Effects of Fishing Selectivity and Dynamics on the Performance of Catch-Based Data-Limited Assessment Models for Species with Different Life History Traits
Abstract
1. Introduction
2. Materials and Methods
2.1. Operation Model for Simulating Population Dynamics and Catch Time Series
2.2. Simulation Scenarios
2.3. Catch-Based Models
2.4. Evaluating the Performance of the Catch-Based Models
3. Results
3.1. Simulation Outputs by Life History Traits and Fishing Strategy
3.2. Evaluating the Performance of the Catch-Based Models
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pilling, G.; Apostolaki, P.; Science, P.F. Assessment and Management of Data-Poor Fisheries. In Advances in Fisheries Science: 50 Years on From Beverton and Holt; Payne, A.I.L., Cotter, J., Potter, T., Eds.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2009. [Google Scholar]
- Worm, B.; Barbier, E.B.; Beaumont, N.; Duffy, J.E.; Folke, C.; Halpern, B.S.; Jackson, J.B.C.; Lotze, H.K.; Micheli, F.; Palumbi, S.R.; et al. Impacts of Biodiversity Loss on Ocean Ecosystem Services. Science 2006, 314, 787–790. [Google Scholar] [CrossRef] [PubMed]
- Costello, C.; Ovando, D.; Hilborn, R.; Gaines, S.D.; Deschenes, O.; Lester, S.E. Status and Solutions for the World’s Unassessed Fisheries. Science 2012, 338, 517–521. [Google Scholar] [CrossRef] [PubMed]
- Hilborn, R.; Amoroso, R.O.; Anderson, C.M.; Baum, J.K.; Branch, T.A.; Costello, C.; De Moor, C.L.; Faraj, A.; Hively, D.; Jensen, O.P.; et al. Effective Fisheries Management Instrumental in Improving Fish Stock Status. Proc. Natl. Acad. Sci. USA 2020, 117, 2218–2224. [Google Scholar] [CrossRef] [PubMed]
- Pita, C.; Villasante, S.; Pascual-Fernández, J.J. Managing Small-Scale Fisheries under Data Poor Scenarios: Lessons from around the World. Mar. Policy 2019, 101, 154–157. [Google Scholar] [CrossRef]
- Sagarese, S.R.; Rios, A.B.; Cass-Calay, S.L.; Cummings, N.J.; Bryan, M.D.; Stevens, M.H.; Harford, W.J.; McCarthy, K.J.; Matter, V.M. Working towards a Framework for Stock Evaluations in Data-Limited Fisheries. N. Am. J. Fish. Manag. 2018, 38, 507–537. [Google Scholar] [CrossRef]
- Zhou, S.; Punt, A.E.; Ye, Y.; Ellis, N.; Dichmont, C.M.; Haddon, M.; Smith, D.C.; Smith, A.D. Estimating Stock Depletion Level from Patterns of Catch History. Fish Fish. 2017, 18, 742–751. [Google Scholar] [CrossRef]
- Pons, M.; Cope, J.M.; Kell, L.T. Comparing Performance of Catch-Based and Length-Based Stock Assessment Methods in Data-Limited Fisheries. Can. J. Fish. Aquat. Sci. 2020, 77, 1026–1037. [Google Scholar] [CrossRef]
- van Gemert, R.; Koemle, D.; Winkler, H.; Arlinghaus, R. Data-Poor Stock Assessment of Fish Stocks Co-Exploited by Commercial and Recreational Fisheries: Applications to Pike Esox Lucius in the Western Baltic Sea. Fish. Manag. Ecol. 2022, 29, 16–28. [Google Scholar] [CrossRef]
- Martell, S.; Froese, R. A Simple Method for Estimating MSY from Catch and Resilience. Fish Fish. 2013, 14, 504–514. [Google Scholar] [CrossRef]
- Vasconcellos, M.; Cochrane, K. Overview of World Status of Data-Limited Fisheries: Inferences from Landings Statistics. In Fisheries Assessment and Management in Data-Limited Situations; Krus, G.H., Gall, V.F., Hay, D.E., Perry, R.I., Peterman, R.M., Shirley, T.C., Spencer, P.D., Wilson, B., Woodby, D., Eds.; Alaska Sea Grant, Univ.: Fairbanks, AK, USA, 2005; pp. 1–20. [Google Scholar]
