Antimicrobial Activity of Identified Ubiquitin-40S Ribosomal Protein S27a (RPS27A), Ubiquitin-like Protein Fubi, and Ribosomal Protein (S30FAU) in the Starry Flounder (Platichthys stellatus)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Next-Generation Sequencing (NGS) Analysis
2.2. Molecular Characteristics
2.3. Gene Expression Analysis
2.3.1. Experimental Fish Preparation and Tissue Extraction
2.3.2. Total RNA Isolation and cDNA Synthesis
2.3.3. Primer Design
2.3.4. Quantitative Real-Time PCR
2.4. Antibacterial Activity of Antimicrobial Peptides
2.4.1. Peptide Synthesis
2.4.2. Strains
2.4.3. Minimum Inhibitory Concentration (MIC)
2.4.4. Cytotoxicity
2.4.5. Biofilm Assay
2.5. Statistical Analysis
3. Results
3.1. Molecular Characteristics
3.1.1. Sequence Analysis
3.1.2. Multiple Alignment Analysis
3.1.3. Phylogenetic Analysis
3.2. Gene expression Analysis
3.2.1. Expression Analysis by Normal Fish Tissue
3.2.2. Analysis of Expression by Time after Artificial Infection with Pathogens
3.3. Antibacterial Activity of Antimicrobial Peptides
3.3.1. Minimum Inhibitory Concentration (MIC)
3.3.2. Cytotoxicity
3.3.3. Biofilm Assay
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- He, S.W.; Wang, G.H.; Yue, B.; Zhou, S.; Zhang, M. TO17: A teleost antimicrobial peptide that induces degradation of bacterial nucleic acids and inhibits bacterial infection in red drum, Sciaenops ocellatus. J. Fish. Shellfish Immunol. 2018, 72, 639–645. [Google Scholar] [CrossRef]
- Su, Y.L.; Chen, G.; Chen, L.S.; Li, J.Z.; Wang, G.; He, J.Y.; Zhan, T.Y.; Li, Y.W.; Yan, M.T.; Huang, Y.H.; et al. Effects of antimicrobial peptides on serum biochemical parameters, antioxidant activity and non-specific immune responses in Epinephelus coioides. J. Fish. Shellfish Immunol. 2019, 86, 1081–1087. [Google Scholar] [CrossRef]
- Park, S.C.; Park, Y.K.; Hahm, K.S. The Role of Antimicrobial Peptides in Preventing Multidrug-Resistant Bacterial Infections and Biofilm Formation. Int. J. Mol. Sci. 2011, 12, 5971–5992. [Google Scholar] [CrossRef] [Green Version]
- Sun, E.; Belanger, C.R.; Haney, E.F.; Hancook, R.E.W. Host Defense (Antimicrobial) Peptides. Pept. Appl. Biomed. Biotechnol. Bioeng. 2018, 253–285. [Google Scholar] [CrossRef]
- Li, T.; Liu, Q.; Chen, H.; Li, J. Antibacterial activity and mechanism of the cell-penetrating peptide CF-14 on the gram-negative bacteria, Escherichia coli. J. Fish. Shellfish Immunol. 2020, 100, 489–495. [Google Scholar] [CrossRef]
- Takiguchi, T.; Morizane, S.; Yamamoto, T.; Kajita, A.; Iwatsuki, K. Cathelicidin antimicrobial peptide LL-37 augments interferon-β expression and antiviral activity induced by double-stranded RNA in keratinocytes. Br. J. Dermatol. 2015, 171, 492–498. [Google Scholar] [CrossRef] [Green Version]
- Lacerda, A.F.; Pelegrini, P.B.; de Oliveira, D.M.; Vasconcelos, É.A.; Grossi-de-Sá, M.F. Anti-parasitic peptides from arthropods and their application in drug therapy. J. Front. Microbiol. 2016, 7, 91. [Google Scholar] [CrossRef] [Green Version]
- Delattin, N.; De Brucker, K.; De Cremer, K.; Cammue, B.P.A.; Thevissen, K. Antimicrobial peptides as a strategy to combat fungal biofilms. J. Curr. Top. Med. Chem. 2017, 17, 604–612. [Google Scholar] [CrossRef]
