Effects of Dietary Chlorogenic Acid on the Growth, Lipid Metabolism, Antioxidant Capacity, and Non-Specific Immunity of Asian Swamp Eel (Monopterus albus)
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Experimental Design and Feeding Management
2.3. Sample Collection and Analysis
2.3.1. Growth Indicators
2.3.2. Blood Physiological and Biochemical Indicators
2.3.3. Non-Specific Immunity and Antioxidant Enzyme Indexes
2.4. Statistical Analysis
3. Results
3.1. Growth Performance
3.2. Blood Parameters
3.3. Antioxidant Enzyme Activity
3.4. Non-Specific Immune Enzyme Activity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Ministry of Agriculture and Rural Affairs. China Fishery Statistical Yearbook; China Agriculture Press: Beijing, China, 2024; p. 25.
- Zhang, W.N.; Zhao, J.P.; Ma, Y.F.; Li, J.; Chen, X.H. The effective components of herbal medicines used for prevention and control of fish diseases. Fish Shellfish Immun. 2022, 126, 73–83. [Google Scholar] [CrossRef] [PubMed]
- Tadese, D.A.; Song, C.Y.; Sun, C.X.; Liu, B.; Liu, B.; Zhou, Q.L.; Xu, P.; Ge, X.P.; Liu, M.Y.; Xu, X.D.; et al. The role of currently used medicinal plants in aquaculture and their action mechanisms: A review. Rev. Aquacult. 2022, 14, 816–847. [Google Scholar] [CrossRef]
- Ahmadifar, E.; Yousefi, M.; Karimi, M.; Raieni, R.F.; Dadar, M.; Yilmaz, S.; Dawood, M.A.O.; Abdel-Latif, H.M.R. Benefits of dietary polyphenols and polyphenol-rich additives to aquatic animal health: An overview. Rev. Fish. Sci. Aquac. 2021, 29, 478–511. [Google Scholar] [CrossRef]
- Zhu, F.A. review on the application of herbal medicines in the disease control of aquatic animals. Aquaculture 2020, 526, 735422. [Google Scholar] [CrossRef]
- Naveed, M.; Hejazi, V.; Abbas, M.; Kamboh, A.A.; Khan, G.J.; Shumzaid, M.; Ahmad, F.; Babazadeh, D.; Xia, F.F.; Modarresi-Ghazani, F.; et al. Chlorogenic acid (CGA): A pharmacological review and call for further research. Biomed. Pharmacother. 2018, 97, 67–74. [Google Scholar] [CrossRef]
- Nwafor, E.-O.; Lu, P.; Zhang, Y.; Liu, R.; Peng, H.; Xing, B.; Liu, Y.; Li, Z.; Zhang, K.; Zhang, Y.; et al. Chlorogenic acid: Potential source of natural drugs for the therapeutics of fibrosis and cancer. Transl. Oncol. 2022, 15, 101294. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, Q.; Ci, X.; Chen, S.; Xie, Z.; Li, H.; Zhang, H.; Chen, F.; Xie, Q. Evaluation of the efficacy of chlorogenic acid in reducing small intestine injury, oxidative stress, and inflammation in chickens challenged with Clostridium perfringens type A. Poultry Sci. 2020, 99, 6606–6618. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Y.; Bai, D.; Li, Y.; He, X.; Ito, K.; Liu, K.; Tan, H.; Zhen, W.; Zhang, B.; et al. Dietary supplementation with chlorogenic acid enhances antioxidant capacity, which promotes growth, jejunum barrier function, and cecum microbiota in broilers under high stocking density stress. Animals 2023, 13, 303. [Google Scholar] [CrossRef]