- Thorson, J.T.; Minto, C.; Minte-Vera, C.V.; Kleisner, K.M.; Longo, C. A New Role for Effort Dynamics in the Theory of Harvested Populations and Data-Poor Stock Assessment. Can. J. Fish. Aquat. Sci. 2013, 70, 1829–1844. [Google Scholar] [CrossRef]
- Harley, S.J.; Myers, R.A.; Dunn, A. Is Catch-per-Unit-Effort Proportional to Abundance? Can. J. Fish. Aquat. Sci. 2001, 58, 1760–1772. [Google Scholar] [CrossRef]
- Macusi, E.D.; Morales, I.D.G.; Macusi, E.S.; Pancho, A.; Digal, L.N. Impact of Closed Fishing Season on Supply, Catch, Price and the Fisheries Market Chain. Mar. Policy 2022, 138, 105008. [Google Scholar] [CrossRef]
- Langlois, T.J.; Newman, S.J.; Cappo, M.; Harvey, E.S.; Rome, B.M.; Skepper, C.L.; Wakefield, C.B. Length Selectivity of Commercial Fish Traps Assessed from in Situ Comparisons with Stereo-Video: Is There Evidence of Sampling Bias? Fish. Res. 2015, 161, 145–155. [Google Scholar] [CrossRef]
- Carruthers, T.R.; Walters, C.J.; McAllister, M.K. Evaluating Methods That Classify Fisheries Stock Status Using Only Fisheries Catch Data. Fish. Res. 2012, 119–120, 66–79. [Google Scholar] [CrossRef]
- Free, C.M.; Jensen, O.P.; Anderson, S.C.; Gutierrez, N.L.; Kleisner, K.M.; Longo, C.; Minto, C.; Osio, G.C.; Walsh, J.C. Blood from a Stone: Performance of Catch-Only Methods in Estimating Stock Biomass Status. Fish. Res. 2020, 223, 105452. [Google Scholar] [CrossRef]
- Kleisner, K.; Pauly, D. Stock-Status Plots for Fisheries for Regional Seas. In The State of Biodiversity and Fisheries in Regional Seas, Fisheries Centre Research Reports 19(3); Christensen, V., Lai, S., Palomares, M.L.D., Zeller, D., Pauly, D., Eds.; Fisheries Centre, University of British Columbia: Vancouver, BC, Canada, 2011. [Google Scholar]
- Froese, R.; Kesner-Reyes, K. Impact of Fishing on the Abundance of Marine Species; ICES: Copenhagen, Denmark, 2002. [Google Scholar]
- Piet, G.J.; Rijnsdorp, A.D. Changes in the Demersal Fish Assemblage in the South-Eastern North Sea Following the Establishment of a Protected Area (“Plaice Box”). ICES J. Mar. Sci. 1998, 55, 420–429. [Google Scholar] [CrossRef]
- Fenberg, P.B.; Roy, K. Ecological and Evolutionary Consequences of Size-Selective Harvesting: How Much Do We Know? Mol. Ecol. 2008, 17, 209–220. [Google Scholar] [CrossRef]
- Birkeland, C.; Dayton, P.K. The Importance in Fishery Management of Leaving the Big Ones. Trends Ecol. Evol. 2005, 20, 356–358. [Google Scholar] [CrossRef]
- Hsieh, C.H.; Reiss, C.S.; Hunter, J.R.; Beddington, J.R.; May, R.M.; Sugihara, G. Fishing Elevates Variability in the Abundance of Exploited Species. Nature 2006, 443, 859–862. [Google Scholar] [CrossRef]
- Anderson, S.C.; Monnahan, C.C.; Johnson, K.F.; Ono, K.; Valero, J.L. Ss3sim: An R Package for Fisheries Stock Assessment Simulation with Stock Synthesis. PLoS ONE 2014, 9, e92725. [Google Scholar] [CrossRef]
- Methot, R.D.; Wetzel, C.R. Stock Synthesis: A Biological and Statistical Framework for Fish Stock Assessment and Fishery Management. Fish. Res. 2013, 142, 86–99. [Google Scholar] [CrossRef]
- Methot, R.D., Jr.; Wetzel, C.R.; Taylor, I.G.; Doering, K. Stock Synthesis User Manual Version 3.30.15. U.S. Department of Commerce, NOAA Processed Report NMFS-NWFSC-PR-2020-05; Northwest Fisheries Science Center: Seattle, WA, USA, 2020.