- Conlon, J.M.; Mechkarska, M.; Abdel-Wahab, Y.H.; Flatt, P.R. Peptides from frog skin with potential for development into agents for type 2 diabetes therapy. J. Pept. 2018, 100, 275–281. [Google Scholar] [CrossRef]
- Kim, T.Y.; Go, H.J.; Park, N.G. Purification of an Antibacterial Peptide from the Gills of the Pufferfish Takifugu pardalis. J. Life Sci. 2017, 27, 50–56. [Google Scholar] [CrossRef] [Green Version]
- Oh, R.; Lee, M.J.; Kim, Y.O.; Nam, B.H.; Kong, H.J.; Kim, J.W.; An, C.M.; Kim, D.G. Isolation and Purification of Antimicrobial Peptide from Hard-shelled Mussel, Mytilus coruscus. J. Life Sci. 2016, 26, 1259–1268. [Google Scholar] [CrossRef] [Green Version]
- Acosta, J.; Montero, V.; Carpio, Y.; Velázquez, J.; Garay, H.E.; Reyes, O.; Cabrales, A.; Masforrol, Y.; Morales, A.; Estrada, M.P. Cloning and functional characterization of three novel antimicrobial peptides from tilapia (Oreochromis niloticus). J. Aquac. 2013, 372–375, 9–18. [Google Scholar] [CrossRef]
- Pasupuleti, M.; Schmidtchen, A.; Malmsten, M. Antimicrobial peptides: Key components of the innate immune system. J. Crit. Rev. Biotechnol. 2012, 32, 143–171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Imjongjirak, C.; Amparyup, P.; Tassanakajon, A.; Sittipraneed, S. Antilipopolysaccharide factor (ALF) of mud crab Scylla paramamosain: Molecular cloning, genomic organization and the antimicrobial activity of its synthetic LPS binding domain. J. Mol. Immunol. 2007, 44, 3195–3203. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Cao, Z.; Diao, Q.; Zhou, Y.; Ao, J.; Liu, C.; Sun, Y. Antimicrobial activity and mechanisms of a derived antimicrobial peptide TroNKL-27 from golden pompano (Trachinotus ovatus) NK-lysin. J. Fish. Shellfish Immunol. 2022, 126, 357–369. [Google Scholar] [CrossRef]
- Phuket, T.R.N.; Charoensapsri, W.; Amparyup, P.; Imjongjirak, C. Antibacterial activity and immunomodulatory role of a proline-rich antimicrobial peptide SpPR-AMP1 against Vibrio campbellii infection in shrimp Litopenaeus vannamei. J. Fish. Shellfish Immunol. 2023, 132, 108479. [Google Scholar] [CrossRef]
- Hershko, A.; Ciechanover, A.; Heller, H.; Haas, A.L.; Rose, I.A. Proposed role of ATP in protein breakdown: Conjugation of protein with multiple chains of the polypeptide of ATP-dependent proteolysis. Proc. Natl. Acad. Sci. USA 1980, 77, 1783–1786. [Google Scholar] [CrossRef] [Green Version]
- Ciechanover, A.; Heller, H.; Elias, S.; Hass, A.L.; Hershko, A. ATP-dependent conjugatron of retrculocyte proteins with the polypeptide requrred for protein degradation. J. Natl. Acad. Sci. USA 1980, 77, 1362–1368. [Google Scholar]
- Glickman, M.H.; Ciechanover, A. The Ubiquitin-Proteasome Proteolytic Pathway: Destruction for the Sake of Construction. J. Physiol. Rev. 2002, 82, 373–428. [Google Scholar] [CrossRef]
- Pickard, M. FAU (Finkel-Biskis-Reilly murine sarcoma virus (FBR-MuSV) ubiquitously expressed). Atlas Genet. Cytogenet. Oncol. Haematol. 2012, 16, 12–17. [Google Scholar] [CrossRef]
