Optimized Utilization of Organic Carbon in Aquaculture Biofloc Systems: A Review
Abstract
:1. Introduction
1.1. Background
1.2. Components of a BFT System
1.3. Current Status of Carbon Loss in BFT Systems
2. C/N Ratio Manipulation
3. Optimization of Carbon Types
3.1. Instant-Release Carbon
3.2. Slow-Release Carbon
4. Optimization of Carbon Addition Strategy
5. Integration with Other Technologies
6. Challenges and Perspectives
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Yan, W.; Zhong, C. The coordination of aquaculture development with environment and resources: Based on measurement of provincial eco-efficiency in China. Int. J. Environ. Res. Public Health 2022, 19, 8010. [Google Scholar] [CrossRef]
- Boyd, C.E.; D’Abramo, L.R.; Glencross, B.D.; Huyben, D.C.; Juarez, L.M.; Lockwood, G.S.; McNevin, A.A.; Tacon, A.G.J.; Teletchea, F.; Tomasso, J.R.; et al. Achieving sustainable aquaculture: Historical and current perspectives and future needs and challenges. J. World Aquac. Soc. 2020, 51, 578–633. [Google Scholar] [CrossRef]
- Luthman, O.; Jonell, M.; Rönnbäck, P.; Troell, M. Strong and weak sustainability in Nordic aquaculture policies. Aquaculture 2022, 550, 737841. [Google Scholar] [CrossRef]
- Yu, Y.-B.; Choi, J.-H.; Lee, J.-H.; Jo, A.H.; Lee, K.M.; Kim, J.-H. Biofloc technology in fish aquaculture: A review. Antioxidants 2023, 12, 398. [Google Scholar] [CrossRef] [PubMed]
- Nayak, S.; Yogev, U.; Kpordzaxor, Y.; Zhu, Z.; Gur, N.; Gross, A.; Zilberg, D. From fish excretions to high-protein dietary ingredient: Feeding intensively cultured barramundi (Lates calcarifer) a diet containing microbial biomass (biofloc) from effluent of an aquaculture system. Aquaculture 2023, 562, 738780. [Google Scholar] [CrossRef]
- Pinho, S.M.; de Lima, J.P.; Tarigan, N.B.; David, L.H.; Portella, M.C.; Keesman, K.J. Modelling FLOCponics systems: Towards improved water and nitrogen use efficiency in biofloc-based fish culture. Biosyst. Eng. 2023, 229, 96–115. [Google Scholar] [CrossRef]
- Majhi, S.S.; Singh, S.K.; Biswas, P.; Debbarma, R.; Parhi, J.; Ngasotter, S.; Waikhom, G.; Meena, D.K.; Devi, A.G.; Mahanand, S.S.; et al. Effect of stocking density on growth, water quality changes and cost efficiency of butter catfish (Ompok bimaculatus) during seed rearing in a biofloc system. Fishes 2023, 8, 61. [Google Scholar] [CrossRef]
- Ridha, M.T.; Hossain, M.A.; Azad, I.S.; Saburova, M. Effects of three carbohydrate sources on water quality, water consumption, bacterial count, growth and muscle quality of Nile tilapia (Oreochromis niloticus) in a biofloc system. Aquac. Res. 2020, 51, 4225–4237. [Google Scholar] [CrossRef]
- Qiao, G.; Zhang, M.M.; Li, Y.; Xu, C.; Xu, D.H.; Zhao, Z.G.; Zhang, J.L.; Li, Q. Biofloc technology (BFT): An alternative aquaculture system for prevention of Cyprinid herpesvirus 2 infection in gibel carp (Carassius auratus gibelio). Fish Shellfish Immunol. 2018, 83, 140–147. [Google Scholar] [CrossRef]
- Liu, G.; Zhu, S.M.; Liu, D.Z.; Guo, X.S.; Ye, Z.Y. Effects of stocking density of the white shrimp Litopenaeus vannamei (Boone) on immunities, antioxidant status, and resistance against Vibrio harveyi in a biofloc system. Fish Shellfish Immunol. 2017, 67, 19–26. [Google Scholar] [CrossRef]
- Miao, S.; Hu, J.; Wan, W.; Han, B.; Zhou, Y.; Xin, Z.; Sun, L. Biofloc technology with addition of different carbon sources altered the antibacterial and antioxidant response in Macrobrachium rosenbergii to acute stress. Aquac. Int. 2020, 525, 735280. [Google Scholar] [CrossRef]
- Ekasari, J. Biofloc Technology as an Integral Approach to Enhance Production and Ecological Performance of Aquaculture. Ph.D. Thesis, Ghent University, Gent, Belgium, 2014. [Google Scholar]
- Yun, H.; Shahkar, E.; Katya, K.; Jang, I.-K.; Kim, S.K.; Bai, S.C. Effects of bioflocs on dietary protein requirement in juvenile whiteleg shrimp, Litopenaeus vannamei. Aquac. Res. 2016, 47, 3203–3214. [Google Scholar] [CrossRef]