- King, J.R.; McFarlane, G.A. Marine Fish Life History Strategies: Applications to Fishery Management. Fish. Manag. Ecol. 2003, 10, 249–264. [Google Scholar] [CrossRef]
- Ricker, W.E. Handbook of Computations for Biological Statistics of Fish Populations. Bull. Fish. Res. Board Can. 1958, 119, 1–300. [Google Scholar]
- Anderson, S.C.; Afflerbach, J.; Cooper, A.B.; Dickey-Collas, M.; Jensen, O.P.; Kleisner, K.M.; Longo, C.; Osio, G.C.; Ovando, D.; Minte-Vera, C.; et al. Datalimited: Stock Assessment Methods for Data-Limited Fisheries. R Package Version 0.1.0. 2016. Available online: https://github.com/datalimited/datalimited (accessed on 17 February 2023).
- Rosenberg, A.A.; Fogarty, M.J.; Cooper, A.B.; Dickey-Collas, M.; Fulton, E.A.; Gutiérrez, N.L.; Hyde, K.J.W.; Kleisner, K.M.; Kristiansen, T.; Longo, C.; et al. Developing New Approaches to Global Stock Status Assessment and Fishery Production Potential of the Seas. FAO Fish. Aquac. Circ. 2014, 1086, 175. [Google Scholar]
- Walsh, J.C.; Minto, C.; Jardim, E.; Anderson, S.C.; Jensen, O.P.; Afflerbach, J.; Dickey-Collas, M.; Kleisner, K.M.; Longo, C.; Osio, G.C.; et al. Trade-Offs for Data-Limited Fisheries When Using Harvest Strategies Based on Catch-Only Models. Fish Fish. 2018, 19, 1130–1146. [Google Scholar] [CrossRef]
- Juan-Jordá, M.J.; Mosqueira, I.; Freire, J.; Dulvy, N.K. Population Declines of Tuna and Relatives Depend on Their Speed of Life. Proc. R. Soc. B Biol. Sci. 2015, 282, 20150322. [Google Scholar] [CrossRef]
- Rosenberg, A.A.; Kleisner, K.M.; Afflerbach, J.; Anderson, S.C.; Dickey-Collas, M.; Cooper, A.B.; Fogarty, M.J.; Fulton, E.A.; Gutiérrez, N.L.; Hyde, K.J.W.; et al. Applying a New Ensemble Approach to Estimating Stock Status of Marine Fisheries around the World. Conserv. Lett. 2018, 11, e12363. [Google Scholar] [CrossRef]
- Punt, A.E.; Hilborn, R. Bayesian Stock Assessment Methods in Fisheries-User’s Manual; Food and Agriculture Organization: Rome, Italy, 2001.
