Calmodulin Gene of Blunt Snout Bream (Megalobrama amblycephala): Molecular Characterization and Differential Expression after Aeromonas hydrophila and Cadmium Challenges
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fish Maintenance and Sample Collection
2.2. Cloning and Sequencing of Calmodulin in M. amblycephala
2.3. Bioinformatics Analyses of MaCalm Sequence
2.4. Blunt Snout Breams Challenge Experiments
2.4.1. Aeromonas hydrophila Infection
2.4.2. Waterborne Cd Exposure
2.5. Quantitative Real-Time PCR (qRT-PCR) Expression Analysis
2.6. Statistical Analysis
3. Results
3.1. Cloning and Sequence Characterization of the MaCalm
3.2. Phylogenetic Analysis of MaCalm
3.3. Tissue Distribution of MaCalm mRNA Transcripts
3.4. MaCalm Gene Expression in Response to A. hydrophila and Cd Challenge
3.5. Heat Shock Protein 70 (HSP70) Gene Expression in Response to A. hydrophila and Cd Challenge
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Menon, S.V.; Kumar, A.; Middha, S.K.; Paital, B.; Mathur, S.; Johnson, R.; Kademan, A.; Usha, T.; Hemavathi, K.N.; Dayal, S.; et al. Water physicochemical factors and oxidative stress physiology in fish, a review. Front. Environ. Sci. 2023, 11, 26. [Google Scholar] [CrossRef]
- Cheung, W.Y. Calmodulin plays a pivotal role in cellular regulation. Science 1980, 207, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Clapham, D.E. Calcium signaling. Cell 2007, 131, 1047–1058. [Google Scholar] [CrossRef]
- Chin, D.; Means, A.R. Calmodulin: A prototypical calcium sensor. Trends Cell Biol. 2000, 10, 322–328. [Google Scholar] [CrossRef] [PubMed]
- Friedberg, F.; Rhoads, A.R. Multiple calmodulin genes in fish. Mol. Biol. Rep. 2002, 29, 377–382. [Google Scholar] [CrossRef]
- Han, Z.R.; Li, J.L.; Wang, W.L.; Li, J.X.; Zhao, Q.; Li, M.J.; Wang, L.L.; Song, L.S. A calmodulin targeted by miRNA scaffold659_26519 regulates IL-17 expression in the early immune response of oyster Crassostrea gigas. Dev. Comp. Immunol. 2021, 124, 104180. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.X.; Zhang, K.; Yuan, F.J.; Qiu, Y.H.; Feng, W.P.; Shao, X.Y.; Su, C.Y.; Li, Y.; Dong, Y.M.; Wang, M.Q.; et al. Characterization of AwCaM1 from freshwater clam Anodonta woodiana and effect of Ca2+ and Cd2+ on its expressions. Asian J. Ecotox. 2021, 16, 227–238. (In Chinese) [Google Scholar]
- Li, S.; Jia, Z.R.; Li, X.J.; Geng, X.Y.; Sun, J.S. Calmodulin is a stress and immune response gene in Chinese mitten crab Eriocheir sinensis. Fish Shellfish Immunol. 2014, 40, 120–128. [Google Scholar] [CrossRef] [PubMed]
- Zhu, B.J.; Yu, Y.Y.; Gao, J.; Feng, Y.Y.; Tang, L.; Sun, Y.X.; Yang, L.L. Characterization and function of a novel calmodulin-like protein from crayfish Procambarus clarkii. Fish Shellfish Immunol. 2017, 67, 518–522. [Google Scholar] [CrossRef]
- Sengprasert, P.; Amparyup, P.; Tassanakajorn, A.; Wongpanya, R. Characterization and identification of calmodulin and calmodulin binding proteins in hemocyte of the black tiger shrimp (Penaeus monodon). Dev. Comp. Immunol. 2015, 50, 87–97. [Google Scholar] [CrossRef]
- Ji, P.F.; Yao, C.L.; Wang, Z.Y. Two types of calmodulin play different roles in Pacific white shrimp (Litopenaeus vannamei) defenses against Vibrio parahaemolyticus and WSSV infection. Fish Shellfish Immunol. 2011, 31, 260–268. [Google Scholar] [CrossRef]
