managed by sustainable production based on a diet integrated with noble proteins from other blue resources otherwise destined for disposal and not recoverable, which are rich in functional compounds;
- (c)
- (d)
- the proposed feeding system would have a positive impact in terms of ESG principles toward the SDGs (Sustainable Development Goals) because they affect cross-cutting elements between three sectors, aquaculture/fisheries, feeding and technologies, helping achieve SDGs 14, 2, 8, 10, 13, 15;
- (e)
- the proposed feeding system has a positive impact in terms of upskilling and reskilling because it introduces the integration of competences toward new job placements and a more sustainable workforce.
2.7. Statistical Analysis
3. Results and Discussion
3.1. Growth Performance
3.2. Muscle Quality Parameters
3.3. Muscle Chemical Composition
3.4. Muscle Fatty Acid Composition
3.5. Economic, Social and Governance Impact
- (a)
- A rating of 5 KPI is based on 75% replacement being optimal in terms of the balance of the impact on shrimp farming and feed produced by other blue resources in the circular economy;
- (b)
- Scalability and the intersection with the circular economy are key success factors in the next 5 years, according to FAO indications [33];
- (c)
- Replacing fishmeal and fish oil could affect the balance of n-3 and n-6 PUFAs in fish meat, certainly reducing environmental impacts but at the expense of the organoleptic and nutritional qualities of the fillet [34,64]. Indeed, in shrimp farming, this study showes a positive effect in the replacement of fishmeal in dietary patterns, as shown by the data of this study.
- (d)
- Recently, trash fish, fish without a commercial market, has started to be used, which is derived from the by-catch or waste of processed fish, such as heads, viscera, bones and scales [65]. The FAO predicts that this trend will continue to grow, considering that trash fish contain nutrients and PUFAs suitable for the development of farmed animals [66]. The Vietnamese production of shrimps allows this replacement but it is not yet measured with the ESG parameters [67].
- (e)
- Alternative methods, including PUFA supplementation through genetically engineered plant oils, such as Camellia sativa oil, successfully tested on farmed Sea Bass [68], do not allow the same results herewith shown for an integration with ESG principles and long-term effects.
- (f)
- Trash fish [69], as a key success factor in the shrimp industry, is more acceptable to consumers then the other possibilities, like the use of insect proteins as a substitute for fish oils and meal in feed [70]. Among the species allowed, the black soldier fly (Hermetia illucens) seems to be the most promising, even if it does not seem to excessively influence the growth and development of farmed fish [71].
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- EUMOFA. European Market Observatory for Fisheries and Aquaculture Products. Available online: https://www.eumofa.eu/data#aquacultureTab (accessed on 19 July 2023).
- Verdegem, M.; Buschmann, A.H.; Latt, U.W.; Dalsgaard, A.J.T.; Lovatelli, A. The contribution of aquaculture systems to global aquaculture production. J. World Aquac. Soc. 2023, 54, 206–250. [Google Scholar] [CrossRef]
- Suárez, J.A.; Gaxiola, G.; Mendoza, R.; Cadavid, S.; García, G.; Alanis, G.; Suárez, A.; Faillace, J.; Cuzon, G. Substitution of fish meal with plant protein sources and energy budget for white shrimp Litopenaeus vannamei (Boone, 1931). Aquaculture 2009, 289, 118–123. [Google Scholar] [CrossRef]
- Renteria, P.; Vizcaíno, A.J.; Sánchez-Muros, M.J.; Santacruz-Reyes, R.A.; Saez, M.I.; Fabrikov, D.; Barroso, F.G.; Vargas-García, M.d.C. Effect of Replacing Fishmeal with Plukenetia volubilis Cake on Growth, Digestive Enzymes, and Body Composition in Whiteleg Shrimp (Litopenaeus vannamei). Fishes 2022, 7, 244. [Google Scholar] [CrossRef]
- Chen, Y.; Mitra, A.; Rahimnejad, S.; Chi, S.; Kumar, V.; Tan, B.; Niu, J.; Xie, S. Retrospect of fish meal substitution in Pacific white shrimp (Litopenaeus vannamei) feed: Alternatives, limitations and future prospects. Rev. Aquac. 2023, 16, 382–409. [Google Scholar] [CrossRef]
- Eissa, E.S.H.; Yassien, M.H.; Sakr, S.E.S.; Ayyat, M.S. Comparison between kuruma shrimp, Marsupenaeus japonicus, Bate (1888) cultured in monoculture system and polyculture system with red tilapia Oreochromis spp. fingerlings. J. Aquac. Mar. Biol. 2021, 10, 200–205. [Google Scholar] [CrossRef]