- Avnimelech, Y. Carbon/nitrogen ratio as a control element in aquaculture systems. Aquaculture 1999, 176, 227–235. [Google Scholar] [CrossRef]
- Kazemi, C.; Bemani, A.; Alizadeh, M.; Siyahati, G.; Ardakani, T. Environmental sustainability assessment of Nile tilapia (Oreochromis niloticus) breeding in biofloc system. Iran. J. Fish. Sci. 2022, 21, 1508–1526. [Google Scholar]
- Daniel, P.C.; Bayer, R.C. Fish byproducts as chemo-attractant substrates for the American lobster (Homarus americanus): Concentration, quality and release characteristics. Fish. Res. 1989, 7, 367–383. [Google Scholar] [CrossRef]
- Burford, M.A.; Thompson, P.J.; McIntosh, R.P.; Bauman, R.H.; Pearson, D.C. The contribution of flocculated material to shrimp (Litopenaeus vannamei) nutrition in a high-intensity, zero-exchange system. Aquaculture 2004, 232, 525–537. [Google Scholar] [CrossRef]
- Besen, K.P.; da Cunha, L.; de Oliveira, N.S.; Cipriani, L.A.; Bender, M.; Gomes, R.; Skoronski, E.; Fabregat, T.E.H.P. Biofloc technology (BFT) system improves survival and intestinal health of Carassius auratus larvae subjected to different food management. Aquac. Int. 2023, 31, 1979–1994. [Google Scholar] [CrossRef]
- Ajamhasani, E.; Akrami, R.; Najdegerami, E.H.; Chitsaz, H.; Shamloofar, M. Different carbon sources and probiotics in biofloc based common carp (Cyprinus carpio) culture: Effects on water quality, growth performance, fish welfare and liver histopathology. J. World Aquac. Soc. 2023, 1–17. [Google Scholar] [CrossRef]
- Zimmermann, S.; Kiessling, A.; Zhang, J. The future of intensive tilapia production and the circular bioeconomy without effluents: Biofloc technology, recirculation aquaculture systems, bio-RAS, partitioned aquaculture systems and integrated multitrophic aquaculture. Rev. Aquac. 2023, 15 (Suppl. S1), 22–31. [Google Scholar] [CrossRef]
- Yusuf, M.W.; Utomo, N.B.P.; Yuhana, M.; Widanarni. Growth performance of catfish (Clarias gariepinus) in biofloc-based super intensive culture added with Bacillus sp. J. Fish. Aquat. Sci. 2015, 10, 523. [Google Scholar] [CrossRef]
- Liu, W.C.; Du, X.Z.; Tan, H.X.; Xie, J.; Luo, G.Z.; Sun, D.C. Performance of a recirculating aquaculture system using biofloc biofilters with convertible water-treatment efficiencies. Sci. Total Environ. 2021, 754, 141918. [Google Scholar] [CrossRef]
- Deng, M.; Chen, J.; Gou, J.; Hou, J.; Li, D.; He, X. The effect of different carbon sources on water quality, microbial community and structure of biofloc systems. Aquaculture 2018, 482, 103–110. [Google Scholar] [CrossRef]
- Silva, V.F.; Pereira, S.A.; Martins, M.A.; Rezende, P.C.; Owatari, M.S.; Martins, M.L.; Mouriño, J.L.P.; Vieira, F.d.N. Hemato-immunological parameters can be influenced by microalgae addition and fish feed supplementation in the integrated rearing of Pacific white shrimp and juvenile Nile tilapia using biofloc technology. Aquaculture 2023, 574, 739622. [Google Scholar] [CrossRef]
- Carvalho, A.; Costa, L.C.d.O.; Holanda, M.; Poersch, L.H.; Turan, G. Influence of total suspended solids on the growth of the sea lettuce ulva lactuca integrated with the Pacific white shrimp Litopenaeus vannamei in a biofloc system. Fishes 2023, 8, 163. [Google Scholar] [CrossRef]
- Emerenciano, M.; Cuzon, G.; Goguenheim, J.; Gaxiola, G. Floc contribution on spawning performance of blue shrimp Litopenaeus stylirostris. Aquac. Res. 2012, 44, 75–85. [Google Scholar] [CrossRef]
- Bossier, P.; Ekasari, J. Biofloc technology application in aquaculture to support sustainable development goals. Microb. Biotechnol. 2017, 10, 1012–1016. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.-B.; Lee, K.M.; Kim, J.-H.; Kang, J.-C.; Kim, J.-H. Comparative analysis of morphological characteristics, hematological parameters, body composition and sensory evaluation in olive flounder, Paralichthys olivaceus raised in biofloc and seawater to evaluate marketability. Aquac. Rep. 2023, 30, 101616. [Google Scholar] [CrossRef]
