Potential Symbiotic Effects of β-1,3 Glucan, and Fructooligosaccharides on the Growth Performance, Immune Response, Redox Status, and Resistance of Pacific White Shrimp, Litopenaeus vannamei to Fusarium solani Infection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Experimental Diets
2.2. Shrimp Rearing and Feeding Trial
2.3. Growth Performance
2.4. Sample Collection
2.5. Carcass Chemical Analysis
2.6. Digestive Enzymes Analysis
2.7. Antioxidants and Immune Biomarkers
2.8. Fusarium solani Challenge Trial
2.9. Statistical Analysis
3. Results
3.1. Growth Performance and Proximate Carcass Composition
3.2. Digestive Enzymes Analysis
3.3. Antioxidants and Immunity Biomarkers
3.4. Fungal Challenge Trial
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Idenyi, J.N.; Eya, J.C.; Nwankwegu, A.S.; Nwoba, E.G. Aquaculture sustainability through alternative dietary ingredients: Microalgal value-added products. Eng. Microbiol. 2022, 2, 100049. [Google Scholar] [CrossRef]
- Mohan, K.; Rajan, D.K.; Muralisankar, T.; Ganesan, A.R.; Sathishkumar, P.; Revathi, N. Use of black soldier fly (Hermetia illucens L.) larvae meal in aquafeeds for a sustainable aquaculture industry: A review of past and future needs. Aquaculture 2022, 553, 738095. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. The State of World Fisheries and Aquaculture 2016; Contributing to food security and nutrition for all; FAO: Rome, Italy, 2016. [Google Scholar]
- Islam, T.; Hossain, M.I.; Alam, M.M.; Khalil, S.M.I.; Rahman, M.M.; Abdullah-Al-Mamun, M. Status of shrimp diseases and their management practices at Satkhira in Bangladesh. J. Entomol. Zool. Stud. 2020, 8, 1017–1026. [Google Scholar]
- Luo, K.; Tian, X.; Wang, B.; Wei, C.; Wang, L.; Zhang, S.; Liu, Y.; Li, T.; Dong, S. Evaluation of paraprobiotic applicability of Clostridium butyricum CBG01 in improving the growth performance, immune responses and disease resistance in Pacific white shrimp, Penaeus vannamei. Aquaculture 2021, 544, 737041. [Google Scholar] [CrossRef]
- Zou, Y.; Xie, G.; Jia, T.; Xu, T.; Wang, C.; Wan, X.; Li, Y.; Luo, K.; Bian, X.; Wang, X. Determination of the infectious agent of translucent post-larva disease (TPD) in Penaeus vannamei. Pathogens 2020, 9, 741. [Google Scholar] [CrossRef]
- Yao, L.; Wang, C.; Li, G.; Xie, G.; Jia, Y.; Wang, W.; Liu, S.; Xu, T.; Luo, K.; Zhang, Q. Identification of Fusarium solani as a causal agent of black spot disease (BSD) of Pacific white shrimp, Penaeus vannamei. Aquaculture 2022, 548, 737602. [Google Scholar] [CrossRef]
- Palmero, D.; Iglesias, C.; De Cara, M.; Lomas, T.; Santos, M.; Tello, J. Species of Fusarium isolated from river and sea water of southeastern Spain and pathogenicity on four plant species. Plant Dis. 2009, 93, 377–385. [Google Scholar] [CrossRef] [PubMed]
- Ramesh, T.; Yamunadevi, R.; Sundaramanickam, A.; Thangaraj, M.; Kumaran, R.; Annadurai, D. Biodiversity of the fungi in extreme marine environments. In Fungi Bio-Prospects in Sustainable Agriculture, Environment and Nano-Technology; Elsevier: Amsterdam, The Netherlands, 2021; pp. 75–100. [Google Scholar]
- Figueroa, M.; Hammond-Kosack, K.E.; Solomon, P.S. A review of wheat diseases—A field perspective. Mol. Plant Pathol. 2018, 19, 1523–1536. [Google Scholar] [CrossRef] [PubMed]