- Puga-Lopéz, D.; Ponce-Palafox, J.T.; Barba-Quintero, G.; Torres-Herrera, M.R.; Romero-Beltrán, E.; Arrendondo-Figueroa, J.L. Physicochemical, proximate composition, microbiological and sensory analysis of farmed and wild harvested white shrimp Litopenaeus vannamei (Boone, 1931) tissue. Curr. Res. J. Biol. Sci. 2013, 5, 130–135. [Google Scholar] [CrossRef]
- Zhou, Q.-C.; Li, C.-C.; Liu, C.-W.; Chi, S.-Y.; Yang, Q.-H. Effects of dietary lipid sources on growth and fatty acid composition of juvenile shrimp, Litopenaeus vannamei. Aquac. Nutr. 2007, 13, 222–229. [Google Scholar] [CrossRef]
- Hu, F.B.; Manson, J.E.; Willett, W.C. Types of dietary fat and risk of coronary heart disease: A critical review. J. Am. Coll. Nutr. 2001, 20, 5–19. [Google Scholar] [CrossRef] [PubMed]
- Emerenciano, M.G.C.; Rombenso, A.N.; Vieira, F.d.N.; Martins, M.A.; Coman, G.J.; Truong, H.H.; Noble, T.H.; Simon, C.J. Intensification of Penaeid Shrimp Culture: An Applied Review of Advances in Production Systems, Nutrition and Breeding. Animals 2022, 12, 236. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.J.; Hardy, R.W. Protein and lipid sources affect cholesterol concentrations of juvenile Pacific white shrimp, Litopenaeus vannamei (Boone). J. Anim. Sci. 2004, 82, 1136–1145. [Google Scholar] [CrossRef] [PubMed]
- Xie, S.; Niu, J.; Zhou, W.; Liu, Y.; Tian, L. Developing a low fishmeal diet for juvenile Pacific white shrimp, Litopenaeus vannamei, using the nutritional value of FM as the reference profile. Aquac. Nutr. 2018, 24, 1184–1197. [Google Scholar] [CrossRef]
- Ambasankar, K.; Syama Dayal, J.; Kumaraguru Vasagam, K.P.; Sivaramakrishnan, T.; Sandeep, K.P.; Panigrahi, A.; Ananda Raja, A.; Burri, L.; Vijayan, K.K. Growth, fatty acid composition, immune-related gene expression, histology and haematology indices of Penaeus vannamei fed graded levels of Antarctic krill meal at two different fishmeal concentrations. Aquaculture 2022, 553, 738069. [Google Scholar] [CrossRef]
- Panini, R.L.; Pinto, S.S.; Nóbrega, R.O.; Vieira, F.N.; Fracalossi, D.M.; Samuels, R.I.; Prudêncio, E.S.; Silva, C.P.; Amboni, R.D.M.C. Effects of dietary replacement of fishmeal by mealworm meal on muscle quality of farmed shrimp Litopenaeus vannamei. Food Res. Int. 2017, 102, 445–450. [Google Scholar] [CrossRef] [PubMed]
- Bulbul, M.; Koshio, S.; Ishikawa, M.; Yokoyama, S.; Kader, M.A. Performance of kuruma shrimp, Marsupenaeus japonicus fed diets replacing fishmeal with a combination of plant protein meals. Aquaculture 2013, 372, 45–51. [Google Scholar] [CrossRef]
- Jobling, M. National Research Council (NRC): Nutrient Requirements of Fish and Shrimp; The National Academies Press: Washington, DC, USA, 2011; ISBN 978-0-309-16338-5. [Google Scholar]
- Barreto, A.; Silva, A.; Peixoto, D.; Fajardo, C.; Pinto, W.; Rocha, R.J.M.; Conceição, L.E.C.; Costas, B. Dietary protein requirements of whiteleg shrimp (Penaeus vannamei) post-larvae during nursery phase in clear-water recirculating aquaculture systems. Front. Mar. Sci. 2023, 10, 1172644. [Google Scholar] [CrossRef]
- Li, X.; Han, T.; Zheng, S.; Wu, G. Nutrition and Functions of Amino Acids in Aquatic Crustaceans. Adv. Exp. Med. Biol. 2021, 1285, 169–198. [Google Scholar] [CrossRef]
- Hossain, M.S.; Small, B.C.; Kumar, V.; Hardy, R. Utilization of functional feed additives to produce cost-effective, ecofriendly aquafeeds high in plant-based ingredients. Rev. Aquac. 2023, 16, 121–153. [Google Scholar] [CrossRef]
- Ordóñez-Del Pazo, T.; Antelo, L.T.; Franco-Uría, A.; Pérez-Martín, R.I.; Sotelo, C.G.; Alonso, A.A. Fish discards management in selected Spanish and Portuguese métiers: Identification and potential valorisation. Trends Food Sci. Technol. 2014, 36, 29–43. [Google Scholar] [CrossRef]
- Nag, M.; Lahiri, D.; Dey, A.; Sarkar, T.; Pati, S.; Joshi, S.; Bunawan, H.; Mohammed, A.; Edinur, H.A.; Ghosh, S.; et al. Seafood Discards: A potent source of enzymes and biomacromolecules with nutritional and nutraceutical significance. Front. Nutr. 2022, 9, 879929. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Sustainable Blue Economy. Available online: https://oceans-and-fisheries.ec.europa.eu/ocean/blue-economy/sustainable-blue-economy_en (accessed on 10 May 2024).
- Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the Protection of Animals Used for Scientific Purposes. Available online: https://eur-lex.europa.eu/legal-content/ES/ALL/?uri=celex%3A32010L0063 (accessed on 3 September 2022).
- Zupo, V.; Lumare, F.; Bisignano, V. Feeding of Penaeus japonicus Bate (Decapoda: Penaeidae) in pond cultures: Size descriptors and food selection. J. Nat. Hist. 1998, 32, 1813–1824. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of the AOAC. In Association of Official Agricultural Chemistry, 17th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 2000. [Google Scholar]
- World Organization for Animal Health. Available online: https://www.oie.int/en/what-we-do/standards/codes-and-manuals/aquatic-code-online-access/ (accessed on 30 September 2022).
- Li, M.; Li, X.; Yao, W.; Wang, Y.; Zhang, X.; Leng, X. An evaluation of replacing fishmeal with Chlorella sorokiniana in the diet of Pacific White Shrimp (Litopenaeus vannamei): Growth, body color, and flesh quality. Aquac. Nutr. 2022, 2022, 8617265. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Jiao, D.; Liu, H.; Zhu, C.; Sun, Y.; Wu, J.; Zheng, M.; Zhang, D. Effects of water distribution and protein degradation on the texture of high pressure-treated shrimp (Penaeus monodon) during chilled storage. Food Control 2022, 132, 108555. [Google Scholar] [CrossRef]
- Tarricone, S.; Iaffaldano, N.; Colonna, M.A.; Giannico, F.; Selvaggi, M.; Caputi Jambrenghi, A.; Cariglia, M.; Ragni, M. Effects of Dietary Red Grape Extract on the Quality Traits in Juvenile European Sea Bass (Dicentrarchus labrax L.). Animals 2023, 13, 254. [Google Scholar] [CrossRef] [PubMed]
- Christie, W.W. Lipid Analysis-Isolation, Separation, Identification and Structural Analysis of Lipids; Pergamon: Oxford, UK, 1982; p. 270. [Google Scholar]
- Tarricone, S.; Caputi Jambrenghi, A.; Cagnetta, P.; Ragni, M. Wild and Farmed Sea Bass (Dicentrarchus Labrax): Comparison of Biometry Traits, Chemical and Fatty Acid Composition of Fillets. Fishes 2022, 7, 45. [Google Scholar] [CrossRef]
- UNICEF. SWOT and PESTEL-Understanding Your External and Internal Context for Better Planning and Decision-Making; UNICEF KE Toolbox; UNICEF: New York, NY, USA, 2015; Available online: https://www.unicef.org/knowledge-exchange/files/SWOT_and_PESTEL_production.pdf (accessed on 12 September 2023).
- Davis, D.A. Feed and Feeding Practices in Aquaculture; Woodhead Publishing: Cambridge, UK, 2022. [Google Scholar]
- DataBio. D7.3—PESTLE Analysis; Data-Driven Bioeconomy: Brussels, Belgium, 2017; Available online: https://www.databio.eu/wp-content/uploads/2017/05/DataBio_D7.3-PESTLE-Analysis_v1.0_2017-12-29_VTT.pdf (accessed on 12 September 2023).