- Hargreaves, J.A. Photosynthetic suspended-growth systems in aquaculture. Aquac. Eng. 2006, 34, 344–363. [Google Scholar] [CrossRef]
- Crab, R.; Defoirdt, T.; Bossier, P.; Verstraete, W. Biofloc technology in aquaculture: Beneficial effects and future challenges. Aquaculture 2012, 356–357, 351–356. [Google Scholar] [CrossRef]
- El-Sayed, A.F.M. Use of biofloc technology in shrimp aquaculture: A comprehensive review, with emphasis on the last decade. Rev. Aquac. 2020, 13, 676–705. [Google Scholar] [CrossRef]
- Guo, K.; Zhao, Z.; Xie, J.; Luo, L.; Wang, S.; Zhang, R.; Xu, W.; Huang, X. Combined effects of eco-substrate and carbon addition on water quality, fish performance and nutrient budgets in the pond polyculture system. Fishes 2022, 7, 212. [Google Scholar] [CrossRef]
- Avnimelech, Y. Biofloc technology: Fifteen years of progress. Hatch. Int. 2015, 16, 38–39. [Google Scholar]
- Simon, M.; Grossart, H.P.; Schweitzer, B.; Ploug, H. Microbial ecology of organic aggregates in aquatic ecosystems. Aquat. Microb. Ecol. 2002, 28, 175–211. [Google Scholar] [CrossRef]
- Morshedi, V.; Kochanian, P.; Bahmani, M.; Yazdani-Sadati, M.A.; Pourali, H.R.; Ashouri, G.; Pasha-Zanoosi, H.; Azodi, M. Compensatory growth in sub-yearling Siberian sturgeon, Acipenser baerii Brandt, 1869: Effects of starvation and refeeding on growth, feed utilization and body composition. J. Appl. Ichthyol. 2013, 29, 978–983. [Google Scholar] [CrossRef]
- Wang, H.; Wu, P.; Zheng, D.; Deng, L.; Wang, W. N-acyl-homoserine lactone (AHL)-mediated microalgal–bacterial communication driving Chlorella-activated sludge bacterial biofloc formation. Environ. Sci. Technol. 2022, 56, 12645–12655. [Google Scholar] [CrossRef]
- Ding, Z.; Bourven, I.; Guibaud, G.; van Hullebusch, E.D.; Panico, A.; Pirozzi, F.; Esposito, G. Role of extracellular polymeric substances (EPS) production in bioaggregation: Application to wastewater treatment. Appl. Microbiol. Biotechnol. 2015, 99, 9883–9905. [Google Scholar] [CrossRef]
- Zhang, K.; Pan, L.; Chen, W.; Wang, C. Effect of using sodium bicarbonate to adjust the pH to different levels on water quality, the growth and the immune response of shrimp Litopenaeus vannamei reared in zero-water exchange biofloc-based culture tanks. Aquac. Res. 2017, 48, 1194–1208. [Google Scholar] [CrossRef]
- Ju, Z.Y.; Forster, I.; Conquest, L.; Dominy, W.; Kuo, W.C.; David Horgen, F. Determination of microbial community structures of shrimp floc cultures by biomarkers and analysis of floc amino acid profiles. Aquac. Res. 2008, 39, 118–133. [Google Scholar] [CrossRef]
- Ahmad, I.; Rani, A.M.B.; Verma, A.K.; Maqsood, M. Biofloc technology: An emerging avenue in aquatic animal healthcare and nutrition. Aquac. Int. 2017, 25, 1215–1226. [Google Scholar] [CrossRef]
- Defoirdt, T.; Boon, N.; Sorgeloos, P.; Verstraete, W.; Bossier, P. Quorum sensing and quorum quenching in Vibrio harveyi: Lessons learned from in vivo work. ISME J. 2007, 2, 19–26. [Google Scholar] [CrossRef]
- De Schryver, P.; Verstraete, W. Nitrogen removal from aquaculture pond water by heterotrophic nitrogen assimilation in lab-scale sequencing batch reactors. Bioresour. Technol. 2009, 100, 1162–1167. [Google Scholar] [CrossRef]
- Pimentel, O.A.L.F.; Amado, A.M.; They, N.H. Biofloc colors as an assessment tool for water quality in shrimp farming with BFT systems. Aquac. Eng. 2023, 101, 102321. [Google Scholar] [CrossRef]
- Hargreaves, J.A. Biofloc Production Systems for Aquaculture; Southern Regional Aquaculture Center: Stoneville, MS, USA, 2013. [Google Scholar]