- Branch, T.A.; Jensen, O.P.; Ricard, D.; Ye, Y.; Hilborn, R. Contrasting Global Trends in Marine Fishery Status Obtained from Catches and from Stock Assessments. Conserv. Biol. 2011, 25, 777–786. [Google Scholar] [CrossRef]
- Froese, R.; Zeller, D.; Kleisner, K.; Pauly, D. What Catch Data Can Tell Us about the Status of Global Fisheries. Mar. Biol. 2012, 159, 1283–1292. [Google Scholar] [CrossRef]
- Hilborn, R.; Branch, T.A. Fisheries: Does Catch Reflect Abundance? Nature 2013, 494, 303–306. [Google Scholar]
- Hordyk, A.R.; Loneragan, N.R.; Prince, J.D. An Evaluation of an Iterative Harvest Strategy for Data-Poor Fisheries Using the Length-Based Spawning Potential Ratio Assessment Methodology. Fish. Res. 2015, 171, 20–32. [Google Scholar] [CrossRef]
- Sassa, C.; Ohshimo, S.; Tanaka, H.; Tsukamoto, Y. Reproductive Biology of Benthosema Pterotum (Teleostei: Myctophidae) in the Shelf Region of the East China Sea. J. Mar. Biol. Assoc. U. K. 2014, 94, 423–433. [Google Scholar] [CrossRef]
- Garcia Seoane, E. Ecology of the Glacier Lanternfish Benthosema Glaciale (Reinhardt,1837) with Focus on the Flemish Cap; University of Vigo: Vigo, Spain, 2013. [Google Scholar]
- Brand, E.J.; Kaplan, I.C.; Harvey, C.J.; Levin, P.S.; Fulton, E.A.; Hermann, A.J.; Field, J.C. A Spatially Explicit Ecosystem Model of the California Current’s Food Web and Oceanography. NOAA Tech. Memo. NMFS-NWFSC 2007, 84, 145. [Google Scholar]
- Liang, Y.; Sui, X.; Chen, Y.; Jia, Y.; He, D. Life History Traits of the Chinese Minnow Rhynchocypris Oxycephalus in the Upper Branch of Yangtze River, China. Zool. Stud. 2014, 53, 1–10. [Google Scholar] [CrossRef]
- Hay, D.E.; Mccarter, P.B. Status of the Eulachon (Thaleichthys pacificus) in Canada. Can. Stock Assess. Res. Doc. 2000, 92. [Google Scholar]
- Nelson, G.A.; Ross, M.R. Biology and Population Changes of Northern Sand Lance (Ammodytes dubius) from the Gulf of Maine to the Middle Atlantic Bight. J. Northwest Atl. Fish. Sci. 1991, 11, 11–27. [Google Scholar] [CrossRef]
- Griffith, D.A.; Lo, N.C.H.; Jolla, L.; Griffith, D.A. Spawning Biomass of Pacific Sardine (Sardinops sagax), from 1994–2004 off California. CalCOFI Rep 2005, 46. [Google Scholar]
- Galindo-Cortes, G.; De Anda-Montañez, J.A.; Arreguín-Sánchez, F.; Salas, S.; Balart, E.F. How Do Environmental Factors Affect the Stock-Recruitment Relationship? The Case of the Pacific Sardine (Sardinops sagax) of the Northeastern Pacific Ocean. Fish. Res. 2010, 102, 173–183. [Google Scholar] [CrossRef]
- Haist, V.; Stocker, M. Growth and Maturation of Pacific Herring (Clupea harengus pallasi) in the Strait of Georgia. Can. J. Fish. Aquat. Sci. 1985, 42, 138–146. [Google Scholar] [CrossRef]
- Burd, A.C.; Howlett, G.J. Fecundity Studies on North Sea Herring. ICES J. Mar. Sci. 1974, 35, 107–120. [Google Scholar] [CrossRef]
- Nash, R.D.M.; Dickey-Collas, M.; Kell, L.T. Stock and Recruitment in North Sea Herring (Clupea harengus); Compensation and Depensation in the Population Dynamics. Fish. Res. 2009, 95, 88–97. [Google Scholar] [CrossRef]