- Jung, J.H.; Lee, J.Y.; Lee, S.M.; Choe, T.B.; An, S.K. Regulation of cellular functions of p53 by ubiquitination. J. KSBB 2009, 24, 217–226. [Google Scholar]
- Almamy, A.; Schwerk, C.; Schroten, H.; Ishikawa, H.; Asif, A.R.; Reuss, B. Interactions of antisera to different Chlamydia and Chlamydophila species with the ribosomal protein RPS27a correlate with impaired protein synthesis in a human choroid plexus papilloma cell line. J. Immunol. Res. 2017, 65, 1110–1123. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.W.; Kim, S.M.; Jin, D.H.; Kim, Y.S.; Hur, D.Y. RPS27a enhances EBV-encoded LMP1-mediated proliferation and invasion by stabilizing of LMP1. Biochem. Biophys. Res. Commun. 2017, 419, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Yu, J.; Zhang, L.; Xiong, Y.; Chen, S.; Xing, H.; Tian, Z.; Tang, K.; Wei, H.; Rao, Q.; et al. RPS27a promotes proliferation, regulates cell cycle progression and inhibits apoptosis of leukemia cells. J. Biochem. Biophys. Res. Commun. 2014, 446, 1204–1210. [Google Scholar] [CrossRef] [PubMed]
- Michiels, L.; Van der Rauwelaert, E.; Van Hasselt, F.; Kas, K.; Merregaert, J. fau cDNA encodes a ubiquitin-like-S30 fusion protein and is expressed as an antisense sequence in the Finkel-Biskis-Reilly murine sarcoma virus. J. Oncogene 1993, 8, 2537–2546. [Google Scholar]
- Hiemstra, P.S.; Van den Barselaar, M.T.; Roest, M.; Nibbering, P.H.; Van Furth, R. Ubiquicidin, a novel murine microbicidal protein present in the cytosolic fraction of macrophages. J. Leukoc. Biol. 1999, 66, 423–428. [Google Scholar] [CrossRef]
- Cho, M.Y.; Lee, J.I.; Kim, M.S.; Choi, H.J.; Lee, D.C.; Kim, J.W. Isolation of Streptococcus parauberis from starry flounder, Platichthys stellatus Pallas. J. Fish. Pathol. 2008, 21, 209–217. [Google Scholar]
- Jung, H.S.; Kim, Y.K.; Kim, H.C.; Noh, J.K.; Lee, J.H.; Kim, D.S. Cytogenetic Analysis of Starry Flounder Platichthys stellatus from Korea. J. Fish. Aquat. 2014, 47, 431–434. [Google Scholar]
- Liu, Z.M.; Chen, J.; Lv, Y.P.; Hu, Z.H.; Dai, Q.M.; Fan, X.L. Molecular characterization of a hepcidin homologue in starry flounder (Platichthys stellatus) and its synergistic interaction with antibiotics. J. Fish. Shellfish Immunol. 2018, 83, 45–51. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. J. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Cha, Y.K.; Kim, Y.S.; Choi, Y.S. Antimicrobial Peptides as Natural Antibiotic Materials. J. KSBB 2012, 27, 9–15. [Google Scholar] [CrossRef] [Green Version]
- Valero, Y.; Saraiva-Fraga, M.; Costas, B.; Guardiola, F.A. Antimicrobial peptides from fish: Beyond the fight against pathogens. J. Aquac. 2020, 12, 224–253. [Google Scholar] [CrossRef]
- Schlesinger, D.G.; Goldstein, G. Molecular conservation of 74 amino acid sequence of ubiquitin between cattle and man. J. Nat. 1975, 255, 423–424. [Google Scholar] [CrossRef] [PubMed]
- Hegde, A.N. Ubiquitin-proteasome-mediated local protein degradation and synaptic plasticity. J. Prog. Neurobiol. 2004, 73, 311–357. [Google Scholar] [CrossRef] [PubMed]