- Ferreira, G.S.; Santos, D.; Schmachtl, F.; Machado, C.; Fernandes, V.; Bögner, M.; Schleder, D.D.; Seiffert, W.Q.; Vieira, F.N. Heterotrophic, chemoautotrophic and mature approaches in biofloc system for Pacific white shrimp. Aquaculture 2021, 533, 736099. [Google Scholar] [CrossRef]
- Luo, G.; Jiayang, L.; Jinxiang, X.; Liu, W.; Tan, H. Effects of dissolved organic carbon and total ammonia nitrogen concentrations with the same DOC/TAN on biofloc performance. Aquaculture 2023, 574, 739713. [Google Scholar] [CrossRef]
- Luo, G.; Xu, J.; Li, J.; Zheng, H.; Tan, H.; Liu, W. Rapid production bioflocs by inoculation and fertilized with different nitrogen and carbon sources. Aquac. Eng. 2022, 98, 102262. [Google Scholar] [CrossRef]
- Ebrahimi, A.; Akrami, R.; Najdegerami, E.H.; Ghiasvand, Z.; Koohsari, H. Effects of different protein levels and carbon sources on water quality, antioxidant status and performance of common carp (Cyprinus carpio) juveniles raised in biofloc based system. Aquac. Int. 2020, 516, 734639. [Google Scholar] [CrossRef]
- Azhar, M.H.; Suciyono, S.; Budi, D.S.; Ulkhaq, M.F.; Anugrahwati, M.; Ekasari, J. Biofloc-based co-culture systems of Nile tilapia (Oreochromis niloticus) and redclaw crayfish (Cherax quadricarinatus) with different carbon-nitrogen ratios. Aquac. Int. 2020, 28, 1293–1304. [Google Scholar] [CrossRef]
- Haghparast, M.M.; Alishahi, M.; Ghorbanpour, M.; Shahriari, A. Evaluation of hemato-immunological parameters and stress indicators of common carp (Cyprinus carpio) in different C/N ratio of biofloc system. Aquac. Int. 2020, 28, 2191–2206. [Google Scholar] [CrossRef]
- Minabi, K.; Sourinejad, I.; Alizadeh, M.; Ghatrami, E.R.; Khanjani, M.H. Effects of different carbon to nitrogen ratios in the biofloc system on water quality, growth, and body composition of common carp (Cyprinus carpio L.) fingerlings. Aquac. Int. 2020, 28, 1883–1898. [Google Scholar] [CrossRef]
- Chen, X.; Luo, G.; Tan, J.; Tan, H.; Yao, M. Effects of carbohydrate supply strategies and biofloc concentrations on the growth performance of African catfish (Clarias gariepinus) cultured in biofloc systems. Aquac. Int. 2020, 517, 734808. [Google Scholar] [CrossRef]
- Tinh, T.H.; Momoh, T.A.; Kokou, F.; Hai, T.N.; Schrama, J.W.; Verreth, J.A.J.; Verdegem, M.C.J. Effects of carbohydrate addition methods on Pacific white shrimp (Litopenaeus vannamei). Aquaculture 2021, 543, 736890. [Google Scholar] [CrossRef]
- Wasielesky, W.; Atwood, H.; Stokes, A.; Browdy, C.L. Effect of natural production in a zero exchange suspended microbial floc based super-intensive culture system for white shrimp Litopenaeus vannamei. Aquaculture 2006, 258, 396–403. [Google Scholar] [CrossRef]
- Emerenciano, M.; Cuzon, G.; Arévalo, M.; Miquelajauregui, M.M.; Gaxiola, G. Effect of short-term fresh food supplementation on reproductive performance, biochemical composition, and fatty acid profile of Litopenaeus vannamei (Boone) reared under biofloc conditions. Aquac. Int. 2012, 21, 987–1007. [Google Scholar] [CrossRef]
- Crab, R.; Chielens, B.; Wille, M.; Bossier, P.; Verstraete, W. The effect of different carbon sources on the nutritional value of bioflocs, a feed for Macrobrachium rosenbergii postlarvae. Aquac. Res. 2010, 41, 559–567. [Google Scholar] [CrossRef]
- Wei, Y.; Liao, S.-A.; Wang, A.-l. The effect of different carbon sources on the nutritional composition, microbial community and structure of bioflocs. Aquaculture 2016, 465, 88–93. [Google Scholar] [CrossRef]
- Fugimura, M.M.S.; dos Reis Flor, H.; de Melo, E.P.; da Costa, T.V.; Wasielesky, W.; Oshiro, L.M.Y. Brewery residues as a source of organic carbon in Litopenaeus schmitti white shrimp farms with BFT systems. Aquac. Int. 2014, 23, 509–522. [Google Scholar] [CrossRef]
- Irani, M.; Rajabi Islami, H.; Nafisi Bahabadi, M.; Hosseini Shekarabi, S.P. Production of Pacific white shrimp under different stocking density in a zero-water exchange biofloc system: Effects on water quality, zootechnical performance, and body composition. Aquac. Eng. 2023, 100, 102313. [Google Scholar] [CrossRef]