- Liu, H.W.; Zhao, J.S.; Li, K.; Deng, W. Effects of chlorogenic acids-enriched extract from Eucommia ulmoides leaves on growth performance, stress response, antioxidant status and meat quality of lambs subjected or not to transport stress. Anim. Feed Sci. Technol. 2018, 238, 47–56. [Google Scholar] [CrossRef]
- Lu, H.; Tian, Z.; Cui, Y.; Liu, Z.; Ma, X. Chlorogenic acid: A comprehensive review of the dietary sources, processing effects, bioavailability, beneficial properties, mechanisms of action, and future directions. Compr. Rev. Food Sci. Food Saf. 2020, 19, 3130–3158. [Google Scholar] [CrossRef]
- Sun, W.T.; Li, X.Q.; Xu, H.B.; Chen, J.N.; Xu, X.Y.; Leng, X.J. Effects of dietary chlorogenic acid on growth, flesh quality and serum biochemical indices of grass carp (Ctenopharyngodon idella). Aquacult. Nutr. 2017, 23, 1254–1263. [Google Scholar] [CrossRef]
- Jin, X.; Su, M.; Liang, Y.; Li, Y. Effects of chlorogenic acid on growth, metabolism, antioxidation, immunity, and intestinal flora of crucian carp (Carassius auratus). Front. Microbiol. 2023, 13, 1084500. [Google Scholar] [CrossRef] [PubMed]
- Shang, G.J.; Liu, S.Y.; Zhu, R.; Li, D.L.; Meng, S.T.; Wang, Y.T.; Wu, L.F. Chlorogenic acid improves common carp (Cyprinus carpio) liver and intestinal health through Keap-1/Nrf2 and NF-κB signaling pathways: Growth performance, immune response and antioxidant capacity. Fish Shellfish Immunol. 2024, 146, 109378. [Google Scholar] [CrossRef]
- Yin, P.; Xie, S.; Zhuang, Z.; Fang, H.; Tian, L.; Liu, Y.; Niu, J. Chlorogenic acid improves health in juvenile largemouth bass (Micropterus salmoides) fed high-fat diets: Involvement of lipid metabolism, antioxidant ability, inflammatory response, and intestinal integrity. Aquaculture 2021, 545, 737169. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Z.; Li, J.; Duan, Y.F.; Niu, J.; Wang, J.; Huang, Z.; Lin, H.Z. Effects of dietary chlorogenic acid on growth performance, antioxidant capacity of white shrimp Litopenaeus vannamei under normal condition and combined stress of low-salinity and nitrite. Fish Shellfish Immunol. 2015, 43, 337–345. [Google Scholar] [CrossRef]
- Xu, G.; Xing, W.; Yu, H.; Jiang, N.; Ma, Z.; Luo, L.; Li, T. Evaluation of chlorogenic acid supplementation in koi (Cyprinus carpio) diet: Growth performance, body color, antioxidant activity, serum biochemical parameters, and immune response. Aquacult. Nutr. 2022, 10, 2717003. [Google Scholar] [CrossRef]
- Ghafarifarsani, H.; Nedaei, S.; Hoseinifar, S.H.; Van, D.H. Effect of different levels of chlorogenic acid on growth performance, immunological responses, antioxidant defense, and disease resistance of rainbow trout (Oncorhynchus mykiss) juveniles. Aquacult. Nutr. 2023, 13, 3679002. [Google Scholar] [CrossRef]
- Jiang, H.; He, K.; Luo, X.; Zhang, M.; Shao, J.; Gan, L.; Lin, Y.; Qin, C.; Zhang, H.; Wei, Q. Chlorogenic acid attenuates inflammation, oxidative stress, apoptosis and protects head kidney macrophage of yellow catfish from ammonia toxicity. Aquac. Res. 2022, 53, 168–177. [Google Scholar] [CrossRef]