- Summerell, B.A. Resolving Fusarium: Current status of the genus. Annu. Rev. Phytopathol. 2019, 57, 323–339. [Google Scholar] [CrossRef]
- Hatai, K.; Egusa, S. Studies on the Pathogenic Fungus Associated with Black Gill Disease of Kuruma Prawn, Penaeus japonicus-II Some of the Note on the BG-Fusarium. Fish Pathol. 1978, 12, 225–231. [Google Scholar] [CrossRef]
- Colorni, A. Fusariosis in the shrimp Penaeus semisulcatus cultured in Israel. Mycopathologia 1989, 108, 145–147. [Google Scholar] [CrossRef] [PubMed]
- Le, V.K.; Hatai, K.; Yuasa, A.; Sawada, K. Morphology and molecular phylogeny of Fusarium solani isolated from kuruma prawn Penaeus japonicus with black gills. Fish Pathol. 2005, 40, 103–109. [Google Scholar]
- Rajeev, R.; Adithya, K.; Kiran, G.S.; Selvin, J. Healthy microbiome: A key to successful and sustainable shrimp aquaculture. Rev. Aquac. 2021, 13, 238–258. [Google Scholar] [CrossRef]
- Braun, G.; Braun, M.; Kruse, J.; Amelung, W.; Renaud, F.G.; Khoi, C.M.; Duong, M.; Sebesvari, Z. Pesticides and antibiotics in permanent rice, alternating rice-shrimp and permanent shrimp systems of the coastal Mekong Delta, Vietnam. Environ. Int. 2019, 127, 442–451. [Google Scholar] [CrossRef] [PubMed]
- Tinh, T.H.; Elayaraja, S.; Mabrok, M.; Gallantiswara, P.C.D.; Vuddhakul, V.; Rodkhum, C. Antibacterial spectrum of synthetic herbal-based polyphenols against Vibrio parahaemolyticus isolated from diseased Pacific whiteleg shrimp (Penaeus vannamei) in Thailand. Aquaculture 2021, 533, 736070. [Google Scholar] [CrossRef]
- Algammal, A.M.; Mabrok, M.; Ezzat, M.; Alfifi, K.J.; Esawy, A.M.; Elmasry, N.; El-Tarabili, R.M. Prevalence, antimicrobial resistance (AMR) pattern, virulence determinant and AMR genes of emerging multi-drug resistant Edwardsiella tarda in Nile tilapia and African catfish. Aquaculture 2022, 548, 737643. [Google Scholar] [CrossRef]
- Kewcharoen, W.; Srisapoome, P. Potential synbiotic effects of a Bacillus mixture and chitosan on growth, immune responses and VP (AHPND) resistance in Pacific white shrimp (Litopenaeus vannamei, Boone, 1931). Fish Shellfish Immunol. 2022, 127, 715–729. [Google Scholar] [CrossRef]
- Thornber, K.; Verner-Jeffreys, D.; Hinchliffe, S.; Rahman, M.M.; Bass, D.; Tyler, C.R. Evaluating antimicrobial resistance in the global shrimp industry. Rev. Aquac. 2020, 12, 966–986. [Google Scholar] [CrossRef]
- Okocha, R.C.; Olatoye, I.O.; Adedeji, O.B. Food safety impacts of antimicrobial use and their residues in aquaculture. Public Health Rev. 2018, 39, 21. [Google Scholar] [CrossRef]
- Thitamadee, S.; Prachumwat, A.; Srisala, J.; Jaroenlak, P.; Salachan, P.V.; Sritunyalucksana, K.; Flegel, T.W.; Itsathitphaisarn, O. Review of current disease threats for cultivated penaeid shrimp in Asia. Aquaculture 2016, 452, 69–87. [Google Scholar] [CrossRef]
- Ayoub, H.F.; Tohamy, E.Y.; Salama, H.M.; Mohamed, S.S. Citrullus colocynthis extract and synthesized Selenium nanoparticles enhance non-specific response and resistance against Aeromonas sobria in Nile tilapia (Oreochromis niloticus). Aquac. Res. 2021, 52, 4969–4982. [Google Scholar] [CrossRef]