- Khanjani, M.H.; Alizadeh, M.; Sharifinia, M. Effects of different carbon sources on water quality, biofloc quality, and growth performance of Nile tilapia (Oreochromis niloticus) fingerlings in a heterotrophic culture system. Aquac. Int. 2021, 29, 307–321. [Google Scholar] [CrossRef]
- Rajkumar, M.; Pandey, P.K.; Aravind, R.; Vennila, A.; Bharti, V.; Purushothaman, C.S. Effect of different biofloc system on water quality, biofloc composition and growth performance in Litopenaeus vannamei (Boone, 1931). Aquac. Res. 2016, 47, 3432–3444. [Google Scholar] [CrossRef]
- Solanki, S.; Meshram, S.J.; Dhamagaye, H.B.; Naik, S.D.; Shingare, P.E.; Yadav, B.M.; Ghafarifarsani, H. Effect of C/N ratio levels and stocking density of Catla spawn (Gibelion catla) on water quality, growth performance, and biofloc nutritional composition in an indoor biofloc system. Aquac. Res. 2023, 2023, 2501653. [Google Scholar] [CrossRef]
- Tinh, T.H.; Koppenol, T.; Ngoc, H.T.; Verreth, J.A.J.; Verdegem, M.C.J. Effects of carbohydrate sources on a biofloc nursery system for whiteleg shrimp (Litopenaeus vannamei). Aquaculture 2021, 531, 735795. [Google Scholar] [CrossRef]
- Hu, Z.; Lee, J.W.; Chandran, K.; Kim, S.; Sharma, K.; Khanal, S.K. Influence of carbohydrate addition on nitrogen transformations and greenhouse gas emissions of intensive aquaculture system. Sci. Total Environ. 2014, 470–471, 193–200. [Google Scholar] [CrossRef]
- Sun, Y.; Hou, H.; Dong, D.; Zhang, J.; Yang, X.; Li, X.; Song, X. Comparative life cycle assessment of whiteleg shrimp (Penaeus vannamei) cultured in recirculating aquaculture systems (RAS), biofloc technology (BFT) and higher-place ponds (HPP) farming systems in China. Aquaculture 2023, 574, 739625. [Google Scholar] [CrossRef]
- Gaona, C.A.P.; Poersch, L.H.; Krummenauer, D.; Foes, G.K.; Wasielesky, W.J. The effect of solids removal on water quality, growth and survival of Litopenaeus vannamei in a biofloc technology culture system. Int. J. Recirc. Aquac. 2011, 12, 54–73. [Google Scholar] [CrossRef]
- Li, C.W.; Li, J.W.; Liu, G.; Deng, Y.L.; Zhu, S.M.; Ye, Z.Y.; Shao, Y.F.; Liu, D.Z. Performance and microbial community analysis of Combined Denitrification and Biofloc Technology (CDBFT) system treating nitrogen-rich aquaculture wastewater. Bioresour. Technol. 2019, 288, 121582. [Google Scholar] [CrossRef]
- Azimi, A.; Shekarabi, S.P.H.; Paknejad, H.; Harsij, M.; Khorshidi, Z.; Zolfaghari, M.; Hatami, A.S.; Dawood, M.A.O.; Mazloumi, N.; Zakariaee, H. Various carbon/nitrogen ratios in a biofloc-based rearing system of common carp (Cyprinus carpio) fingerlings: Effect on growth performance, immune response, and serum biochemistry. Aquaculture 2022, 548, 737622. [Google Scholar] [CrossRef]
- Chakrapani, S.; Panigrahi, A.; Sundaresan, J.; Sivakumar, M.R.; Palanisamy, R.; Kumar, V. Three different C: N ratios for Pacific white shrimp, Penaeus vannamei under practical conditions: Evaluation of growth performance, immune and metabolic pathways. Aquac. Res. 2021, 52, 1255–1266. [Google Scholar] [CrossRef]
- Dauda, A.B.; Romano, N.; Ebrahimi, M.; Teh, J.C.; Ajadi, A.; Chong, C.M.; Karim, M.; Natrah, I.; Kamarudin, M.S. Influence of carbon/nitrogen ratios on biofloc production and biochemical composition and subsequent effects on the growth, physiological status and disease resistance of African catfish (Clarias gariepinus) cultured in glycerol-based biofloc systems. Aquaculture 2018, 483, 120–130. [Google Scholar] [CrossRef]
- Ferreira, G.S.; Silva, V.F.; Martins, M.A.; Chede Pereira da Silva, A.C.; Machado, C.; Seiffert, W.Q.; Vieira, F.d.N. Strategies for ammonium and nitrite control in Litopenaeus vannamei nursery systems with bioflocs. Aquac. Eng. 2020, 88, 102040. [Google Scholar] [CrossRef]
