Condition, Reproductive Fitness, and Fluctuating Asymmetry in Brook Stickleback: Responses to Anthropogenic Runoff
Abstract
:1. Introduction
2. Study Sites
3. Methods
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thronson, A.; Quigg, A. Fifty-five years of fish kills in coastal Texas. Estuar. Coasts 2008, 31, 802–813. [Google Scholar] [CrossRef]
- Phelps, N.B.D.; Bueno, I.; Poo-Muñoz, D.A.; Knowles, S.J.; Massarani, S.; Rettkowski, R.; Shen, L.; Rantala, H.; Phelps, P.L.F.; Escobar, L.E. Retrospective and predictive investigation of fish kill events. J. Aquat. Anim. Health 2019, 31, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Schnaser, A.C.; Mundahl, N.D. Recovery of a headwater stream population of brown trout after a fish kill in southeastern Minnesota, USA. Environ. Biol. Fish. 2022, 105, 1179–1192. [Google Scholar] [CrossRef]
- Colborn, T.; vom Saal, F.S.; Soto, A.M. Developmental effects of endocrine-disrupting chemicals in wildlife and humans. Environ. Health Perspect. 1993, 101, 378–384. [Google Scholar] [CrossRef]
- Rohr, J.R.; McCoy, K.A. A qualitative meta-analysis reveals consistent effects of atrazine on freshwater fish and amphibians. Environ. Health Perspect. 2010, 118, 20–32. [Google Scholar] [CrossRef] [PubMed]
- Beasley, D.E.; Bonisoli-Alquati, A.; Mousseau, T.A. The use of fluctuating asymmetry as a measure of environmentally induced developmental instability: A meta-analysis. Ecol. Indic. 2013, 30, 218–226. [Google Scholar] [CrossRef]
- Simon, T.P.; Burskey, J.L. Deformity, erosion, lesion, and tumor occurrence, fluctuating asymmetry, and population parameters for bluntnose minnow (Pimephales notatus) as indicators of recovering water quality in a Great Lakes area of concern, USA. Arch. Environ. Contam. Toxicol. 2016, 70, 181–191. [Google Scholar] [CrossRef]
- McCoy, K.A.; Bortnick, L.J.; Campbell, C.M.; Hamlin, H.J.; Guillette, L.J., Jr.; St. Mary, C. Agriculture alters gonadal form and function in the toad Bufo marinus. Environ. Health Perspect. 2008, 116, 1526–1532. [Google Scholar] [CrossRef] [PubMed]
- Michaelsen, S.; Schaefer, J.; Peterson, M.S. Fluctuating asymmetry in Menidia beryllina before and after the 2010 Deepwater Horizon oil spill. PLoS ONE 2015, 10, e0118742. [Google Scholar] [CrossRef]
- Minnesota Pollution Control Agency. Minnesota’s Impaired Waters List. 2023. Available online: https://www.pca.state.mn.us/air-water-land-climate/minnesotas-impaired-waters-list (accessed on 10 November 2023).
- Muldoon, B.M.; Hogan, N.S. Biomarker responses to estrogen and androgen exposure in the brook stickleback (Culaea inconstans): A new bioindicator species for endocrine disrupting compounds. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2016, 180, 1–10. [Google Scholar] [CrossRef]
- Handy, R.D.; Runnalls, T.; Russell, P.M. Histopathologic biomarkers in three-spined sticklebacks, Gasterosteus aculeatus, from several rivers in southern England that meet the Freshwater Fisheries Directive. Ecotoxicology 2002, 11, 467–479. [Google Scholar] [CrossRef]
- Becker, G.C. Fishes of Wisconsin; University of Wisconsin Press: Madison, WI, USA, 1983; pp. 777–781. Available online: https://search.library.wisc.edu/digital/AWFIWUVZSK4EFH9B (accessed on 10 November 2023).
- Hecter, R.P.; Moodie, P.F.; Moodie, G.E.E. Pectoral fin asymmetry, dimorphism and fecundity in the brook stickleback, Culaea inconstans. Behaviour 2000, 137, 999–1009. [Google Scholar] [CrossRef]
- Lajus, D.L.; Golovin, P.V.; Yurtseva, A.O.; Ivanova, T.S.; Dorgham, A.S.; Ivanov, M.V. Fluctuating asymmetry as an indicator of stress and fitness in stickleback: A review of the literature and examination of cranial structures. Evol. Ecol. Res. 2019, 20, 83–106. [Google Scholar]
- Ferrey, M.; Martinovic, D.; Backe, W.; Andrews, A. Pharmaceuticals and Chemicals of Concern in Rivers: Occurrence and Biological Effects. 2017. Minnesota Pollution Control Agency, Document Number tdr-g1-20, Saint Paul, Minnesota, USA. Available online: www.pca.state.mn.us/sites/default/files/tdr-g1-20.pdf (accessed on 10 November 2023).