- Mabrok, M.A.E.; Wahdan, A. The immune modulatory effect of oregano (Origanum vulgare L.) essential oil on Tilapia zillii following intraperitoneal infection with Vibrio anguillarum. Aquac. Int. 2018, 26, 1147–1160. [Google Scholar] [CrossRef]
- Vijayaram, S.; Sun, Y.-Z.; Zuorro, A.; Ghafarifarsani, H.; Van Doan, H.; Hoseinifar, S.H. Bioactive immunostimulants as health-promoting feed additives in aquaculture: A review. Fish Shellfish Immunol. 2022, 130, 294–308. [Google Scholar] [CrossRef]
- Gibson, G.R.; Roberfroid, M.B. Dietary modulation of the human colonic microbiota: Introducing the concept of prebiotics. J. Nutr. 1995, 125, 1401–1412. [Google Scholar] [CrossRef] [PubMed]
- Butt, U.D.; Lin, N.; Akhter, N.; Siddiqui, T.; Li, S.; Wu, B. Overview of the latest developments in the role of probiotics, prebiotics and synbiotics in shrimp aquaculture. Fish Shellfish Immunol. 2021, 114, 263–281. [Google Scholar] [CrossRef]
- Ringø, E.; Olsen, R.; Gifstad, T.; Dalmo, R.; Amlund, H.; Hemre, G.I.; Bakke, A. Prebiotics in aquaculture: A review. Aquac. Nutr. 2010, 16, 117–136. [Google Scholar] [CrossRef]
- Abdel-Latif, H.M.; Yilmaz, E.; Dawood, M.A.; Ringø, E.; Ahmadifar, E.; Yilmaz, S. Shrimp vibriosis and possible control measures using probiotics, postbiotics, prebiotics, and synbiotics: A review. Aquaculture 2022, 551, 737951. [Google Scholar] [CrossRef]
- Chen, M.; Chen, X.-Q.; Tian, L.-X.; Liu, Y.-J.; Niu, J. Improvement of growth, intestinal short-chain fatty acids, non-specific immunity and ammonia resistance in Pacific white shrimp (Litopenaeus vannamei) fed dietary water-soluble chitosan and mixed probiotics. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2020, 236, 108791. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, M.V.; Zanuzzo, F.S.; Koch, J.F.A.; de Oliveira, C.A.F.; Sima, P.; Vetvicka, V. Development of fish immunity and the role of β-glucan in immune responses. Molecules 2020, 25, 5378. [Google Scholar] [CrossRef]
- Pooljun, C.; Jariyapong, P.; Wongtawan, T.; Hirono, I.; Wuthisuthimethavee, S. Effect of feeding different types of β-glucans derived from two marine diatoms (Chaetoceros muelleri and Thalassiosira weissflogii) on growth performance and immunity of banana shrimp (Penaeus merguiensis). Fish Shellfish Immunol. 2022, 130, 512–519. [Google Scholar] [CrossRef]
- Yuan, X.; Xu, R.; Qi, Q.; Xu, M.; Li, B.; Wang, B.; Zhang, C. Dietary fructooligosaccharide and Bacillus licheniformis on growth performance, digestive enzyme, immune indices, and antioxidant capacity of common carp (Cyprinus carpio). Reg. Stud. Mar. Sci. 2022, 56, 102670. [Google Scholar] [CrossRef]
- El-Dahhar, A.; El-Shazly, K. Effect of essential amino acids (methionine and lysine) and treated oil in fish diet on growth performance and feed utilization of Nile tilapia, Tilapia nilotica (L.). Aquac. Res. 1993, 24, 731–739. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists. Official Methods of Analysis: Changes in Official Methods of Analysis Made at the Annual Meeting; AOAC: Rockville, MD, USA, 1990. [Google Scholar]
- McDonald, P.; Edwards, R.A.; Greenhalgh, J.F.D. Animal Nutrition; CABI: Wallingford, UK, 1973. [Google Scholar]