- Wu, X.; Wu, C.; Wang, G.; Luo, G.; Tan, H. The effect of different addition amounts of poly-beta-hydroxybutyrate acid(PHB) as a slow-release carbon source in biological flocculation. Fish. Mod. 2021, 48, 19–27. [Google Scholar]
- Tinh, T.H.; Hai, T.N.; Verreth, J.A.J.; Verdegem, M.C.J. Effects of carbohydrate addition frequencies on biofloc culture of Pacific white shrimp (Litopenaeus vannamei). Aquaculture 2021, 534, 736271. [Google Scholar] [CrossRef]
- Krummenauer, D.; Samocha, T.; Poersch, L.; Lara, G.; Wasielesky, W. The reuse of water on the culture of Pacific white shrimp, Litopenaeus vannamei, in BFT system. J. World Aquac. Soc. 2014, 45, 3–14. [Google Scholar] [CrossRef]
- Pinheiro, I.; Arantes, R.; Santo, C.M.D.; Vieira, F.D.; Lapa, K.R.; Gonzaga, L.V.; Fett, R.; Barcelos-Oliveira, J.L.; Seiffert, W.Q. Production of the halophyte Sarcocornia ambigua and Pacific white shrimp in an aquaponic system with biofloc technology. Ecol. Eng. 2017, 100, 261–267. [Google Scholar] [CrossRef]
- Pinho, S.M.; Molinari, D.; de Mello, G.L.; Fitzsimmons, K.M.; Emerenciano, M.G.C. Effluent from a biofloc technology (BFT) tilapia culture on the aquaponics production of different lettuce varieties. Ecol. Eng. 2017, 103, 146–153. [Google Scholar] [CrossRef]
- Abakari, G.; Luo, G.Z.; Kombat, E.O.; Alhassan, E.H. Supplemental carbon sources applied in biofloc technology aquaculture systems: Types, effects and future research. Rev. Aquac. 2021, 13, 1193–1222. [Google Scholar] [CrossRef]
- Kuhn, D.D.; Lawrence, A.L.; Crockett, J. Dietary toxicity of manganese to shrimp and its accumulation in bioflocs. Aquac. Nutr. 2017, 23, 1121–1127. [Google Scholar] [CrossRef]
- Kokkuar, N.; Li, L.; Srisapoome, P.; Dong, S.; Tian, X. Application of biodegradable polymers as carbon sources in ex situ biofloc systems: Water quality and shift of microbial community. Aquac. Res. 2021, 52, 3570–3579. [Google Scholar] [CrossRef]
- Yu, Z.; Zhao, Y.-Y.; Jiang, N.; Zhang, A.-Z.; Li, M.-Y. Bioflocs attenuates lipopolysaccharide-induced inflammation, immunosuppression and oxidative stress in Channa argus. Fish Shellfish Immunol. 2021, 114, 218–228. [Google Scholar] [CrossRef]
- Luo, G.Z.; Zhang, N.; Cai, S.L.; Tan, H.X.; Liu, Z.F. Nitrogen dynamics, bacterial community composition and biofloc quality in biofloc-based systems cultured Oreochromis niloticus with poly-beta-hydroxybutyric and polycaprolactone as external carbohydrates. Aquaculture 2017, 479, 732–741. [Google Scholar] [CrossRef]
- Li, J.W.; Liu, G.; Li, C.W.; Deng, Y.L.; Tadda, M.A.; Lan, L.H.; Zhu, S.M.; Liu, D.Z. Effects of different solid carbon sources on water quality, biofloc quality and gut microbiota of Nile tilapia (Oreochromis niloticus) larvae. Aquaculture 2018, 495, 919–931. [Google Scholar] [CrossRef]
- Abakari, G.; Luo, G.; Meng, H.; Yang, Z.; Owusu-Afriyie, G.; Kombat, E.O.; Alhassan, E.H. The use of biochar in the production of tilapia (Oreochromis niloticus) in a biofloc technology system-BFT. Aquac. Eng. 2020, 91, 102123. [Google Scholar] [CrossRef]
- Sontakke, R.; Tiwari, V.K.; Kurcheti, P.; Asanaru Majeedkutty, B.R.; Ande, M.P.; Haridas, H. Yam-based biofloc system improves the growth, digestive enzyme activity, bacterial community structure and nutritional content in milkfish (Chanos chanos). Aquac. Res. 2021, 52, 3460–3474. [Google Scholar] [CrossRef]
- Hassan, S.A.H.; Sharawy, Z.Z.; El Nahas, A.F.; Hemeda, S.A.; El-Haroun, E.; Abbas, E.M. Modulatory effects of various carbon sources on growth indices, digestive enzymes activity and expression of growth-related genes in Whiteleg shrimp, Litopenaeus vannamei reared under an outdoor zero-exchange system. Aquac. Res. 2022, 53, 5594–5605. [Google Scholar] [CrossRef]
- Xiaorui, L.; Xiefa, S.; Guangjun, Z.; Dengpan, D. Study on biofloc of mariculture using PLA and PHBV as carbon sources. Fish. Mod. 2022, 49, 1110. [Google Scholar]