- Bos, J. Integrating ESG factors in the investment process. CFA Inst. Mag. 2014, 25, 15–16. [Google Scholar] [CrossRef]
- Herrero, M.; Thornton, P.K.; Mason-D’Croz, D.; Palmer, J.; Bodirsky, B.L.; Pradhan, P.; Barrett, C.B.; Benton, T.G.; Hall, A.; Pikaar, I.; et al. Articulating the effect of food systems innovation on the Sustainable Development Goals. Lancet Planet. Health 2021, 5, e50–e62. [Google Scholar] [CrossRef] [PubMed]
- Eccles, R.G.; Krzus, M.P.; Rogers, J.; Serafeim, G. The need for sector-specific materiality and sustainability reporting standards. J. Appl. Corp. Financ. 2012, 24, 65–71. [Google Scholar] [CrossRef]
- Kusumowardani, N.; Tjahjono, B. Circular economy adoption in the aquafeed manufacturing industry. Procedia CIRP 2020, 90, 43–48. [Google Scholar] [CrossRef]
- Regueiro, L.; Newton, R.; Soula, M.; Méndez, D.; Kok, B.; Little, D.C.; Pastres, R.; Johansem, J.; Ferreira, M. Opportunities and limitations for the introduction of circular economy principles in EU aquaculture based on the regulatory framework. J. Ind. Ecol. 2022, 26, 2033–2044. [Google Scholar] [CrossRef]
- SAS. SAS/STAT 9.1 User’s Guide: Statistics; SAS Institute Inc.: Cary, NC, USA, 2004. [Google Scholar]
- Wei, Y.; Wang, X.; Xie, F.; Shen, H.; Gao, W.; Zhang, W.; Mai, K. Influences of replacing dietary fishmeal by Antarctic krill meal on growth performance, immunity and muscle quality of white shrimp Litopenaeus vannamei. Aquac. Rep. 2022, 25, 101256. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, J.-L.; Bureau, D.P.; Cui, Z.-H. Replacement of fishmeal by rendered animal protein ingredients in feeds for cuneate drum (Nibea miichthioides). Aquaculture 2006, 252, 476–483. [Google Scholar] [CrossRef]
- Nunes, A.J.P.; Gesteira, T.C.V.; Goddard, S. Food consumption and assimilation by the Southern brown shrimp Penaeus subtilis under semi-intensive culture in NE Brazil. Aquaculture 1997, 149, 121–136. [Google Scholar] [CrossRef]
- Alberto, J.P.; Nunes, G.; Parsons, J. Effects of the Southern brown shrimp, Penaeus subtilis, predation and artificial feeding on the population dynamics of benthic polychaetes in tropical pond enclosures. Aquaculture 2000, 183, 125–147. [Google Scholar] [CrossRef]
- Hardy, R.W.; Sealey, W.M.; Gatlin, D.M., III. Fisheries by-catch and by-product meals as protein sources for rainbow trout Oncorhynchus mykiss. J. World Aquac. Soc. 2005, 36, 393–400. [Google Scholar] [CrossRef]
- Li, P.; Wang, X.; Hardy, R.W.; Gatlin, D.M., III. Nutritional value of fisheries by-catch and by-product meals in the diet of red drum (Sciaenops ocellatus). Aquaculture 2004, 236, 485–496. [Google Scholar] [CrossRef]
- Yamamoto, F.Y.; de Cruz, C.R.; Rossi, W., Jr.; Gatlin, D.M., III. Nutritional value of dry-extruded blends of seafood processing waste and plant-protein feedstuffs in diets for juvenile red drum (Sciaenops ocellatus L.). Aquac. Nutr. 2020, 26, 88–97. [Google Scholar] [CrossRef]
- Parisenti, J.; Beirão, L.H.; Mouriño, J.L.; Vieira, F.N.; Buglione, C.C.; Maraschim, M. Effect of background color on shrimp pigmentation. Bol. Do Inst. De Pesca 2011, 37, 177–182. [Google Scholar]
- Yao, W.; Yang, P.; Zhang, X.; Xu, X.; Zhang, C.; Li, X.; Leng, X. Effects of replacing dietary fishmeal with Clostridium autoethanogenum protein on growth and flesh quality of Pacific white shrimp (Litopenaeus vannamei). Aquaculture 2022, 549, 737770. [Google Scholar] [CrossRef]
- Mu, H.; Yang, C.; Zhang, Y.; Chen, S.; Wang, P.; Yan, B.; Zhang, Q.; Wei, C.; Gao, H. Dietary β-Hydroxy-β-Methylbutyrate Supplementation Affects Growth Performance, Digestion, TOR Pathway, and Muscle Quality in Kuruma Shrimp (Marsupenaeus japonicas) Fed a Low Protein Diet. Aquac. Nutr. 2023, 2023, 9889533. [Google Scholar] [CrossRef] [PubMed]
- Dunajski, E. Texture of fish muscle. J. Texture Stud. 1980, 10, 301–318. [Google Scholar] [CrossRef]