- Association, A.P.H.; Association, A.W.W. Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 1995; p. 1000. [Google Scholar]
- AOAC of Official Analytical Chemists. Coffee and tea. In Official Methods of Analysis, 17th ed.; AOAC: Gaithersburg, MD, USA, 2000. [Google Scholar]
- Kiernan, J. Histological and Histochemical Methods: Theory and Practice, 4th ed.; Scion: Bloxham, UK, 2008. [Google Scholar]
- Erlanger, B.F.; Kokowsky, N.; Cohen, W. The preparation and properties of two new chromogenic substrates of trypsin. Arch. Biochem. Biophys. 1961, 95, 271–278. [Google Scholar] [CrossRef]
- Gamboa-Delgado, J.; Molina-Poveda, C.; Cahu, C. Digestive enzyme activity and food ingesta in juvenile shrimp Litopenaeus vannamei (Boone, 1931) as a function of body weight. Aquac. Res. 2003, 34, 1403–1411. [Google Scholar] [CrossRef]
- McCord, J.M.; Fridovich, I. Superoxide dismutase: An enzymic function for erythrocuprein (hemocuprein). J. Biol. Chem. 1969, 244, 6049–6055. [Google Scholar] [CrossRef]
- Aebi, H. [13] Catalase in vitro. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 1984; Volume 105, pp. 121–126. [Google Scholar]
- Paglia, D.E.; Valentine, W.N. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J. Lab. Clin. Med. 1967, 70, 158–169. [Google Scholar] [PubMed]
- Ohkawa, H.; Ohishi, N.; Yagi, K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 1979, 95, 351–358. [Google Scholar] [CrossRef]
- Engstad, R.E.; Robertsen, B.; Frivold, E. Yeast glucan induces increase in lysozyme and complement-mediated haemolytic activity in Atlantic salmon blood. Fish Shellfish Immunol. 1992, 2, 287–297. [Google Scholar] [CrossRef]
- Rook, G.; Steele, J.; Umar, S.; Dockrell, H. A simple method for the solubilisation of reduced NBT, and its use as a colorimetric assay for activation of human macrophages by γ-interferon. J. Immunol. Methods 1985, 82, 161–167. [Google Scholar] [CrossRef]
- Supamattaya, K.; Pongmaneerat, J.; Klowklieng, T. The effect of β–glucan (MacroGard®) on growth performance, immune response and disease resistance in black tiger shrimp, Penaeus monodon Fabricius. Songklanakarin J. Sci. Technol. 2000, 22, 677–688. [Google Scholar]
- Goh, Y.J.; Klaenhammer, T.R. Genetic mechanisms of prebiotic oligosaccharide metabolism in probiotic microbes. Annu. Rev. Food Sci. Technol. 2015, 6, 137–156. [Google Scholar] [CrossRef]
- Jana, U.K.; Suryawanshi, R.K.; Prajapati, B.P.; Kango, N. Prebiotic mannooligosaccharides: Synthesis, characterization and bioactive properties. Food Chem. 2021, 342, 128328. [Google Scholar] [CrossRef] [PubMed]
- Boonanuntanasarn, S.; Wongsasak, U.; Pitaksong, T.; Chaijamrus, S. Effects of dietary supplementation with β-glucan and synbiotics on growth, haemolymph chemistry, and intestinal microbiota and morphology in the Pacific white shrimp. Aquac. Nutr. 2016, 22, 837–845. [Google Scholar] [CrossRef]
- Li, H.; Xu, C.; Zhou, L.; Dong, Y.; Su, Y.; Wang, X.; Qin, J.G.; Chen, L.; Li, E. Beneficial effects of dietary β-glucan on growth and health status of Pacific white shrimp Litopenaeus vannamei at low salinity. Fish Shellfish Immunol. 2019, 91, 315–324. [Google Scholar] [CrossRef]