- Ma, J.; Kong, L.; Lin, H.; Zhou, S.; Lin, Y.; Qin, H.; Long, Z.; Liu, L.; Huang, Z.; Li, Z. Effects of chlorogenic acid supplementation in high-fat diet on antioxidant capacity, immunity, and intestinal health of spotted sea bass (Lateolabrax maculatus). Aquacult. Int. 2023, 32, 4159–4176. [Google Scholar] [CrossRef]
- Yuan, Q.; Wu, C.; Yang, H.; Lv, W.; Huang, W.; Zhang, Q.; Zhou, W. Effects of four types of natural bait on water quality, feeding, growth, and antioxidant enzyme activity of Monopterus albus in a recirculating aquaculture system. Front. Physiol. 2024, 15, 1403391. [Google Scholar] [CrossRef]
- Zhao, W.; Yao, R.; Wei, H.L.; Guo, Y.C.; Chen, A.Q.; Chen, B.Y. Astaxanthin, bile acid and chlorogenic acid attenuated the negative effects of high-fat diet on the growth, lipid deposition, and liver health of Oncorhynchus mykiss. Aquaculture 2023, 567, 739255. [Google Scholar] [CrossRef]
- Fu, Y.W.; Liang, X.X.; Li, D.H.; Gao, H.; Wang, Y.D.; Li, W.T.; Xu, K.; Hu, F.Z. Effect of dietary tryptophan on growth, intestinal microbiota, and intestinal gene expression in an improved triploid Crucian Carp. Front. Nutr. 2021, 8, 676035. [Google Scholar] [CrossRef] [PubMed]
- Esmaeili, M. Blood Performance: A new formula for fish growth and health. Biology 2021, 10, 1236. [Google Scholar] [CrossRef] [PubMed]
- Koriem, K.M.M.; Arbid, M.S.S.; Gomaa, N.E. The role of chlorogenic acid supplementation in anemia and mineral disturbances induced by 4-tert-octylphenol toxicity. J. Diet. Suppl. 2018, 15, 55–71. [Google Scholar] [CrossRef]
- Bagdas, D.; Gul, N.Y.; Topal, A.; Tas, S.; Ozyigit, M.O.; Cinkilic, N.; Gul, Z.; Etoz, B.C.; Ziyanok, S.; Inan, S.; et al. Pharmacologic overview of systemic chlorogenic acid therapy on experimental wound healing. N-S Arch. Pharmacol. 2014, 387, 1101–1116. [Google Scholar] [CrossRef]
- Giardina, B. Hemoglobin: Multiple molecular interactions and multiple functions. An example of energy optimization and global molecular organization. Mol. Asp. Med. 2022, 84, 101040. [Google Scholar] [CrossRef]
- Kasirer-Friede, A.; Tjahjono, W.; Eto, K.; Shattil, S.J. SHARPIN at the nexus of integrin, immune, and inflammatory signaling in human platelets. Proc. Natl. Acad. Sci. USA 2019, 116, 4983–4988. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Lam, K.L.; Hu, J.M.; Ge, S.H.; Zhou, A.R.; Zheng, B.D.; Zeng, S.X.; Lin, S.L. Chlorogenic acid alleviates obesity and modulates gut microbiota in high-fat-fed mice. Food Sci. Nutr. 2019, 7, 579–588. [Google Scholar] [CrossRef]
- Zhang, L.; Chang, C.; Liu, Y.; Chen, Z. Effect of chlorogenic acid on disordered glucose and lipid metabolism in db/db mice and its mechanism. Acta Acad. Med. Sin. 2011, 33, 281–286. [Google Scholar]
- Yuan, Y.L.; Gong, X.; Zhang, L.; Jiang, R.; Yang, J.X.; Wang, B.; Wan, J.Y. Chlorogenic acid ameliorated concanavalin A-induced hepatitis by suppression of Toll-like receptor 4 signaling in mice. Int. Immunopharmacol. 2017, 44, 97–104. [Google Scholar] [CrossRef]
- Iheanacho, S.C.; Odo, G.E. Neurotoxicity, oxidative stress biomarkers and haematological responses in African catfish (Clarias gariepinus) exposed to polyvinyl chloride microparticles. Comp. Biochem. Phys. C Toxicol. Pharmacol. 2020, 232, 108741. [Google Scholar] [CrossRef] [PubMed]