- Zhang, L.T.; Lv, J.J.; Gao, B.Q.; Liu, P. Cloning and expression analysis of Portunus trituberculatus calmodulin cDNA. J. Fish. Sci. Chin. 2015, 22, 1150–1159. (In Chinese) [Google Scholar]
- Chen, T.; Ren, C.H.; Li, W.H.; Jiang, X.; Xia, J.J.; Wong, N.K.; Hu, C.Q. Calmodulin of the tropical sea cucumber: Gene structure, inducible expression and contribution to nitric oxide production and pathogen clearance during immune response. Fish Shellfish Immunol. 2015, 45, 231–238. [Google Scholar] [CrossRef]
- Huo, L.F.; Fu, G.D.; Wang, X.Y.; Ko, W.K.W.; Wong, A.O.L. Modulation of calmodulin gene expression as a novel mechanism for growth hormone feedback control by insulin-like growth factor in grass carp pituitary cells. Endocrinology 2005, 146, 3821–3835. [Google Scholar] [CrossRef] [PubMed]
- Li, S.W.; Wen, J.J.; Liu, S.G.; Long, Z.F. Cloning and characterization of a sex-reversal-related gene ECaM in Epinephelus akaara gonads. Prog. Biochem. Biophys. 2005, 32, 147–153. (In Chinese) [Google Scholar]
- Chen, S.Y.; Zhang, Z.Y.; Ji, H.J.; Li, P.; Zhao, Y.C.; Zhang, Z.W. Cloning and expression analysis of Calmodulin from the hybrid F1 of Acanthopagrus schlegelii male × Pagrus major female and P. major. Mar. Fish. 2018, 40, 435–446. (In Chinese) [Google Scholar]
- Patel, D.M.; Brinchmann, M.F.; Hanssen, A.; Iversen, M.H. Changes in the skin proteome and signs of allostatic overload type 2, chronic stress, in response to repeated overcrowding of lumpfish (Cyclopterus lumpus L.). Front. Mar. Sci. 2022, 9, 891451. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Y.; Chen, M.; Zeng, M. Hexavalent chromium-induced apoptosis in Hep3B cells is accompanied by calcium overload, mitochondrial and AIF translocation. Ecotoxicol. Environ. Saf. 2021, 208, 111391. [Google Scholar] [CrossRef]
- Martins, R.S.T.; Fuentes, J.; Almeida, O.; Power, D.M.; Canario, A.V.M. Ca2+-Calmodulin regulation of testicular androgen production in Mozambique tilapia (Oreochromis mossambicus). Gen. Comp. Endocrinol. 2009, 162, 153–159. [Google Scholar] [CrossRef]
- Wanford, J.J.; Odendall, C. Ca2+-calmodulin signalling at the host-pathogen interface. Curr. Opin. Microbiol. 2023, 72, 102267. [Google Scholar] [CrossRef]
- Chen, H.; Xin, L.; Wang, L.; Zhang, H.; Liu, R.; Wang, H.; Qiao, X.; Wang, L.; Song, L. Ca2+/Calmodulin-NOS/NO-TNFs pathway hallmarks the inflammation response of oyster during aerial exposure. Front. Mar. Sci. 2021, 7, 603825. [Google Scholar] [CrossRef]
- Zhang, L.; Pan, L.Q.; Xu, L.J.; Si, L.J. Effects of ammonia-N exposure on the concentrations of neurotransmitters, hemocyte intracellular signaling pathways and immune responses in white shrimp Litopenaeus vannamei. Fish Shellfish Immunol. 2018, 75, 48–57. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Tang, Y.; Sun, S.G.; Kim, T.; Ju, K.; Ri, S.; Du, X.Y.; Zhou, W.S.; Shi, W.; Li, S.G.; et al. Modulatory function of calmodulin on phagocytosis and potential regulation mechanisms in the blood clam Tegillarca granosa. Dev. Comp. Immunol. 2021, 116, 103910. [Google Scholar] [CrossRef] [PubMed]
- Guan, Z.B.; Shui, Y.; Zhou, X.; Xu, Z.H.; Zhao, C.Y.; Song, C.M.; Liao, X.R. Participation of calmodulin in ovarian maturation induced by eyestalk ablation in red swamp crayfish Procambarus clarkii. Aquac. Res. 2013, 44, 1625–1631. [Google Scholar] [CrossRef]