- Dawood, M.A.; Koshio, S.; Ishikawa, M.; Yokoyama, S.; El Basuini, M.F.; Hossain, M.S.; Nhu, T.H.; Moss, A.S.; Dossou, S.; Wei, H. Dietary supplementation of β-glucan improves growth performance, the innate immune response and stress resistance of red sea bream, P agrus major. Aquac. Nutr. 2017, 23, 148–159. [Google Scholar] [CrossRef]
- Pilarski, F.; de Oliveira, C.A.F.; de Souza, F.P.B.D.; Zanuzzo, F.S. Different β-glucans improve the growth performance and bacterial resistance in Nile tilapia. Fish Shellfish Immunol. 2017, 70, 25–29. [Google Scholar] [CrossRef]
- Ismail, M.; Wahdan, A.; Yusuf, M.S.; Metwally, E.; Mabrok, M. Effect of dietary supplementation with a synbiotic (Lacto Forte) on growth performance, haematological and histological profiles, the innate immune response and resistance to bacterial disease in Oreochromis niloticus. Aquac. Res. 2019, 50, 2545–2562. [Google Scholar] [CrossRef]
- Dalmo, R.A.; Bøgwald, J. ß-glucans as conductors of immune symphonies. Fish Shellfish Immunol. 2008, 25, 384–396. [Google Scholar] [CrossRef]
- Song, S.K.; Beck, B.R.; Kim, D.; Park, J.; Kim, J.; Kim, H.D.; Ringø, E. Prebiotics as immunostimulants in aquaculture: A review. Fish Shellfish Immunol. 2014, 40, 40–48. [Google Scholar] [CrossRef]
- Huynh, T.-G.; Shiu, Y.-L.; Nguyen, T.-P.; Truong, Q.-P.; Chen, J.-C.; Liu, C.-H. Current applications, selection, and possible mechanisms of actions of synbiotics in improving the growth and health status in aquaculture: A review. Fish Shellfish Immunol. 2017, 64, 367–382. [Google Scholar] [CrossRef]
- Mohammadian, T.; Nasirpour, M.; Tabandeh, M.R.; Mesbah, M. Synbiotic effects of β-glucan, mannan oligosaccharide and Lactobacillus casei on growth performance, intestine enzymes activities, immune-hematological parameters and immune-related gene expression in common carp, Cyprinus carpio: An experimental infection with Aeromonas hydrophila. Aquaculture 2019, 511, 634197. [Google Scholar]
- Vogt, G. Synthesis of digestive enzymes, food processing, and nutrient absorption in decapod crustaceans: A comparison to the mammalian model of digestion. Zoology 2021, 147, 125945. [Google Scholar] [CrossRef]
- Xu, B.; Zhang, G.; Wang, L.; Sagada, G.; Zhang, J.; Shao, Q. The influence of dietary β-1, 3-glucan on growth performance, feed utilization, antioxidative and immune status of Pacific white shrimp, Litopenaeus vannamei. Aquac. Nutr. 2021, 27, 1590–1601. [Google Scholar] [CrossRef]
- Muttharasi, C.; Gayathri, V.; Muralisankar, T.; Mohan, K.; Uthayakumar, V.; Radhakrishnan, S.; Kumar, P.; Palanisamy, M. Growth performance, digestive enzymes and antioxidants activities in the shrimp Litopenaeus vannamei fed with Amphiroa fragilissima crude polysaccharides encapsulated Artemia nauplii. Aquaculture 2021, 545, 737263. [Google Scholar] [CrossRef]
- Li, Y.; Liu, H.; Dai, X.; Li, J.; Ding, F. Effects of dietary inulin and mannan oligosaccharide on immune related genes expression and disease resistance of Pacific white shrimp, Litopenaeus vannamei. Fish Shellfish Immunol. 2018, 76, 78–92. [Google Scholar] [CrossRef] [PubMed]
- Hoseinifar, S.H.; Yousefi, S.; Van Doan, H.; Ashouri, G.; Gioacchini, G.; Maradonna, F.; Carnevali, O. Oxidative stress and antioxidant defense in fish: The implications of probiotic, prebiotic, and synbiotics. Rev. Fish. Sci. Aquac. 2020, 29, 198–217. [Google Scholar] [CrossRef]