- Rivas-Vega, M.E.; Rouzaud-Sandez, O.; Martinez-Cordova, L.R.; Ezquerrabrauer, J.M. Effects of feed protein levels on digestive proteolytic activity, texture, and thermal denaturation of muscle protein in reared blue shrimp. J. Aquat. Food Prod. Technol. 2001, 10, 25–38. [Google Scholar] [CrossRef]
- Martínez-Córdova, L.R.; Campaña-Torres, A.; Villarreal-Colmenares, H.; Ezquerra-Brauer, J.M.; Martinez-Porchas, M.; Cortés-Jacinto, E. Evaluation of partial and total replacement of formulated feed by insects, Trichocorixa sp. (Heteroptera: Corixidae) on the productive and nutritional response, and postharvest quality of shrimp, Litopenaeus vannamei (Boone, 1931). Aquac. Nutr. 2013, 19, 218–226. [Google Scholar] [CrossRef]
- Glencross, B.D.; Smith, D.M. Optimizing the essential fatty acids, eicosapentaenoic and docosahexaenoic acid, in the diet of the prawn, Penaeus monodon. Aquac. Nutr. 2001, 7, 101–112. [Google Scholar] [CrossRef]
- Zhu, W.; Dong, R.; Ge, L.; Yang, Q.; Lu, N.; Li, H.; Feng, Z. Effects of dietary n-6 polyunsaturated fatty acids (PUFA) composition on growth performances and non-specific immunity in pacific white shrimp (Litopenaeus vannamei). Aquac. Rep. 2023, 28, 101436. [Google Scholar] [CrossRef]
- Gonzalez-Félix, M.L.; Dias da Silva, F.S.; Davis, D.A.; Samocha, T.M.; Morris, T.C.; Wilkenfeld, J.S.; Perez-Velazquez, M. Replacement of fish oil in plant based diets for Pacific white shrimp (Litopenaeus vannamei). Aquaculture 2010, 309, 152–158. [Google Scholar] [CrossRef]
- Forster, I.P.; Dominy, W.G.; Obaldo, L.G.; Hartnell, G.F.; Sanders, E.F.; Hickman, T.C.; Ruebelt, M.C. The effect of soybean oil containing stearidonic acid on growth performance, n-3 fatty acid deposition and sensory characteristics of pacific white shrimp (Litopenaeus vannamei). Aquac. Nutr. 2011, 17, 200–213. [Google Scholar] [CrossRef]
- Soller, F.; Roy, L.A.; Davis, D.A. Replacement of fish oil in plant-based diets for Pacific white shrimp, Litopenaeus vannamei, by stearine fish oil and palm oil. World Aqualculture Soc. 2019, 50, 186–203. [Google Scholar] [CrossRef]
- Narayan, B.; Miyashita, K.; Hosakawa, M. Physiological effects of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)—A review. Food Rev. Int. 2006, 22, 291–307. [Google Scholar] [CrossRef]
- Simopoulos, A.P. An increase in the omega-6/omega-3 fatty acid ratio increases the risk for obesity. Nutrients 2016, 8, 128. [Google Scholar] [CrossRef]
- Glencross, D.; Smith, D.M.; Thomas, M.R.; Williams, K.C. The effect of dietary n-3 and n-6 fatty acid balance on the growth of the prawn Penaeus monodon. Aquac. Nutr. 2002, 8, 43–51. [Google Scholar] [CrossRef]
- Chen, J.; Liu, H. Nutritional indices for assessing fatty acids: A mini-review. Int. J. Mol. Sci. 2020, 21, 5695. [Google Scholar] [CrossRef] [PubMed]
- Briggs, M.A.; Petersen, K.S.; Kris-Etherton, P.M. Saturated fatty acids and cardiovascular disease: Replacements for saturated fat to reduce cardiovascular risk. Healthcare 2017, 5, 29. [Google Scholar] [CrossRef] [PubMed]
- Lazzarotto, V.; Médale, F.; Larroquet, L.; Corraze, G. Long-term dietary replacement of fishmeal and fish oil in diets for rainbow trout (Oncorhynchus mykiss): Effects on growth, whole body fatty acids and intestinal and hepatic gene expression. PLoS ONE 2018, 13, e0190730. [Google Scholar] [CrossRef] [PubMed]
- Edwards, P.; Tuan, L.A.; Allan, G.L. A Survey of Marine Trash Fish and Fish Meal as Aquaculture Feed Ingredients in Vietnam. 2004. Available online: https://www.aciar.gov.au/sites/default/files/legacy/node/554/wp57.pdf (accessed on 14 May 2024).
- Food and Agriculture Organization of the United Nations. The State of World Fisheries and Aquaculture 2022. Available online: https://openknowledge.fao.org/items/4c87cf04-a7f2-4725-85ca-1bb584c1e3e9 (accessed on 14 May 2024).