- Ighodaro, O.; Akinloye, O. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alex. J. Med. 2018, 54, 287–293. [Google Scholar] [CrossRef]
- Zhang, J.Z.; Wang, Z.Q.; Shi, Y.; Xia, L.Q.; Hu, Y.; Zhong, L. Protective effects of chlorogenic acid on growth, intestinal inflammation, hepatic antioxidant capacity, muscle development and skin color in channel catfish Ictalurus punctatus fed an oxidized fish oil diet. Fish Shellfish Immun. 2023, 134, 108511. [Google Scholar] [CrossRef] [PubMed]
- Dragun, Z.; Marijic, V.F.; Krasnici, N.; Ramani, S.; Valic, D.; Rebok, K.; Kostov, V.; Jordanova, M.; Erk, M. Malondialdehyde concentrations in the intestine and gills of Vardar chub (Squalius vardarensis Karaman) as indicator of lipid peroxidation. Environ. Sci. Pollut. R 2017, 24, 16917–16926. [Google Scholar] [CrossRef] [PubMed]
- Yin, X.; He, X.K.; Wu, L.Y.; Yan, D.F.; Yan, S.X. Chlorogenic acid, the main antioxidant in coffee, reduces radiation-induced apoptosis and DNA damage via NF-E2-related Factor 2 (Nrf2) activation in hepatocellular carcinoma. Oxid. Med. Cell. Longev. 2022, 2022, 4566949. [Google Scholar] [CrossRef]
- Tosovic, J.; Markovic, S.; Markovic, J.M.D.; Mojovic, M.; Milenkovic, D. Antioxidative mechanisms in chlorogenic acid. Food Chem. 2017, 237, 390–398. [Google Scholar] [CrossRef]
- Flores-Mendez, L.C.; Lizarraga-Velazquez, C.E.; Sanchez-Gutierrez, E.Y.; Arrizon, J.; Leyva-Lopez, N.; Hernandez, C. Study of the effect of dietary agavin supplementation in blood parameters and antioxidant enzymes of juvenile Nile tilapia (Oreochromis niloticus) under stress conditions. Fishes 2022, 7, 340. [Google Scholar] [CrossRef]
- Hu, X.; Yang, H.L.; Yan, Y.Y.; Zhang, C.X.; Ye, J.D.; Lu, K.L.; Hu, L.H.; Zhang, J.J.; Ruan, L.; Sun, Y.Z. Effects of fructooligosaccharide on growth, immunity and intestinal microbiota of shrimp (Litopenaeus vannamei) fed diets with fish meal partially replaced by soybean meal. Aquacult. Nutr. 2019, 25, 194–204. [Google Scholar] [CrossRef]
- Saurabh, S.; Sahoo, P.K. Lysozyme: An important defence molecule of fish innate immune system. Aquac. Res. 2008, 39, 223–239. [Google Scholar] [CrossRef]
- Tang, J.F.; Cai, J.; Liu, R.; Wang, J.M.; Lu, Y.S.; Wu, Z.H.; Jian, J.C. Immunostimulatory effects of artificial feed supplemented with a Chinese herbal mixture on Oreochromis niloticus against Aeromonas hydrophila. Fish Shellfish Immuu. 2014, 39, 401–406. [Google Scholar] [CrossRef]
- Huang, H.; Pan, L.Q.; Pan, S.S.; Song, M.S. Effects of dietary herbal formulae combined by Astragalus polysaccharides, chlorogenic acid and allicin in different combinations and proportions on growth performance, non-specific immunity, antioxidant status, vibriosis resistance and damage indexes of Litopenaeus vannamei. Aquac. Res. 2018, 49, 701–716. [Google Scholar]
- Park, S.H.; Baek, S.I.; Yun, J.; Lee, S.; Yoon, D.Y.; Jung, J.K.; Jung, S.H.; Hwang, B.Y.; Hong, J.T.; Han, S.B.; et al. IRAK4 as a molecular target in the amelioration of innate immunity-related endotoxic shock and acute liver injury by chlorogenic Acid. J. Immunol. 2015, 194, 1122–1130. [Google Scholar] [CrossRef]