- Mundahl, N.D.; Hunt, A.M. Recovery of stream invertebrates after catastrophic flooding in southeastern Minnesota, USA. J. Freshw. Ecol. 2011, 26, 445–457. [Google Scholar] [CrossRef]
- Mundahl, N.D. Analysis of a catch-and-harvest fishing contest for brown trout spanning 50+ years: Long-term trends influenced by fisheries management actions and angler behavior. N. Am. J. Fish. Manag. 2022, 42, 1653–1664. [Google Scholar] [CrossRef]
- Mundahl, N.D.; Mundahl, E.D. Aquatic community structure and stream habitat in a karst agricultural landscape. Ecol. Process. 2022, 11, 18. [Google Scholar] [CrossRef]
- Mundahl, N.D.; Schnaser, A.C. Abundance, cover use, and clustering of brown trout spawning redds during stream habitat rehabilitation. Ecol. Freshw. Fish 2023, 32, 902–915. [Google Scholar] [CrossRef]
- Mundahl, N.D.; Varela, W.L.; Weaver, C.; Mundahl, E.D.; Cochran-Biederman, J.L. Stream habitats and aquatic communities in an agricultural watershed: Changes related to a mandatory riparian buffer law. Environ. Manag. 2023, 72, 945–958. [Google Scholar] [CrossRef]
- Varela, W.L.; Mundahl, N.D.; Bergen, S.; Staples, D.F.; Cochran-Biederman, J.; Weaver, C.R. Physical and biological stream health in an agricultural watershed after 30+ years of targeted conservation practices. Water 2023, 15, 3475. [Google Scholar] [CrossRef]
- Ney, J.J. Practical use of biological statistics. In Inland Fisheries Management in North America, 2nd ed.; Kohler, C.C., Hubert, W.A., Eds.; American Fisheries Society: Bethesda, MD, USA, 1999; pp. 167–191. [Google Scholar]
- Crim, L.W.; Glebe, B.D. Reproduction. In Methods for Fish Biology; Schreck, C.B., Moyle, P.B., Eds.; American Fisheries Society: Bethesda, MD, USA, 1990; pp. 529–553. [Google Scholar]
- Popović, N.T.; Čižmek, L.; Babic, S.; Strunjak-Perović, I.; Čož-Rakovac, R. Fish liver damage related to the wastewater treatment plant effluents. Environ. Sci. Pollut. Res. 2023, 30, 48739–48768. [Google Scholar] [CrossRef] [PubMed]
- Rand, G.M.; Petrocelli, S.R. Fundamentals of Aquatic Toxicology: Methods and Applications; FMC Corporation: Princeton, NJ, USA, 1985. [Google Scholar]
- Gray, M.A.; Curry, R.A.; Arciszewski, T.J.; Munkittrick, K.R.; Brasfield, S.M. The biology and ecology of slimy sculpin: A recipe for effective environmental monitoring. FACETS 2018, 3, 103–127. [Google Scholar] [CrossRef]
- Brown, A.R.; Owen, S.F.; Peters, J.; Zhang, Y.; Soffker, M.; Paull, G.C.; Hosken, D.J.; Wahab, M.A.; Tyler, C.R. Climate change and pollution speed declines in zebrafish populations. Proc. Natl. Acad. Sci. USA 2015, 112, E1237–E1246. Available online: https://www.pnas.org/cgi/doi/10.1073/pnas.1416269112 (accessed on 10 November 2023). [CrossRef]
- Affandi, F.A.; Ishak, M.Y. Impacts of suspended sediment and metal pollution from mining activities oon riverine fish population—A review. Environ. Sci. Pollut. Res. 2019, 26, 16939–16951. [Google Scholar] [CrossRef] [PubMed]
- Deane, E.E.; and Woo, N.Y.S. Modulation of fish growth hormone levels by salinity, temperature, pollutants and aquaculture related stress: A review. Rev. Fish Biol. Fish. 2009, 19, 97–120. [Google Scholar] [CrossRef]
- Kruitwagen, G.; Hecht, T.; Pratap, H.B.; Wendelaar Bonga, S.E. Changes in morphology and growth of the mudskipper (Periophthalmus argentilineatus) associated with coastal pollution. Mar. Biol. 2006, 149, 201–211. [Google Scholar] [CrossRef]
- Authman, M.M.N.; Zaki, M.S.; Khallaf, E.A.; Abbas, H.H. Use of fish as bio-indicator of the effects of heavy metals pollution. J. Aquac. Res. Dev. 2015, 6, 4. [Google Scholar] [CrossRef]
- Sprague, J.B. Aquatic toxicology. In Methods for Fish Biology; Schreck, C.B., Moyle, P.B., Eds.; American Fisheries Society: Bethesda, MD, USA, 1990; pp. 491–528. [Google Scholar]
- Diana, J.S. Biology and Ecology of Fishes, 2nd ed.; Biological Sciences Press; Cooper Publishing Group: Traverse City, MI, USA, 2004; 498p. [Google Scholar]