- Livingstone, D. Contaminant-stimulated reactive oxygen species production and oxidative damage in aquatic organisms. Mar. Pollut. Bull. 2001, 42, 656–666. [Google Scholar] [CrossRef]
- Kofuji, K.; Aoki, A.; Tsubaki, K.; Konishi, M.; Isobe, T.; Murata, Y. Antioxidant activity of β-glucan. Int. Sch. Res. Not. 2012, 2012, 125864. [Google Scholar] [CrossRef]
- Liu, W.-C.; Zhou, S.-H.; Balasubramanian, B.; Zeng, F.-Y.; Sun, C.-B.; Pang, H.-Y. Dietary seaweed (Enteromorpha) polysaccharides improves growth performance involved in regulation of immune responses, intestinal morphology and microbial community in banana shrimp Fenneropenaeus merguiensis. Fish Shellfish Immunol. 2020, 104, 202–212. [Google Scholar] [CrossRef]
- Magnadóttir, B. Innate immunity of fish (overview). Fish Shellfish Immunol. 2006, 20, 137–151. [Google Scholar] [CrossRef] [PubMed]
- Saurabh, S.; Sahoo, P. Lysozyme: An important defence molecule of fish innate immune system. Aquac. Res. 2008, 39, 223–239. [Google Scholar] [CrossRef]
- Miura, N.N.; Ohno, N.; Aketagawa, J.; Tamura, H.; Tanaka, S.; Yadomae, T. Blood clearance of (1→ 3)-β-D-glucan in MRL lpr/lpr mice. FEMS Immunol. Med. Microbiol. 1996, 13, 51–57. [Google Scholar] [CrossRef]
- Burge, E.J.; Madigan, D.J.; Burnett, L.E.; Burnett, K.G. Lysozyme gene expression by hemocytes of Pacific white shrimp, Litopenaeus vannamei, after injection with Vibrio. Fish Shellfish Immunol. 2007, 22, 327–339. [Google Scholar] [CrossRef]
- Wongsasak, U.; Chaijamrus, S.; Kumkhong, S.; Boonanuntanasarn, S. Effects of dietary supplementation with β-glucan and synbiotics on immune gene expression and immune parameters under ammonia stress in Pacific white shrimp. Aquaculture 2015, 436, 179–187. [Google Scholar] [CrossRef]
- Wu, J.; Tian, S.; Luo, K.; Zhang, Y.; Pan, H.; Zhang, W.; Mai, K. Dietary recombinant human lysozyme improves the growth, intestinal health, immunity and disease resistance of Pacific white shrimp Litopenaeus vannamei. Fish Shellfish Immunol. 2022, 121, 39–52. [Google Scholar] [CrossRef] [PubMed]
- Cook, M.T.; Hayball, P.J.; Hutchinson, W.; Nowak, B.F.; Hayball, J.D. Administration of a commercial immunostimulant preparation, EcoActiva™ as a feed supplement enhances macrophage respiratory burst and the growth rate of snapper (Pagrus auratus, Sparidae (Bloch and Schneider)) in winter. Fish Shellfish Immunol. 2003, 14, 333–345. [Google Scholar] [CrossRef]
- Sahoo, P.; Kumari, J.; Mishra, B. Non-specific immune responses in juveniles of Indian major carps. J. Appl. Ichthyol. 2005, 21, 151–155. [Google Scholar] [CrossRef]
- Yeh, R.-Y.; Shiu, Y.-L.; Shei, S.-C.; Cheng, S.-C.; Huang, S.-Y.; Lin, J.-C.; Liu, C.-H. Evaluation of the antibacterial activity of leaf and twig extracts of stout camphor tree, Cinnamomum kanehirae, and the effects on immunity and disease resistance of white shrimp, Litopenaeus vannamei. Fish Shellfish Immunol. 2009, 27, 26–32. [Google Scholar] [CrossRef] [PubMed]
- Halim, A.M.; Lee, P.-P.; Chang, Z.-W.; Chang, C.-C. The hot-water extract of leaves of noni, Morinda citrifolia, promotes the immunocompetence of giant freshwater prawn, Macrobrachium rosenbergii. Fish Shellfish Immunol. 2017, 64, 457–468. [Google Scholar] [CrossRef]