- Zhang, F.F.; Ma, C.J.; Huang, X.F.; Liu, J.; Lu, L.J.; Peng, K.M.; Li, S.Y. Research progress in solid carbon source-based denitrification technologies for different target water bodies. Sci. Total Environ. 2021, 782, 146669. [Google Scholar] [CrossRef]
- Zhang, N.; Luo, G.Z.; Tan, H.X.; Liu, W.C.; Hou, Z.W. Growth, digestive enzyme activity and welfare of tilapia (Oreochromis niloticus) reared in a biofloc-based system with poly-beta-hydroxybutyric as a carbon source. Aquaculture 2016, 464, 710–717. [Google Scholar] [CrossRef]
- Lin, T.; Cai, Y.; Liu, X.; Li, S.; Zhang, D.; Xia, L. Effects of different carbon sources and carbon-nitrogen ratios on the survival, growth, intestinal biochemical parameters, and water quality of seahorse juveniles cultured under zero-water exchange conditions. Aquac. Int. 2022, 30, 2095–2112. [Google Scholar] [CrossRef]
- Xue, Y.; Li, L.; Dong, S.; Gao, Q.; Tian, X. The Effects of different carbon sources on the production environment and breeding parameters of Litopenaeus vannamei. Water 2021, 13, 3584. [Google Scholar] [CrossRef]
- Avnimelech, Y. Biofloc Technology-A Practical Guide Book; The World Aquaculture Society: Baton Rouge, LA, USA, 2009. [Google Scholar]
- Khanjani, M.H.; Zahedi, S.; Mohammadi, A. Integrated multitrophic aquaculture (IMTA) as an environmentally friendly system for sustainable aquaculture: Functionality, species, and application of biofloc technology (BFT). Environ. Sci. Pollut. Res. 2022, 29, 67513–67531. [Google Scholar] [CrossRef]
- Pinheiro, I.; Carneiro, R.F.S.; Vieira, F.D.N.; Gonzaga, L.V.; Fett, R.; Costa, A.C.D.O.; Magallón-Barajas, F.J.; Seiffert, W.Q. Aquaponic production of Sarcocornia ambigua and Pacific white shrimp in biofloc system at different salinities. Aquaculture 2020, 519, 734918. [Google Scholar] [CrossRef]
- Sarkar, S.; Rekha, P.N.; Panigrahi, A.; Das, R.R.; Rajamanickam, S.; Balasubramanian, C.P. Integrated brackishwater farming of red seaweed Agarophyton tenuistipitatum and Pacific white leg shrimp Litopenaeus vannamei (Boone) in biofloc system: A production and bioremediation way out. Aquac. Int. 2021, 29, 2145–2159. [Google Scholar] [CrossRef]
- Legarda, E.C.; da Silva, D.; Miranda, C.S.; Pereira, P.K.M.; Martins, M.A.; Machado, C.; de Lorenzo, M.A.; Hayashi, L.; do Nascimento Vieira, F. Sea lettuce integrated with Pacific white shrimp and mullet cultivation in biofloc impact system performance and the sea lettuce nutritional composition. Aquaculture 2021, 534, 736265. [Google Scholar] [CrossRef]
- Pinho, S.M.; David, L.H.C.; Goddek, S.; Emerenciano, M.G.C.; Portella, M.C. Integrated production of Nile tilapia juveniles and lettuce using biofloc technology. Aquac. Int. 2021, 29, 37–56. [Google Scholar] [CrossRef]
- Martinez-Cordova, L.R.; Emerenciano, M.G.C.; Miranda-Baeza, A.; Pinho, S.M.; Garibay-Valdez, E.; Martinez-Porchas, M. Advancing toward a more integrated aquaculture with polyculture > aquaponics > biofloc technology > FLOCponics. Aquac. Int. 2022, 31, 1057–1076. [Google Scholar] [CrossRef]
- Sharawy, Z.Z.; Abbas, E.M.; Abdelkhalek, N.K.; Ashry, O.A.; Abd El-Fattah, L.S.; El-Sawy, M.A.; Helal, M.F.; El-Haroun, E. Effect of organic carbon source and stocking densities on growth indices, water microflora, and immune-related genes expression of Litopenaeus vannamei Larvae in intensive culture. Aquac. Int. 2022, 546, 737397. [Google Scholar] [CrossRef]
- Asaduzzaman, M.; Wahab, M.A.; Verdegem, M.C.J.; Adhikary, R.K.; Rahman, S.M.S.; Azim, M.E.; Verreth, J.A.J. Effects of carbohydrate source for maintaining a high C:N ratio and fish driven re-suspension on pond ecology and production in periphyton-based freshwater prawn culture systems. Aquaculture 2010, 301, 37–46. [Google Scholar] [CrossRef]