Item | Cont. | 0.50% | 1.00% | 1.50% |
---|---|---|---|---|
Initial weight (g) | 25.43 ± 0.39 | 25.64 ± 0.33 | 25.21 ± 0.28 | 25.26 ± 0.24 |
Final weight (g) | 33.65 ± 0.79 c | 37.03 ± 0.84 b | 42.59 ± 0.95 a | 35.71 ± 0.87 b |
WG (%) | 32.31 ± 1.58 c | 44.42 ± 4.40 b | 68.94 ± 2.36 a | 41.38 ± 3.38 b |
SGR (%) | 0.86 ± 0.04 c | 1.23 ± 0.10 b | 1.88 ± 0.13 a | 0.88 ± 0.12 c |
SR (%) | 96.13 ± 0.01 b | 97.77 ± 0.01 ab | 98.87 ± 0.01 a | 90.57 ± 0.02 c |
Item | Cont. | 0.50% | 1.00% | 1.50% |
---|---|---|---|---|
WBC (109/L) | 167.40 ± 17.18 | 171.70 ± 14.24 | 194.90 ± 19.63 | 196.30 ± 23.21 |
RBC (1012/L) | 1.50 ± 0.32 | 1.28 ± 0.33 | 1.82 ± 0.25 | 1.71 ± 0.43 |
HGB (g/L) | 134.00 ± 28.48 b | 150.30 ± 19.34 a | 193.60 ± 22.03 a | 170.30 ± 33.86 a |
HCT (%) | 25.03 ± 4.71 | 22.93 ± 5.28 | 32.50 ± 3.84 | 29.43 ± 4.65 |
MCV (fL) | 168.10 ± 17.16 | 180.30 ± 9.61 | 179.30 ± 5.12 | 175.10 ± 17.96 |
RDW (%) | 17.07 ± 4.25 | 21.87 ± 13.42 | 12.03 ± 0.68 | 21.00 ± 13.86 |
PDW | 19.36 ± 0.49 | 19.56 ± 0.15 | 19.50 ± 0.44 | 19.73 ± 0.32 |
PCT (‰) | 0.29 ± 0.01 a | 0.37 ± 0.08 b | 0.33 ± 0.03 b | 0.27 ± 0.06 a |
Item | Cont. | 0.50% | 1.00% | 1.50% |
---|---|---|---|---|
TG (mmol/L) | 2.53 ± 0.35 a | 1.31 ± 0.08 b | 1.42 ± 0.19 b | 1.54 ± 0.33 b |
CHO (mmol/L) | 3.23 ± 0.35 b | 3.71 ± 0.29 b | 4.93 ± 0.48 a | 5.40 ± 0.22 a |
HDL (mmol/L) | 0.58 ± 0.09 d | 1.15 ± 0.07 c | 1.59 ± 0.03 b | 1.99 ± 0.01 a |
LDL (mmol/L) | 1.56 ± 0.54 a | 0.67 ± 0.09 b | 0.72 ± 0.35 b | 0.68 ± 0.23 b |
GLU (mmol/L) | 5.62 ± 0.31 a | 2.35 ± 0.33 d | 3.77 ± 0.14 c | 4.50 ± 0.42 b |
GSP (mmol/L) | 2.08 ± 0.10 a | 0.96 ± 0.02 d | 1.10 ± 0.05 c | 1.43 ± 0.08 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, H.; Wu, C.; Yuan, Q.; Lv, W.; Qiu, J.; Li, M.; Zhang, Q.; Zhou, W. Effects of Dietary Chlorogenic Acid on the Growth, Lipid Metabolism, Antioxidant Capacity, and Non-Specific Immunity of Asian Swamp Eel (Monopterus albus). Fishes 2024, 9, 496. https://doi.org/10.3390/fishes9120496
Yang H, Wu C, Yuan Q, Lv W, Qiu J, Li M, Zhang Q, Zhou W. Effects of Dietary Chlorogenic Acid on the Growth, Lipid Metabolism, Antioxidant Capacity, and Non-Specific Immunity of Asian Swamp Eel (Monopterus albus). Fishes. 2024; 9(12):496. https://doi.org/10.3390/fishes9120496
Chicago/Turabian StyleYang, Hang, Chengcheng Wu, Quan Yuan, Weiwei Lv, Junqiang Qiu, Mingyou Li, Qinghua Zhang, and Wenzong Zhou. 2024. "Effects of Dietary Chlorogenic Acid on the Growth, Lipid Metabolism, Antioxidant Capacity, and Non-Specific Immunity of Asian Swamp Eel (Monopterus albus)" Fishes 9, no. 12: 496. https://doi.org/10.3390/fishes9120496
APA StyleYang, H., Wu, C., Yuan, Q., Lv, W., Qiu, J., Li, M., Zhang, Q., & Zhou, W. (2024). Effects of Dietary Chlorogenic Acid on the Growth, Lipid Metabolism, Antioxidant Capacity, and Non-Specific Immunity of Asian Swamp Eel (Monopterus albus). Fishes, 9(12), 496. https://doi.org/10.3390/fishes9120496