- Ecker, D.J.; Butt, T.R.; Marsh, J.; Sternberg, E.J.; Margolis, N.; Monia, B.P.; Jonnalagadda, S.; Khan, M.I.; Weber, P.L.; Mueller, L.; et al. Gene synthesis, expression, structures, and functional activities of site-specific mutants of ubiquitin. J. Biol. Chem. 1987, 262, 14213–14221. [Google Scholar] [CrossRef]
- Goldstein, G.; Scheid, M.S.; Hammerling, V.; Boyse, E.A.; Schlesinger, D.H.; Niall, H.D. Isolation of a polypeptide that has lymphocyte-differentiating properties and is probably represented universally in living cells. Proc. Natl. Acad. Sci. USA 1975, 11–15. [Google Scholar] [CrossRef] [Green Version]
- Kieffer, A.E.; Goumon, Y.; Ruh, O.; Chasserot-Golaz, S.; Nullans, G.; Gasnier, C.; Aunis, D.; Metz-Boutigue, M.H. The N- and C-terminal fragments of ubiquitin are important for the antimicrobial activities. J. FASEB 2003, 17, 776–778. [Google Scholar] [CrossRef]
- Howell, S.J.; Wilk, D.; Yadav, S.P.; Bevins, C.L. Antimicrobial polypeptides of the human colonic epithelium. J. Pept. 2003, 24, 1763–1770. [Google Scholar] [CrossRef]
- Svensson, I.; Calles, K.; Lindskong, E.; Henriksson, H.; Eriksson, U.; Haggstrom, L. Antimicrobial activity of conditioned medium fractions from Spodoptera frugiperda Sf9 and Trichoplusia in Hi5 insect cells. J. Appl. Microbiol. Biotechnol. 2005, 69, 92–98. [Google Scholar] [CrossRef]
- Ganz, T.; Lehrer, R.I. Antimicrobial peptides of leukocytes. J. Curr. Opin. Hematol. 1997, 4, 53–58. [Google Scholar] [CrossRef]
- Matunis, M.J.; Wu, J.; Blobel, G. SUMO-1 Modification and Its Role in Targeting the Ran GTPase-Activating Protein, RanGAP1, to the Nuclear Pore Complex. J. Cell Biol. 1998, 140, 499–509. [Google Scholar] [CrossRef] [PubMed]
- Conklin, D.; Holderman, S.; Whitmore, T.E.; Maurer, M.; Feldhaus, A.L. Molecular cloning, chromosome mapping and characterization of UBQLN3 a testis-specific gene that contains an ubiquitin-like domain. J. Gene 2000, 249, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Manchado, M.; Infante, C.; Asensio, E.; Cañavate, J.P.; Douglas, S.E. Comparative sequence analysis of the complete set of 40S ribosomal proteins in the Senegalese sole (Solea senegalensis Kaup) and Atlantic halibut (Hippoglossus hippoglossus L.) (Teleostei: Pleuronectiformes): Phylogeny and tissue- and development-specific expression. J. BMC Evol. Biol. 2007, 107, 1471–2148. [Google Scholar]
- Yi, Y.; You, X.; Bian, C.; Chen, S.; Lv, Z.; Qiu, L.; Shi, Q. High-Throughput Identification of Antimicrobial Peptides from Amphibious Mudskippers. J. Mar. Drugs 2017, 15, 364. [Google Scholar] [CrossRef] [Green Version]
- Soung, Y.H.; Lee, J.W.; Kim, S.Y.; Nam, S.W.; Park, W.S.; Lee, J.Y.; Yoo, N.J.; Lee, S.H. Mutational Analysis of Proapoptotic bcl-2 Family genes in Colon Carcinomas. Korean. J. Pathol. 2005, 39, 168–171. [Google Scholar]
- Hwang, B.; Lee, J.; Lee, D.G. Antimicrobial Peptides Derived from the Marine Organism(s) and Its Mode of Action. J. Korea Microbiol. Biotechnol. 2010, 38, 19–23. [Google Scholar]
- Fux, C.A.; Costerton, J.W.; Stewart, P.S.; Stoodley, P. Survival strategies of infectious biofilms. J. Trends Microbiol. 2005, 13, 34–40. [Google Scholar] [CrossRef]
- Kim, S.M.; Lee, J.H. Biofilm dispersion in Pseudomonas aeruginosa. J. Microbiol. 2016, 54, 71–85. [Google Scholar] [CrossRef]