- Zhong, Z.X.; Chen, G.Z.; Tu, H.H.; Yao, X.Y.; Peng, X.; Lan, X.; Tang, Q.Y.; Yi, S.K.; Xia, Z.L.; Cai, M.Y.; et al. Transcriptomic analysis and functional gene expression in different stages of gonadal development of Macrobrachium rosenbergii. Fishes 2023, 8, 8020094. [Google Scholar] [CrossRef]
- Guo, H.H.; Lin, W.; Yang, L.P.; Qiu, Y.M.; Kuang, Y.; Yang, H.; Zhang, C.; Li, L.; Li, D.P.; Tang, R.; et al. Sub-chronic exposure to ammonia inhibits the growth of juvenile Wuchang bream (Megalobrama amblycephala) mainly by downregulation of growth hormone/insulin-like growth factor axis. Environ. Toxicol. 2021, 36, 1195–1205. [Google Scholar] [CrossRef]
- Jiang, D.X.; Li, S.N.; Liang, Y.X.; Xu, R.Y.; Qi, Q.; Wang, B.K.; Zhang, C.N. 16S rRNA and transcriptome analysis of the FOS-mediated alleviation of Aeromonas hydrophila-induced intestinal damage in Megalobrama amblycephala. Int. J. Biol. Macromol. 2023, 253, 127040. [Google Scholar] [CrossRef]
- Chen, C.J.; Wu, Y.; Li, J.W.; Wang, X.; Zeng, Z.H.; Xu, J.; Liu, Y.L.; Feng, J.T.; Chen, H.; He, Y.H.; et al. TBtools-II: A "one for all, all for one" bioinformatics platform for biological big-data mining. Mol. Plant 2023, 16, 1733–1742. [Google Scholar] [CrossRef]
- Jeanmougin, F.; Thompson, J.D.; Gouy, M.; Higgins, D.G.; Gibson, T.J. Multiple sequence alignment with Clustal X. Trends Biochem. Sci. 1998, 23, 403–405. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef]
- Alhaji Saganuwan, S. A modified arithmetical method of Reed and Muench for determination of a relatively ideal median lethal dose (LD50). Afr. J. Pharm. Pharmacol. 2011, 5, 1543–1546. [Google Scholar] [CrossRef]
- Xia, F. Identification, Detection and Construction of Green Fluorescent Protein Markers Strains of Pathogenic Aeromonas hydrophila Isolated from Megalobrama amblycephala. Master’s Thesis, Nanjing Agricultural University, Nanjing, China, 2012; pp. 1–78. Available online: https://kns.cnki.net/kcms2/article/abstract?v=WdAl4K16JyU-4njk9QQnnQ7VlwsH5-tJywpPtueH0phwhOdTiQGpZvnCSONautb8ZJEthsFlEjREQbGg-Z1k1aw6SM5XIGpcoMUFf2cm8L0DZNfw04QqTW3iuLtBboxotPn33yRkwnJ2VUNgKs7LRg==&uniplatform=NZKPT&language=CHS (accessed on 4 May 2024). (In Chinese).
- Gao, J.W.; Xi, B.W.; Chen, K.; Song, R.; Qin, T.; Xie, J.; Pan, L.K. The stress hormone norepinephrine increases the growth and virulence of Aeromonas hydrophila. MicrobiologyOpen 2019, 8, e00664. [Google Scholar] [CrossRef] [PubMed]
- Xue, C.Y.; Xi, B.W.; Ren, M.C.; Dong, J.J.; Xie, J.; Xu, P. Molecular cloning, tissue expression of gene Muc2 in blunt snout bream Megalobrama amblycephala and regulation after re-feeding. Chin. J. Oceanol. Limnol. 2015, 33, 291–298. [Google Scholar] [CrossRef]
- Li, W.H.; Ren, C.H.; Hu, C.Q.; Jiang, X.; Zhong, M. cDNA cloning and tissue distribution of calmodulin from sea cucumber (Stichopus monotuberculatus). South China Fish. Sci. 2014, 10, 75–81. (In Chinese) [Google Scholar]
- Cheung, W.Y. Role of calmodulin in brain function. Prog. Brain Res. 1982, 56, 237–253. [Google Scholar] [PubMed]
- Gao, Y.; Gillen, C.M.; Wheatly, M.G. Cloning and characterization of a calmodulin gene (CaM) in crayfish Procambarus clarkii and expression during molting. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2009, 152, 216–225. [Google Scholar] [CrossRef] [PubMed]
- Heiman, R.G.; Atkinson, R.C.; Andruss, B.F.; Bolduc, C.; Kovalick, G.E.; Beckingham, K. Spontaneous avoidance behavior in Drosophila null for calmodulin expression. Proc. Natl. Acad. Sci. USA 1996, 93, 2420–2425. [Google Scholar] [CrossRef]