- Holden, M.J. The Fecundity of Raja clavata in British Waters. ICES J. Mar. Sci. 1975, 36, 110–118. [Google Scholar] [CrossRef]
- Ebert, D.A.; Smith, W.D.; Cailliet, G.M. Reproductive Biology of Two Commercially Exploited Skates, Raja binoculata and R. rhina, in the Western Gulf of Alaska. Fish. Res. 2008, 94, 48–57. [Google Scholar] [CrossRef]
- Drew, M.; White, W.T.; Dharmadi; Harry, A.V.; Huveneers, C. Age, Growth and Maturity of the Pelagic thresher Alopias pelagicus and the Scalloped hammerhead Sphyrna lewini. J. Fish Biol. 2015, 86, 333–354. [Google Scholar] [CrossRef] [PubMed]
- Hsu, H.; Joung, S.J.; Lyu, G.T.; Liu, K.M.; Huang, C.C. Age and Growth of the Blue Shark, Prionace glauca, in the Northwest Pacific. In Proceedings of the Shark Working Group Workshop ISC/11/SHARKWG-2/, La Jolla, CA, USA, 28 November–6 December 2011; p. 22. [Google Scholar]
- King, J.R.; McPhie, R.P. Preliminary Age, Growth and Maturity Estimates of Spotted Ratfish (Hydrolagus colliei) in British Columbia. Deep. Res. Part II Top. Stud. Oceanogr. 2015, 115, 55–63. [Google Scholar] [CrossRef]
- Dutton, J.; Gioia, K.A. Fecundity and Embryonic Development of Spiny Dogfish in the Northwest Atlantic Ocean. Trans. Am. Fish. Soc. 2019, 148, 48–57. [Google Scholar] [CrossRef]
- Kwain, W.H. Spawning Behavior and Early Life History of Pink Salmon (Oncorhynchus gorbuscha) in the Great Lakes (Lake superior). Can. J. Fish. Aquat. Sci. 1982, 39, 1353–1360. [Google Scholar] [CrossRef]
- Godbout, L.; Fu, C.H.; Irvine, J.R. Evaluation of Chum Salmon Fishery Performance Using Ricker and Beverton-Holt Stock Recruitment Approaches in a Bayesian Framework. Reconciling Fish. with Conserv. Vols I Ii 2008, 49, 1417–1433. [Google Scholar]
- Beacham, T.D. Fecundity of Coho Salmon (Oncorhynchus kisutch) and Chum Salmon (Oncorhynchus keta) in the Northeast Pacific Ocean. Can. J. Zool. 1982, 60, 1463–1469. [Google Scholar] [CrossRef]
- Hartman, W.L.; Conkle, C.Y. Fecundity of Red Salmon at Brooks and Karluk Lakes, Alaska. Fish. Bull. Fish Wildl. Serv. 1960, 61, 53–60. [Google Scholar]
- Kerns, J.A.; Rogers, M.W.; Bunnell, D.B.; Claramunt, R.M.; Collingsworth, P.D. Comparing Life History Characteristics of Lake Michigan’s Naturalized and Stocked Chinook Salmon. N. Am. J. Fish. Manag. 2016, 36, 1106–1118. [Google Scholar] [CrossRef]
- Echeverria, T.W. Thirty-Four Species of California Rockfishes: Maturity and Seasonality of Reproduction. Fish. Bull. 1988, 85, 229–250. [Google Scholar]
- Haigh, R.; Starr, P. A Review of Yellowmouth Rockfish Sebastes reedi along the Pacific Coast of Canada: Biology, Distribution, and Abundance Trends. CSAS Res. Doc. 2008, 3848, 105. [Google Scholar]
- Stanley, R.D.; Kronlund, A.R. Life History Characteristics for Silvergray Rockfish (Sebastes brevispinis) in British Columbia Waters and the Implications for Stock Assessment and Management. Fish. Bull. 2005, 103, 670–684. [Google Scholar]
- Conrath, C.L.; Knoth, B. Reproductive Biology of Pacific Ocean Perch in the Gulf of Alaska. Mar. Coast. Fish. 2013, 5, 21–27. [Google Scholar] [CrossRef]