- Hughes, D.; Andersson, D.I. Environmental and genetic modulation of the phenotypic expression of antibiotic resistance. FEMS Microbiol. Rev. 2017, 41, 374–391. [Google Scholar] [CrossRef]
- Park, S.C.; Nah, J.W. Antimicrobial Peptide as a Novel Antibiotic for Multi-Drug Resistance “Super-bacteria”. Appl. Chem. Eng. 2012, 23, 429–432. [Google Scholar]
- Yechiel, S. Mode of Action of Membrane Active Antimicrobial Peptides. J. Pept. Sci. 2002, 66, 236–248. [Google Scholar]
- Izano, E.A.; Amarante, M.A.; Kher, W.B.; Kaplan, J.B. Differential roles of poly-N-acetylglucosamine surface polysaccharide and extracellular DNA in Staphylococcus aureus and Staphylococcus epidermidis biofilms. J. Appl. Environ. Microbiol. 2008, 74, 470–476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Target | Primer Sequence (5′–3′) | Amplicon Size (bp) |
---|---|---|
RPS27A_F | GCCAAAATCCAGGACAAAGA | 92 |
RPS27A_R | TCTTCTTGGGGGTGGTGTAG | |
S30FAU_F | AGAACACCCACACCCTTGAG | 95 |
S30FAU_R | CAGTGCTCCAAGACTCCACA | |
EF-1a_F | GTGGCAAGTCCACCACCA | 135 |
EF-1a_R | GCTTGTCCAGCACCCAGG |
Name | Sequence | Molecular Formula | Molecular Weight (Da) |
---|---|---|---|
RPS27A | TTPKKNKHKRKKVKL | 1834.26 | |
S30FAU | QEKKKKKTGRAKRRI | 1855.23 |
Bacterial Strain | Gram | °C | RPS27A (μg/mL) | S30FAU (μg/mL) |
---|---|---|---|---|
Streptococcus PH0710 | (+) | 37 °C | 7.81–15.63 | 7.81–15.63 |
Streptococcus KSP28 | (+) | 37 °C | 15.53–31.25 | 15.53–31.25 |
Streptococcus iniae | (+) | 28 °C | 31.25–62.5 | 7.81–15.63 |
Vibrio harveryi | (−) | 28 °C | 7.81–15.63 | 7.81–15.63 |
Vibrio campbellii | (−) | 28 °C | 31.25–62.5 | 31.25–62.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Son, H.-J.; Kang, G.; Woo, W.-S.; Kim, K.-H.; Sohn, M.-Y.; Park, J.-W.; Lee, D.; Park, C.-I. Antimicrobial Activity of Identified Ubiquitin-40S Ribosomal Protein S27a (RPS27A), Ubiquitin-like Protein Fubi, and Ribosomal Protein (S30FAU) in the Starry Flounder (Platichthys stellatus). Fishes 2023, 8, 187. https://doi.org/10.3390/fishes8040187
Son H-J, Kang G, Woo W-S, Kim K-H, Sohn M-Y, Park J-W, Lee D, Park C-I. Antimicrobial Activity of Identified Ubiquitin-40S Ribosomal Protein S27a (RPS27A), Ubiquitin-like Protein Fubi, and Ribosomal Protein (S30FAU) in the Starry Flounder (Platichthys stellatus). Fishes. 2023; 8(4):187. https://doi.org/10.3390/fishes8040187
Chicago/Turabian StyleSon, Ha-Jeong, Gyoungsik Kang, Won-Sik Woo, Kyung-Ho Kim, Min-Young Sohn, Jong-Won Park, Dain Lee, and Chan-Il Park. 2023. "Antimicrobial Activity of Identified Ubiquitin-40S Ribosomal Protein S27a (RPS27A), Ubiquitin-like Protein Fubi, and Ribosomal Protein (S30FAU) in the Starry Flounder (Platichthys stellatus)" Fishes 8, no. 4: 187. https://doi.org/10.3390/fishes8040187
APA StyleSon, H. -J., Kang, G., Woo, W. -S., Kim, K. -H., Sohn, M. -Y., Park, J. -W., Lee, D., & Park, C. -I. (2023). Antimicrobial Activity of Identified Ubiquitin-40S Ribosomal Protein S27a (RPS27A), Ubiquitin-like Protein Fubi, and Ribosomal Protein (S30FAU) in the Starry Flounder (Platichthys stellatus). Fishes, 8(4), 187. https://doi.org/10.3390/fishes8040187