- Luo, S.W.; Xie, F.X.; Liu, Y.; Wang, W.N. Characterization and expression analysis of Calmodulin (CaM) in orange-spotted grouper (Epinephelus coioides) in response to Vibrio alginolyticus challenge. Ecotoxicology 2015, 24, 1775–1787. [Google Scholar] [CrossRef]
- Huo, L.F.; Wong, A.O.L. Genomic structure and transcriptional regulation of grass carp calmodulin gene. Biochem. Biophys. Res. Commun. 2009, 390, 827–833. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, Q.; Li, Y.; Bi, L.; Jin, L.; Peng, R. Toxic effects of cadmium on fish. Toxics 2022, 10, 622. [Google Scholar] [CrossRef]
- Behra, R. In vitro effects of cadmium, zinc and lead on calmodulin-dependent actions in Oncorhynchus mykiss, Mytilus sp., and Chlamydomonas reinhardtii. Arch. Environ. Contam. Toxicol. 1993, 24, 21–27. [Google Scholar] [CrossRef]
- Suzuki, Y.; Chao, S.H.; Zysk, J.R.; Cheung, W.Y. Stimulation of calmodulin by cadmium ion. Arch. Toxicol. 1985, 57, 205–211. [Google Scholar] [CrossRef]
- Ming, J.H.; Xie, J.; Xu, P.; Liu, W.B.; Ge, X.P.; Liu, B.; He, Y.J.; Cheng, Y.F.; Zhou, Q.L.; Pan, L.K. Molecular cloning and expression of two HSP70 genes in the Wuchang bream (Megalobrama amblycephala Yih). Fish Shellfish Immunol. 2010, 28, 407–418. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.H.; Guo, Z.X.; Wang, A.L. The protective effects of taurine on oxidative stress, cytoplasmic free-Ca2+ and apoptosis of pufferfish (Takifugu obscurus) under low temperature stress. Fish Shellfish Immunol. 2018, 77, 457–464. [Google Scholar] [CrossRef] [PubMed]
- Baharloei, M.; Heidari, B.; Zamani, H.; Hadavi, M. Effects of Pro-Tex® on the expression of Hsp70 gene and immune response parameters in the Persian sturgeon fingerlings, Acipenser persicus, infected with Aeromonas hydrophila. J. Appl. Ichthyol. 2020, 36, 393–401. [Google Scholar] [CrossRef]
- Zhang, C.N.; Lu, K.L.; Wang, J.H.; Qian, Q.; Yuan, X.Y.; Pu, C.C. Molecular cloning, expression HSP70 and its response to bacterial challenge and heat stress in Microptenus salmoides. Fish Physiol. Biochem. 2020, 46, 2389–2402. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Mohapatra, A.; Sahoo, P.K. Expression analysis of heat shock protein genes during Aeromonas hydrophila infection in rohu, Labeo rohita, with special reference to molecular characterization of Grp78. Cell Stress Chaperones 2015, 20, 73–84. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Cong, X.; Suo, J.J.; Cao, R.F.; Jiang, Z.L.; Gao, S.S.; Tian, W.R. Calcium/Calmodulin-dependent protein kinase II contributes to HSP70 expression in mouse embryonic fibroblasts. Acta Agriculturae Boreali-Sinica 2012, 27, 213–217. (In Chinese) [Google Scholar]
- Huang, M.; Wei, J.N.; Peng, W.X.; Liang, J.; Zhao, C.; Qian, Y.; Dai, G.; Yuan, J.; Pan, F.Y.; Xue, B.; et al. The association of CaM and Hsp70 regulates S-phase arrest and apoptosis in a spatially and temporally dependent manner in human cells. Cell Stress Chaperones 2009, 14, 343–353. [Google Scholar] [CrossRef]
Gene Name | Primer Sequence (5′→3′) | Applications | Amplicon Size (bp) |
---|---|---|---|
CalmF1 | TGCTGARTTYAAGGAGGC | Homologous cloning | |
CalmR1 | TCATYTGTACRAAYTCTTCG | Homologous cloning | |
CalmA1 | GGTTCTGACCGAGCGA | 5′ RACE | |
CalmA2 | TGCCCAGCTCTTTAGTTGTG | 5′ RACE | |
CalmA3 | TACCGTCACCATCCTTATCA | 5′ RACE | |