- Love, M.S.; Morris, P.; McCrae, M.; Colins, R. Life History Aspects of 19 Rockfish Species (Scorpaenidae: Sebastes) from the Southern California Bight. NOAA Tech. Rep. NMFS 87 1990. [Google Scholar]
- Beyer, S.G.; Sogard, S.M.; Harvey, C.J.; Field, J.C. Variability in Rockfish (Sebastes spp.) Fecundity: Species Contrasts, Maternal Size Effects, and Spatial Differences. Environ. Biol. Fishes 2015, 98, 81–100. [Google Scholar] [CrossRef]
- Schmitt, C.; St-Pierre, G. Evaluation of Two Methods to Determine Maturity of Pacific Halibut; International Pacific Halibut Commission: Seattle, WA, USA, 1997; pp. 1–24. [Google Scholar]
- Haug, T.; Gulliksen, B. Fecundity and Oocyte Sizes in Ovaries of Female Atlantic Halibut, Hippoglossus hippoglossus (L.). Sarsia 1988, 73, 259–261. [Google Scholar] [CrossRef]
- Head, M.A.; Keller, A.A.; Bradburn, M. Maturity and Growth of Sablefish, Anoplopoma fimbria, along the U.S. West Coast. Fish. Res. 2014, 159, 56–67. [Google Scholar] [CrossRef]
- Hunter, J.R.; Macewicz, B.J.; Kimbrell, C.A. Fecundity and Other Aspects of the Reproduction of Sablefish, Anoplopoma fimbria, in Central California Waters. CalCOFI Rep 1989, 30, 61–72. [Google Scholar]
- Schirripa, M.J.; Goodyear, C.P.; Methot, R.M. Testing Different Methods of Incorporating Climate Data into the Assessment of US West Coast Sablefish. ICES J. Mar. Sci. 2009, 66, 1605–1613. [Google Scholar] [CrossRef]
- Pearson, K.E.; Gunderson, D.R. Reproductive Biology and Ecology of Shortspine Thornyhead Rockfish, Sebastolobus alascanus, and Longspine Thornyhead Rockfish, S. altivelis, from the Northeastern Pacific Ocean. Environ. Biol. Fishes 2003, 67, 117–136. [Google Scholar] [CrossRef]
- Cooper, D.W.; Pearson, K.E.; Gunderson, D.R. Fecundity of Shortspine Thornyhead (Sebastolobus alascanus) and Longspine Thornyhead (S. altivelis) (Scorpaenidae) from the Northeastern Pacific Ocean, Determined by Stereological and Gravimetric Techniques. Fish. Bull. 2005, 103, 15–22. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuo, T.-C.; Cheng, C.-C.; Su, N.-J. Effects of Fishing Selectivity and Dynamics on the Performance of Catch-Based Data-Limited Assessment Models for Species with Different Life History Traits. Fishes 2023, 8, 130. https://doi.org/10.3390/fishes8030130
Kuo T-C, Cheng C-C, Su N-J. Effects of Fishing Selectivity and Dynamics on the Performance of Catch-Based Data-Limited Assessment Models for Species with Different Life History Traits. Fishes. 2023; 8(3):130. https://doi.org/10.3390/fishes8030130
Chicago/Turabian StyleKuo, Ting-Chun, Ching-Chun Cheng, and Nan-Jay Su. 2023. "Effects of Fishing Selectivity and Dynamics on the Performance of Catch-Based Data-Limited Assessment Models for Species with Different Life History Traits" Fishes 8, no. 3: 130. https://doi.org/10.3390/fishes8030130
APA StyleKuo, T.-C., Cheng, C.-C., & Su, N.-J. (2023). Effects of Fishing Selectivity and Dynamics on the Performance of Catch-Based Data-Limited Assessment Models for Species with Different Life History Traits. Fishes, 8(3), 130. https://doi.org/10.3390/fishes8030130