- Tugiyono, T.; Febryano, I.G.; Yuwana, P.; Suharso, S. Utilization of fish waste as fish feed material as an alternative effort to reduce and use waste. Pak. J. Biol. Sci. 2020, 23, 701–707. [Google Scholar] [PubMed]
- Betancor, M.B.; MacEwan, A.; Sprague, M.; Gong, X.; Montero, D.; Han, L.; Napier, J.A.; Norambuena, F.; Izquierdo, M.; Tocher, D.R. Oil from transgenic Camelina sativa as a source of EPA and DHA in feed for European sea bass (Dicentrarchus labrax L.). Aquaculture 2021, 530, 735759. [Google Scholar] [CrossRef] [PubMed]
- Hasan, M.R. On-farm feeding and feed management in aquaculture. FAO Aquac. Newsl. 2010, 45, 48. [Google Scholar]
- Tran, G.; Heuzé, V.; Makkar, H.P.S. Insects in fish diets. Anim. Front. 2015, 5, 37–44. [Google Scholar]
- van Huis, A.; Oonincx, D.G.A.B. The environmental sustainability of insects as food and feed. A review. Agron. Sustain. Dev. 2017, 37, 43. [Google Scholar] [CrossRef]
Constituents (% as Fed Basis) | Replacement Levels of Fishmeal (%) | Fishmeal (FM) | Seafood Discards (SF) | |||
---|---|---|---|---|---|---|
0 | 25 | 50 | 75 | |||
Fishmeal | 20.5 | 15.4 | 10.3 | 5.1 | -- | -- |
Fresh seafood | 0 | 5.1 | 10.3 | 15.4 | -- | -- |
Corn gluten | 10.3 | 10.3 | 10.3 | 10.3 | -- | -- |
Wheat meal | 24.0 | 24.0 | 24.0 | 24.0 | -- | -- |
Soy protein concentrate | 3.2 | 3.2 | 3.2 | 3.2 | -- | -- |
Wheat flour | 35.1 | 35.1 | 35.1 | 35.1 | -- | -- |
Soybean oil | 2.1 | 2.1 | 2.1 | 2.1 | -- | -- |
Fish oil | 2.3 | 2.3 | 2.3 | 2.3 | -- | -- |
Premix 1 | 2.5 | 2.5 | 2.5 | 2.5 | -- | -- |
Proximate composition (% on DM) | ||||||
Dry matter | 94.20 | 94.35 | 94.10 | 94.07 | 91.50 | 93.10 |
Crude protein | 43.30 | 43.32 | 44.38 | 44.73 | 74.35 | 73.81 |
Total lipids | 11.34 | 11.29 | 11.58 | 11.71 | 10.49 | 12.78 |
Ash | 11.40 | 10.82 | 10.37 | 11.40 | 16.47 | 8.46 |
Crude fibre | 2.64 | 2.66 | 2.70 | 2.34 | -- | -- |
N-free extract | 31.32 | 31.91 | 30.97 | 29.82 | 0.69 | 4.94 |
Essential Amino Acid (% on DM basis) | ||||||
Isoleucine | 1.58 | 1.62 | 1.65 | 1.74 | 2.69 | 4.21 |
Leucine | 2.84 | 2.93 | 3.11 | 3.29 | 5.18 | 6.94 |
Threonine | 1.49 | 1.58 | 1.66 | 1.72 | 2.93 | 4.27 |
Phenylalanine | 1.91 | 2.03 | 2.09 | 2.16 | 3.43 | 4.28 |
Histidine | 0.88 | 0.79 | 0.77 | 0.74 | 2.12 | 1.97 |
Lysine | 2.43 | 2.54 | 2.66 | 2.71 | 5.20 | 6.78 |
Arginine | 3.10 | 3.19 | 3.23 | 3.34 | 4.07 | 5.36 |
Valine | 1.79 | 1.82 | 1.89 | 1.94 | 3.50 | 4.78 |
Methionine | 0.80 | 0.93 | 1.07 | 1.16 | 2.01 | 3.71 |
Fatty Acid profile (% total FAME) | ||||||
C14:0 (myristic) | 4.49 | 2.92 | 2.87 | 2.84 | 10.30 | 8.41 |
C16:0 (palmitic) | 21.61 | 21.32 | 20.97 | 19.99 | 25.61 | 24.03 |
C18:0 (stearic) | 6.08 | 4.87 | 4.69 | 4.58 | 8.47 | 4.11 |
C20:0 (arachidic) | 1.54 | 1.49 | 1.52 | 1.53 | 12.34 | 11.28 |
C16:1n-7 (palmitoleic) | 4.15 | 4.30 | 4.54 | 4.69 | 4.82 | 5.94 |
C18:1n-9 (oleic) | 22.11 | 22.74 | 22.88 | 23.02 | 16.82 | 19.48 |
C20:1n-9 (eiocosanoic) | 3.30 | 2.78 | 2.44 | 2.13 | 1.98 | 1.74 |
C18:2n-6 (linoleic) | 24.87 | 24.65 | 24.80 | 24.33 | 9.36 | 8.22 |