- Slooff, W.; Van Kreijl, C.F.; Baars, A.J. Relative liver weights and xenobiotic-metabolizing enzymes of fish from polluted surface waters in the Netherlands. Aquat. Toxicol. 1983, 4, 1–14. [Google Scholar] [CrossRef]
- Fabacher, D.L.; Baumann, P.C. Enlarged livers and hepatic microsomal mixed-function oxidase components in tumor-bearing brown bullheads from a chemically contaminated river. Environ. Toxicol. Chem. 1985, 4, 703–710. [Google Scholar] [CrossRef]
- Al-Ghais, S.M. Acetylcholinesterase, glutathione and hepatosomatic index as potential biomarkers of sewage pollution and depuration in fish. Mar. Pollut. Bull. 2013, 74, 183–186. [Google Scholar] [CrossRef]
- Long, S.M.; Tull, D.L.; De Souza, D.P.; Kouremenos, K.A.; Dayalan, S.; McConville, M.J.; Hassel, K.; Pettigrove, K.J.; Gagnon, M.M. Metabolomics provide sensitive insights into the impacts of low level environmental contamination on fish health—A pilot study. Metabolites 2020, 10, 24. [Google Scholar] [CrossRef]
- Duarte, R.M.; Sadauskas-Henrique, H.; de Almeida-Val, V.M.F.; Val, A.L.; Nice, H.E.; Gagnon, M.M. Biomarker responses and PAH ratios in fish inhabiting an estuarine urban waterway. Environ. Toxicol. 2017, 32, 2305–2315. [Google Scholar] [CrossRef] [PubMed]
- Moyle, P.; Cech, J., Jr. Fishes: An Introduction to Ichthyology, 5th ed.; Pearson/Prentice Hall: Upper Saddle River, NJ, USA, 2003. [Google Scholar]
- Burton, D.; Burton, M. Essential Fish Biology: Diversity, Structure and Function; Oxford University Press: Oxford, UK, 2018. [Google Scholar]
- Hermita, Z.M.; Gorospe, J.G.; Torres, M.A.J.; Lumasag, G.J.; Demayo, C.G. Fluctuating asymmetry in the body shape of the mottled spinefoot fish, Siganus fuscescens (Houttuyn, 1782) collected from different bays in Mindanao Island, Philippines. Sci. Int. 2013, 25, 857–861. [Google Scholar]
- Klingenberg, C.P.; McIntyre, G.S. Geometric morphometrics of developmental instability: Analyzing patterns of fluctuating asymmetry with Procrustes methods. Evolution 1998, 52, 1363–1375. [Google Scholar] [CrossRef] [PubMed]
2013 | 2014 | 2015 | ||||||
---|---|---|---|---|---|---|---|---|
Stream | Sex | N | TL range | N | TL range | N | TL range | Total N |
Garvin | M | 31 | 28–66 | 15 | 31–49 | 20 | 35–69 | 66 |
F | 16 | 29–65 | 15 | 34–52 | 29 | 26–61 | 60 | |
SFWR | M | 26 | 34–60 | 15 | 35–59 | 34 | 29–61 | 75 |
F | 26 | 34–62 | 15 | 35–64 | 28 | 34–62 | 62 | |
Total N | 92 | 60 | 111 | 263 |
ANCOVA Test | Homogeneity of Slopes | |||
---|---|---|---|---|
Variable | F Value | p Value | F Value | p Value |
Testes masses | 0.54 | 0.464 | 1.11 | 0.295 |
Ovary masses | 12.63 | <0.001 | 12.02 | 0.001 |
Male GSI | 0.04 | 0.842 | 0.01 | 0.921 |
Female GSI | 10.39 | 0.002 | 0.14 | 0.710 |
Oocyte numbers | 4.02 | 0.049 | 0.00 | 1.000 |
Oocyte masses | 11.85 | 0.001 | 5.87 | 0.018 |
Male HSI | 23.82 | <0.001 | 2.35 | 0.129 |
Female HSI | 9.87 | 0.003 | 1.46 | 0.232 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mundahl, N.D.; Hoffmann, K.A. Condition, Reproductive Fitness, and Fluctuating Asymmetry in Brook Stickleback: Responses to Anthropogenic Runoff. Fishes 2023, 8, 557. https://doi.org/10.3390/fishes8110557
Mundahl ND, Hoffmann KA. Condition, Reproductive Fitness, and Fluctuating Asymmetry in Brook Stickleback: Responses to Anthropogenic Runoff. Fishes. 2023; 8(11):557. https://doi.org/10.3390/fishes8110557
Chicago/Turabian StyleMundahl, Neal D., and Kelsey A. Hoffmann. 2023. "Condition, Reproductive Fitness, and Fluctuating Asymmetry in Brook Stickleback: Responses to Anthropogenic Runoff" Fishes 8, no. 11: 557. https://doi.org/10.3390/fishes8110557
APA StyleMundahl, N. D., & Hoffmann, K. A. (2023). Condition, Reproductive Fitness, and Fluctuating Asymmetry in Brook Stickleback: Responses to Anthropogenic Runoff. Fishes, 8(11), 557. https://doi.org/10.3390/fishes8110557