- Ogello, E.O.; Outa, N.O.; Obiero, K.O.; Kyule, D.N.; Munguti, J.M. The prospects of biofloc technology (BFT) for sustainable aquaculture development. Sci. Afr. 2021, 14, e01053. [Google Scholar] [CrossRef]
Carbon Source Type | Nutrient Composition of Bioflocs (%) | Reference | |||
---|---|---|---|---|---|
Ash | Protein | Carbohydrate | Fat | ||
Acetate | 44.8 | 31.1 | 23.6 | 0.5 | [54] |
41.5 | 26.3 | 20.2 | / | [55] | |
27.0 | 42.0 | 29.0 | 2.3 | [56] | |
Glycerol | 15.2 | 35.5 | 45.1 | 4.2 | [57] |
Molasses | 56.2 | 17.9 | / | 2.4 | [58] |
10.4 | 3.8 | / | 2.8 | [59] | |
Corn | 26.1 | 26.9 | / | 3.9 | [60] |
Wheat flour | 25.0 | 53.7 | 20.4 | / | [61] |
10.5 | 40 | / | 7.9 | [5] | |
Glucose | 1.6 | 22.3 | / | 3.6 | [28] |
15.0 | 41.2 | 37.7 | 6.1 | [57] | |
Starch | 12.4 | 31.5 | 47.6 | 8.5 | [57] |
Rice bran | 11.4 | 22.7 | / | 1.8 | [62] |
Carbon Types | C/N Ratios | Cultured Species (Period) | Carbon Loss Remarks | Reference |
---|---|---|---|---|
C/N ratio manipulation | ||||
Hydrous glucose | 15 | Jade perch (adult, 45 days) | Converting into a nitrifying BFT biofilter by stopping carbon addition under low nitrate, through which C is saved | [22] |
White sugar | 15 | Litopenaeus vannamei (post-larvae, 35 days) | Recommend to add carbon into BFT only in case of ammonia spikes | [71] |
Glycerol | 0, 10, 15, 20 | Clarias gariepinus (juvenile, 6 weeks) | Input/output ratio increased with increasing C/N ratios | [70] |
Carbon type manipulation | ||||
Corn starch and molasses | 12 | Litopenaeus vannamei (post-larvae, 5 weeks) | Carbon retention in corn starch and molasses BFT systems was only 15% and 17% of the total input, respectively | [63] |
PHB | >15 | Oreochromis niloticus (juvenile, 48 days) | With the increase in PHB addition, the higher the degradation loss, and the lower the degree of surface degradation and damage | [72] |
Addition strategy manipulation | ||||
Commercial diet, corn starch | 7.6, 14.6 | Oreochromis niloticus (juvenile, 28 days) | Carbon use efficiency was reduced by 9-11% neither added separately nor with feed in one pellet | [53] |
Tapioca powder | 12 | Litopenaeus vannamei (post-larvae, 6 weeks) | Splitting daily dosage of carbon source from 1 to 3 and 6 times per day had no significant effect on carbon retention (26-31%) | [73] |
Fish feed and soluble starch | 16 | Oreochromis Niloticus (larvae, 8 weeks) | Soluble starch addition increased daily CO2 emission by 91.1% | [64] |
Technology integration | ||||
- | 15 | Litopenaeus vannamei (juvenile, 30 days) | Reusing water over multiple culture cycles | [74] |
Effluent from solid-phase denitrification | Tilapia (juvenile, 15 days) | Reuse waste carbon in the effluent from solid-phase denitrification for biofloc growth | [67] | |
- | Litopenaeus vannamei (post-larvae, 73 days) | Integration with aquaponic produced 2 kg of halophyte Sarcocornia ambigua for each kg of shrimp. | [75] | |
- | Tilapia (juvenile, 21 days) | Integration with aquaponic favored lettuce yield | [76] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Zhang, X.; Chen, Y.; Zhang, S.; Dai, L.; Zhu, W.; Chen, Y. Optimized Utilization of Organic Carbon in Aquaculture Biofloc Systems: A Review. Fishes 2023, 8, 465. https://doi.org/10.3390/fishes8090465
Li C, Zhang X, Chen Y, Zhang S, Dai L, Zhu W, Chen Y. Optimized Utilization of Organic Carbon in Aquaculture Biofloc Systems: A Review. Fishes. 2023; 8(9):465. https://doi.org/10.3390/fishes8090465
Chicago/Turabian StyleLi, Changwei, Xiaoyu Zhang, Yu Chen, Shiyu Zhang, Limin Dai, Wenjing Zhu, and Yuan Chen. 2023. "Optimized Utilization of Organic Carbon in Aquaculture Biofloc Systems: A Review" Fishes 8, no. 9: 465. https://doi.org/10.3390/fishes8090465
APA StyleLi, C., Zhang, X., Chen, Y., Zhang, S., Dai, L., Zhu, W., & Chen, Y. (2023). Optimized Utilization of Organic Carbon in Aquaculture Biofloc Systems: A Review. Fishes, 8(9), 465. https://doi.org/10.3390/fishes8090465