C20:4n-6 (arachidonic) | 0.80 | 0.78 | 0.79 | 0.77 | 0.82 | 0.87 |
C20:5n-3 (eicosapentaenoic, EPA) | 7.90 | 8.47 | 9.15 | 9.42 | 11.07 | 13.47 |
C22:6n-3 (docosahexaenoic, DHA) | 6.03 | 6.96 | 7.84 | 7.89 | 8.34 | 8.54 |
Particulars | Mean | Range |
---|---|---|
Temperature (°C) | 26.46 | 22–30 |
Salinity | 35.50 | 35–36.6 |
pH | 7.61 | 7.34–7.79 |
O2 (mg/L) | 8.30 | 7.86–8.58 |
Total ammonia (mg/L) | 0.33 | 0.50–0.21 |
Nitrite-N (mg/L) | <0.10 | <0.01–0.16 |
Nitrate-N (mg/L) | 0.05 | <0.05–0.15 |
Phosphate (mg/L) | <0.03 | <0.03 |
Parameters | Replacement Levels of Fishmeal (%) | SEM 1 | p-Value | |||
---|---|---|---|---|---|---|
0 | 25 | 50 | 75 | |||
Initial body weight (g) | 2.61 | 2.57 | 2.40 | 2.41 | 0.10 | -- |
Final body weight (g) | 20.46 ab | 18.76 b | 20.11 ab | 23.73 a | 2.85 | 0.045 |
Survival (%) | 87.65 | 86.93 | 87.78 | 88.68 | 6.35 | 0.074 |
Abdomen weight (g) | 9.73 B | 8.04 C | 9.47 B | 11.23 A | 1.78 | 0.004 |
Cephalothorax + exoskeleton weight (g) | 10.73 B | 8.72 C | 10.64 B | 12.50 A | 2.14 | 0.008 |
Total length (mm) | 150.15 B | 141.14 C | 149.79 B | 156.74 A | 8.49 | 0.004 |
Exoskeleton length (mm) | 35.38 B | 32.99 C | 35.40 B | 36.91 A | 2.26 | 0.003 |
Abdomen width (mm) | 14.40 B | 13.44 C | 14.23 B | 15.09 A | 1.01 | 0.007 |
AWG 2 (g/d) | 0.21 | 0.17 | 0.21 | 0.25 | 0.03 | 0.062 |
WG 3 (%) | 683.91 | 552.14 | 737.92 | 884.65 | 37.48 | 0.784 |
SGR 4 (%) | 6.89 ab | 6.60 b | 7.01 a | 7.04 a | 0.41 | 0.047 |
MY 5 (%) | 47.56 ab | 47.97 a | 47.09 b | 47.32 b | 0.38 | 0.017 |
K 6 (g/cm3) | 0.61 | 0.59 | 0.60 | 0.62 | 0.20 | 0.066 |
Parameters | Replacement Levels of Fishmeal (%) | SEM 1 | p-Value | |||
---|---|---|---|---|---|---|
0 | 25 | 50 | 75 | |||
pH | 6.96 | 6.99 | 7.00 | 6.98 | 0.14 | 0.241 |
L* (lightness) | 34.81 | 34.66 | 35.54 | 34.89 | 5.65 | 0.201 |
a* (redness) | 0.33 ab | 0.85 a | 0.31 b | 0.17 b | 0.19 | 0.035 |
b* (yellowness) | 3.75 a | 3.52 a | 2.67 b | 2.47 b | 0.36 | 0.035 |
W (whiteness) | 65.30 | 65.44 | 64.52 | 65.16 | 0.40 | 0.108 |
WBS | 1.91 a | 1.79 b | 1.78 b | 1.74 b | 0.53 | 0.029 |
Parameters | Replacement Levels of Fishmeal (%) | SEM 1 | p-Value | |||
---|---|---|---|---|---|---|
0 | 25 | 50 | 75 | |||
Moisture | 75.38 a | 74.31 b | 74.38 b | 74.03 b | 1.05 | 0.042 |
Crude protein | 21.48 b | 22.21 a | 21.90 a | 22.34 a | 0.75 | 0.036 |
Lipids | 0.40 b | 0.44 ab | 0.43 ab | 0.47 a | 0.045 | 0.043 |
Ash | 1.67 | 1.64 | 1.69 | 1.67 | 0.143 | 0.061 |
N-free extract | 1.07 | 1.40 | 1.60 | 1.49 | 0.695 | 0.062 |
Constituents (% as Fed Basis) | Replacement Levels of Fishmeal (%) | SEM 1 | p-Value | |||
---|---|---|---|---|---|---|
0 | 25 | 50 | 75 | |||
mg/g dry lipid basis | 804.26 | 717.49 | 729.45 | 735.68 | 6.22 | 0.120 |
C12:0 (lauric) | 0.57 | 0.67 | 0.46 | 0.49 | 0.02 | 0.068 |
C14:0 (myristic) | 0.88 | 1.05 | 0.62 | 0.72 | 0.12 | 0.085 |
C16:0 (palmitic) | 14.85 | 16.77 | 16.38 | 15.21 | 0.54 | 0.091 |
C17:0 (heptadecanoic) | 1.46 | 1.49 | 1.01 | 1.06 | 0.03 | 0.131 |
C18:0 (stearic) | 10.13 a | 9.55 a | 8.81 b | 8.50 b | 0.11 | 0.016 |