- Chang, C.-F.; Su, M.-S.; Chen, H.-Y. A rapid method to quantify total haemocyte count of Penaeus monodon using ATP analysis. Fish Pathol. 1999, 34, 211–212. [Google Scholar] [CrossRef]
- Le Moullac, G.; Haffner, P. Environmental factors affecting immune responses in Crustacea. Aquaculture 2000, 191, 121–131. [Google Scholar] [CrossRef]
- Subramanian, S.; Philip, R. Identification of haematological markers in shrimp health assessment from the immune profile of Fenneropenaeus indicus on β-1, 3-glucan administration and white spot syndrome virus challenge. Aquac. Int. 2013, 21, 1169–1184. [Google Scholar] [CrossRef]
- Sajeevan, T.; Philip, R.; Singh, I.B. Immunostimulatory effect of a marine yeast Candida sake S165 in Fenneropenaeus indicus. Aquaculture 2006, 257, 150–155. [Google Scholar] [CrossRef]
- Hose, J.; Lightner, D.; Redman, R.; Danald, D. Observations on the pathogenesis of the imperfect fungus, Fusarium solani, in the California brown shrimp, Penaeus californiensis. J. Invertebr. Pathol. 1984, 44, 292–303. [Google Scholar] [CrossRef]
- Huang, H.-T.; Lee, P.-T.; Liao, Z.-H.; Chen, H.-Y.; Nan, F.-H. Effects of Phyllanthus amarus extract on nonspecific immune responses, growth, and resistance to Vibrio alginolyticus in white shrimp Litopenaeus vannamei. Fish Shellfish Immunol. 2020, 107, 1–8. [Google Scholar]
- Lee, P.-T.; Tran, H.T.Q.; Huang, H.-T.; Nan, F.-H.; Lee, M.-C. Sargassum horneri extracts stimulate innate immunity, enhance growth performance, and upregulate immune genes in the white shrimp Litopenaeus vannamei. Fish Shellfish Immunol. 2020, 102, 276–285. [Google Scholar] [CrossRef] [PubMed]
Ingredients (g/kg) | β-1,3 Glucan and Fructooligosaccharides Levels (g/kg Diet) | |||
---|---|---|---|---|
C1 | C2 | C3 | C4 | |
Wheat flour | 120 | 120 | 120 | 120 |
Shrimp meal | 250 | 250 | 250 | 250 |
Rice bran | 70 | 69.5 | 69.0 | 68.5 |
Soybean meal | 150 | 150 | 150 | 150 |
Fish meal | 300 | 300 | 300 | 300 |
Fish oil | 60 | 60 | 60 | 60 |
β-1,3 GF | 0.0 | 0.5 | 1.0 | 1.5 |
* CMC | 10 | 10 | 10 | 10 |
** Vit & Min Mix | 40 | 40 | 40 | 40 |
Total | 1000 | 1000 | 1000 | 1000 |
Proximate analysis (% dry weight) | ||||
Dry mater | 90.62 | 90.93 | 91.21 | 90.65 |
Moisture | 9.38 | 9.07 | 8.79 | 9.35 |
Crude protein (N × 6.25) | 38.82 | 38.77 | 38.76 | 38.77 |
Crude fat | 10.96 | 10.84 | 10.83 | 10.77 |
Crude fiber | 1.74 | 1.51 | 1.24 | 1.62 |
Ash | 6.13 | 6.72 | 7.13 | 6.47 |
Carbohydrate (NFE)2 | 32.975 | 33.087 | 33.291 | 33.017 |
*** Gross energy (GE) kcal/100g3 | 459.467 | 458.56 | 459.22 | 457.61 |
Parameters | β-1,3 G F Levels (g/kg Diet) | |||
---|---|---|---|---|
C1 | C2 | C3 | C3 | |
Initial weight (g) | 3.0 ± 0.09 | 2.90 ± 0.26 | 3.03 ± 0.03 | 3.10 ± 0.06 |
Final weight (g) | 13.1 ± 0.26 c | 15.83 ± 0.32 b | 17.93 ± 0.41 a | 18.30 ± 0.26 a |
Weight gain (g) | 10.1 ± 0.21 c | 12.93 ± 0.30 b | 14.90 ± 0.42 a | 15.20 ± 0.29 a |
Weight gain rate (%) | 336.67 ± 1.70 c | 445.86 ± 11.20 b | 491.74 ± 15.90 a | 490.32 ± 16.20 a |
SGR | 1.97 ± 0.007 c | 2.26 ± 0.026 b | 2.369 ± 0.035 a | 2.367 ± 0.036 a |