CalmB1 | TTGACAAGGATGGGAACGGCTACA | 3′ RACE | |
CalmB2 | AACCTGGGCGAGAAGCTAACGGAT | 3′ RACE | |
Calm-qF | CTAGTGGCGATGTTTGGGCT | qRT-PCR | 126 |
Calm-qR | CCCAGAACACTCCGACAGAC | qRT-PCR | |
HSP70-qF | CGACGCCAACGGAATCCTAAAT | qRT-PCR | 98 |
HSP70-qR | CTTTGCTCAGTCTGCCCTTGT | qRT-PCR | |
RPII-F | CGCGAGTCATTCCTGTAACATC | qRT-PCR | 97 |
RPII-R | TGACCCTTCCTCAGCTTTACCA | qRT-PCR |
Species | GenBank Accession Number | Length of Amino Acid Sequence | Identity (%) | pI | MW (KDa) |
---|---|---|---|---|---|
Danio rerio Calm2a | NP_956290.1 | 149 | 100 | 4.09 | 16.84 |
Danio rerio Calm1a | AAH97062.1 | 149 | 100 | 4.09 | 16.84 |
Sebastiscus marmoratus Calm | ACG50685.1 | 149 | 100 | 4.09 | 16.84 |
Astyanax mexicanus Calm | KAG9265857.1 | 149 | 100 | 4.09 | 16.84 |
Oreochromis mossambicus Calm | AAS00645.1 | 149 | 99.33 | 4.05 | 16.85 |
Takifugu rubripes Calm | XP_003971505.1 | 149 | 100 | 4.09 | 16.84 |
Ctenopharyngodon idella Calm | XP_051724944.1 | 149 | 100 | 4.09 | 16.84 |
Cynoglossus semilaevis Calm | XP_008310981.1 | 201 | 96.73 | 4.09 | 17.30 |
Oncorhynchus nerka Calm | XP_029543691.1 | 149 | 100 | 4.09 | 16.84 |
Oryzias latipes Calm | JC1305 | 149 | 100 | 4.09 | 16.84 |
Epinephelus bruneus Calm | AEB31285.1 | 149 | 100 | 4.09 | 16.84 |
Salvelinus alpinus Calm | XP_023842621.1 | 149 | 100 | 4.10 | 16.85 |
Silurus asotus Calm2a | KAI5623426.1 | 203 | 97.39 | 4.28 | 17.39 |
Takifugu flavidus Calm1 | TWW78027.1 | 179 | 97.39 | 4.09 | 17.23 |
Anabarilius graham Calm2b | ROI81809.1 | 158 | 99.35 | 4.09 | 16.84 |
Scophthalmus maximus Calm2 | AWP19722.1 | 165 | 97.39 | 4.14 | 17.38 |
Tetronarce californica Calm | P62151.2 | 149 | 100 | 4.09 | 16.84 |
Carassius auratus Calm | XP_026090521.1 | 149 | 100 | 4.09 | 16.84 |
Esox lucius Clam2a | NP_001290903.1 | 149 | 100 | 4.09 | 16.84 |
Scyliorhinus canicular Calm2a | XP_038669580.1 | 149 | 100 | 4.09 | 16.84 |
Carcharodon carcharias Calm2a | XP_041067107.1 | 149 | 100 | 4.09 | 16.84 |
Megalobrama amblycephala Calm | OR908926 | 149 | 100 | 4.09 | 16.84 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, J.; Wu, H.; Tian, X.; Wu, J.; Xie, M.; Xiong, Z.; Ou, D.; Xie, Z.; Song, R. Calmodulin Gene of Blunt Snout Bream (Megalobrama amblycephala): Molecular Characterization and Differential Expression after Aeromonas hydrophila and Cadmium Challenges. Fishes 2024, 9, 182. https://doi.org/10.3390/fishes9050182
Gao J, Wu H, Tian X, Wu J, Xie M, Xiong Z, Ou D, Xie Z, Song R. Calmodulin Gene of Blunt Snout Bream (Megalobrama amblycephala): Molecular Characterization and Differential Expression after Aeromonas hydrophila and Cadmium Challenges. Fishes. 2024; 9(5):182. https://doi.org/10.3390/fishes9050182
Chicago/Turabian StyleGao, Jinwei, Hao Wu, Xing Tian, Jiayu Wu, Min Xie, Zhenzhen Xiong, Dongsheng Ou, Zhonggui Xie, and Rui Song. 2024. "Calmodulin Gene of Blunt Snout Bream (Megalobrama amblycephala): Molecular Characterization and Differential Expression after Aeromonas hydrophila and Cadmium Challenges" Fishes 9, no. 5: 182. https://doi.org/10.3390/fishes9050182
APA StyleGao, J., Wu, H., Tian, X., Wu, J., Xie, M., Xiong, Z., Ou, D., Xie, Z., & Song, R. (2024). Calmodulin Gene of Blunt Snout Bream (Megalobrama amblycephala): Molecular Characterization and Differential Expression after Aeromonas hydrophila and Cadmium Challenges. Fishes, 9(5), 182. https://doi.org/10.3390/fishes9050182