C20:0 (arachidic) | 0.26 | 0.45 | 0.12 | 0.16 | 0.21 | 0.053 |
Total SFA 2 | 28.17 a | 29.98 a | 27.40 b | 26.14 b | 0.62 | 0.029 |
C16:1n-7 (palmitoleic) | 2.21 | 2.81 | 2.52 | 2.99 | 0.15 | 0.109 |
C16:1n-9 (trans9-palmitoleic acid) | 0.57 | 0.37 | 0.51 | 0.39 | 0.04 | 0.074 |
C18:1n-9 (oleic) | 12.56 | 11.40 | 11.52 | 11.89 | 0.35 | 0.087 |
C20:1n-9 (eiocosanoic) | 1.14 a | 1.25 a | 0.57 b | 0.69 b | 0.07 | 0.032 |
Total MUFA 3 | 16.48 | 15.83 | 15.12 | 15.96 | 0.54 | 0.110 |
C18:2n-6 (linoleic) | 11.75 | 11.64 | 11.65 | 11.72 | 0.19 | 0.087 |
C18:3n-3 (α-linolenic) | 0.95 | 0.90 | 0.98 | 0.86 | 0.03 | 0.066 |
C18:3n-6 (γ-linolenic) | 0.25 | 0.24 | 0.13 | 0.27 | 0.03 | 0.079 |
C20:2n-6 | 0.74 | 0.82 | 0.78 | 0.61 | 0.06 | 0.112 |
C20:4n-6 (arachidonic) | 3.44 | 2.11 | 2.22 | 2.18 | 0.12 | 0.085 |
C20:5n-3 (eicosapentaenoic, EPA) | 19.05 ab | 18.57 b | 19.67 a | 19.38 ab | 0.28 | 0.024 |
C22:5n-6 (docosapentaenoic, DPA) | 1.26 | 1.23 | 1.20 | 1.24 | 0.08 | 0.219 |
C22:5n-3 (docosapentaenoate) | 0.88 | 0.93 | 0.93 | 0.91 | 0.07 | 0.087 |
C22:6n-3 (docosahexaenoic, DHA) | 17.03 b | 17.75 b | 19.92 ab | 20.73 a | 0.72 | 0.035 |
Total PUFA 4 | 55.35 b | 54.19 b | 57.48 a | 57.90 a | 0.95 | 0.023 |
Total n-6 5 | 17.44 a | 16.04 ab | 15.98 b | 16.02 ab | 0.98 | 0.045 |
Total n-3 6 | 37.91 b | 38.15 ab | 41.50 a | 41.88 a | 0.23 | 0.035 |
n-3/n-6 | 2.17 | 2.38 | 2.60 | 2.61 | 0.10 | 0.127 |
EPA/DHA | 1.12 | 1.05 | 0.99 | 0.93 | 0.09 | 0.114 |
AI (Atherogenic Index) | 0.22 a | 0.26 a | 0.19 b | 0.18 b | 0.02 | 0.047 |
TI (Thrombogenic Index) | 0.29 a | 0.28 a | 0.21 b | 0.22 b | 0.01 | 0.048 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ragni, M.; Colonna, M.A.; Di Turi, L.; Carbonara, C.; Giannico, F.; Cariglia, M.; Palma, G.; Tarricone, S. Partial Replacement of Fishmeal with Seafood Discards for Juvenile Penaeus japonicus: Effects on Growth, Flesh Quality, Chemical and Fatty Acid Composition. Fishes 2024, 9, 195. https://doi.org/10.3390/fishes9060195
Ragni M, Colonna MA, Di Turi L, Carbonara C, Giannico F, Cariglia M, Palma G, Tarricone S. Partial Replacement of Fishmeal with Seafood Discards for Juvenile Penaeus japonicus: Effects on Growth, Flesh Quality, Chemical and Fatty Acid Composition. Fishes. 2024; 9(6):195. https://doi.org/10.3390/fishes9060195
Chicago/Turabian StyleRagni, Marco, Maria Antonietta Colonna, Laura Di Turi, Claudia Carbonara, Francesco Giannico, Michela Cariglia, Giuseppe Palma, and Simona Tarricone. 2024. "Partial Replacement of Fishmeal with Seafood Discards for Juvenile Penaeus japonicus: Effects on Growth, Flesh Quality, Chemical and Fatty Acid Composition" Fishes 9, no. 6: 195. https://doi.org/10.3390/fishes9060195
APA StyleRagni, M., Colonna, M. A., Di Turi, L., Carbonara, C., Giannico, F., Cariglia, M., Palma, G., & Tarricone, S. (2024). Partial Replacement of Fishmeal with Seafood Discards for Juvenile Penaeus japonicus: Effects on Growth, Flesh Quality, Chemical and Fatty Acid Composition. Fishes, 9(6), 195. https://doi.org/10.3390/fishes9060195