FCR | 2.02 ± 0.018 a | 1.96 ± 0.015 b | 1.57 ± 0.025 c | 1.55 ± 0.02 c |
Survival rate (SR%) | 96.3 ± 0.10 | 92.5 ± 0.10 | 92.5 ± 0.10 | 93.8 ± 0.10 |
Parameter (%) | β-1,3 G F Levels (g/kg Diet) | |||
---|---|---|---|---|
C1 | C2 | C3 | C4 | |
Moisture | 79.18 ± 0.23 | 78.85 ± 0.10 | 79.32 ± 0.33 | 79.30 ± 0.34 |
Protein | 15.85 ± 0.19 | 16.59 ± 0.19 | 15.46 ± 0.05 | 16.32 ± 0.17 |
Lipid | 1.98 ± 0.03 | 1.62 ± 0.37 | 1.99 ± 0.05 | 1.95 ± 0.04 |
Ash | 3.06 ± 0.08 | 3.22 ± 0.18 | 2.96 ± 0.13 | 3.19 ± 0.04 |
Parameter | β-1,3 Glucan and Fructooligosaccharides Levels (g/kg Diet) | |||
---|---|---|---|---|
C1 | C2 | C3 | C4 | |
SOD (U/L) | 21.01 ± 0.57 d | 25.69 ± 0.25 c | 28.31 ± 0.25 b | 30.45 ± 0.57 a |
GPX (U/L) | 22.63 ± 0.38 c | 26.44 ± 0.56 b | 27.24 ±0.27 ab | 28.50 ± 0.39 a |
CAT (U/L) | 3.11 ± 0.05 c | 3.98 ± 0.26 b | 4.82 ± 0.14 a | 5.34 ± 0.25 a |
MDA (nmol/mL) | 18.13 ± 0.12 c | 24.12 ± 0.03 b | 25.21 ± 0.11 ab | 26.03 ± 0.11 a |
Lysozyme activity (μg/mL) | 0.95 ± 0.02 d | 1.24 ± 0.04 c | 1.62 ± 0.03 b | 1.85 ± 0.01 a |
Respiratory burst activity (mg/mL) | 0.23 ± 0.12 d | 0.43 ± 0.12 c | 0.61 ± 0.12 b | 0.67 ± 0.12 a |
THC (×104 cells/mL) | 21.01 ± 0.57 d | 25.69 ± 0.25 c | 28.31 ± 0.25 b | 30.45 ± 0.57 a |
Phenol oxidase (U/min/mg) | 18.13 ± 0.12 c | 24.12 ± 0.03 b | 25.21 ± 0.11 ab | 26.03 ± 0.11 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eissa, E.-S.H.; Ahmed, R.A.; Abd Elghany, N.A.; Elfeky, A.; Saadony, S.; Ahmed, N.H.; Sakr, S.E.-S.; Dayrit, G.B.; Tolenada, C.P.S.; Atienza, A.A.C.; et al. Potential Symbiotic Effects of β-1,3 Glucan, and Fructooligosaccharides on the Growth Performance, Immune Response, Redox Status, and Resistance of Pacific White Shrimp, Litopenaeus vannamei to Fusarium solani Infection. Fishes 2023, 8, 105. https://doi.org/10.3390/fishes8020105
Eissa E-SH, Ahmed RA, Abd Elghany NA, Elfeky A, Saadony S, Ahmed NH, Sakr SE-S, Dayrit GB, Tolenada CPS, Atienza AAC, et al. Potential Symbiotic Effects of β-1,3 Glucan, and Fructooligosaccharides on the Growth Performance, Immune Response, Redox Status, and Resistance of Pacific White Shrimp, Litopenaeus vannamei to Fusarium solani Infection. Fishes. 2023; 8(2):105. https://doi.org/10.3390/fishes8020105
Chicago/Turabian StyleEissa, El-Sayed Hemdan, Ragaa A. Ahmed, Nadia A. Abd Elghany, Amal Elfeky, Saadea Saadony, Norhan H. Ahmed, Salah El-Sayed Sakr, Geraldine B. Dayrit, Charlene Princess S. Tolenada, Adlene Anne C. Atienza, and et al. 2023. "Potential Symbiotic Effects of β-1,3 Glucan, and Fructooligosaccharides on the Growth Performance, Immune Response, Redox Status, and Resistance of Pacific White Shrimp, Litopenaeus vannamei to Fusarium solani Infection" Fishes 8, no. 2: 105. https://doi.org/10.3390/fishes8020105
APA StyleEissa, E. -S. H., Ahmed, R. A., Abd Elghany, N. A., Elfeky, A., Saadony, S., Ahmed, N. H., Sakr, S. E. -S., Dayrit, G. B., Tolenada, C. P. S., Atienza, A. A. C., Mabrok, M., & Ayoub, H. F. (2023). Potential Symbiotic Effects of β-1,3 Glucan, and Fructooligosaccharides on the Growth Performance, Immune Response, Redox Status, and Resistance of Pacific White Shrimp, Litopenaeus vannamei to Fusarium solani Infection. Fishes, 8(2), 105. https://doi.org/10.3390/fishes8020105