Pseudomonas putida: Sensitivity to Various Antibiotics, Genetic Diversity, Virulence, and Role of Formic Acid to Modulate the Immune-Antioxidant Status of the Challenged Nile tilapia Compared to Carvacrol Oil
Abstract
:1. Introduction
2. Material and Methods
2.1. Bacterial Isolate
2.1.1. Biochemical Identification of P. putida
2.1.2. Antibiotic Resistance Test for P. putida
2.1.3. Sensitivity of P. putida to Carvacrol Oil (c) and Formic Acid (f) Using Disc Diffusion Method
2.1.4. Molecular Characterization
- A. 16S rDNA amplification
- 2.
- B. Virulotyping
2.2. Fish and Experimental Conditions
2.3. Experimental Challenge Test
2.4. Sample Collection and Laboratory Analysis
2.5. Measurement of Immune Parameters
2.6. Measurement of Antioxidant Parameters
3. Results
3.1. Results of Antibiotic Resistance Test
3.2. Sensitivity of P. putida to Carvacrol Oil (c) and Formic Acid (f)
3.3. Genotyping Findings
3.4. Behavioral Alterations, Clinical Signs, and Mortalities following P. putida Challenge
3.5. Immunological Parameters Results
3.6. Oxidative Stress Biomarkers Findings
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mahboub, H.H.; Shaheen, A. Prevalence, diagnosis and experimental challenge of Dermocystidium sp. infection in Nile tilapia (Oreochromis niloticus) in Egypt. Aquaculture 2020, 516, 734556. [Google Scholar] [CrossRef]
- Mahboub, H.H.; Shaheen, A.A. Mycological and histopathological identification of potential fish pathogens in Nile tilapia. Aquaculture 2021, 530, 735849. [Google Scholar] [CrossRef]
- Mahboub, H.H.; Nada, H.S.; Abdel-Ghany, H.M.; Ghanem, R.; Ahmed Ismail, T.; Abdel Rahman, A.N. Detection, diagnosis, Koch’s postulate, hepatorenal and antioxidant indicators for some systemic pathogenic fungi invading the liver and kidneys of African catfish (Clarias gariepinus) in Egypt with a histopathological approach. Aquac. Res. 2022, 53, 2670–2685. [Google Scholar] [CrossRef]
- Abdel Rahman, A.N.; Mansour, D.A.; Abd El-Rahman, G.I.; Elseddawy, N.M.; Zaglool, A.W.; Khamis, T.; Mahmoud, S.F.; Mahboub, H.H. Imidacloprid toxicity in Clarias gariepinus: Protective role of dietary Hyphaene thebaica against biochemical and histopathological disruption, oxidative stress, immune genes expressions, and Aeromonas sobria infection. Aquaculture 2022, 555, 738170. [Google Scholar] [CrossRef]
- Algammal, A.M.; Mabrok, M.; Sivaramasamy, E.; Youssef, F.M.; Atwa, M.H.; El-Kholy, A.W.; Hetta, H.F.; Hozzein, W.N. Emerging MDR-Pseudomonas aeruginosa in fish commonly harbor oprL and toxA virulence genes and blaTEM, blaCTX-M, and tetA antibiotic-resistance genes. Sci. Rep. 2020, 10, 15961. [Google Scholar] [CrossRef]
- Lopez, J.R.; Dieguez, A.L.; Doce, A.; de la Roca, E.; de la Herran, R.; Navas, J.I.; Toranzo, A.E.; Romalde, J.L. Pseudomonas baetica sp. nov., a fish pathogen isolated from wedge sole, Dicologlossa cuneata (Moreau). Int. J. Syst. Evol. Microbiol. 2012, 62, 874–882. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Austin, B.; Stobie, M. Recovery of Serratia plymuthica and presumptive Pseudomonas pseudoalcaligenes from skin lesions in rainbow trout, Oncorhynchus mykiss (Walbaum), otherwise infected with enteric redmouth. J. Fish Dis. 1992, 15, 541–543. [Google Scholar] [CrossRef]
- Ilhan, A.; Kayis, S.; Capkin, E. Pseudomonas putida infection in rainbow trout. Aquaculture 2006, 261, 850–855. [Google Scholar]
- Hanna, M.I.; El-Hady, M.A.; Hanaa, A.A.; Elmeadawy, S.A.; Kenwy, A.M. Contribution on Pseudomonas aeruginosa infection in African Catfish (Clarias gariepinus). Res. J. Pharm. Biol. Chem. Sci. 2014, 5, 575–588. [Google Scholar]
- Omar, A.A.; Moustafa, E.M.; Abo-Remela, E.M.; Zayed, M.M. Prevalence, Molecular Characterization, Pathogenecity and Antimicrobial susceptibility of Pseudomonas fluorescens isolated from Oreochromis niloticus. Life Sci. J. 2017, 14, 53–61. [Google Scholar]
- Salama, S.S.A.; Abd El-Tawab, F.; Gharib, F.A. Parasitic protozoa accompanied with pseudomonas putida infection in cultured Oreochromis niloticus. Egypt. J. Exp. Biol. 2009, 5, 101–108. [Google Scholar]
- Sakai, M.; Atsuta, S.; Kobayashi, M. Pseudomonas fluorescens Isolated from the Diseased Rainbow Trout, Oncorhynchus mykiss. Kistato Arch. Exp. Med. 1989, 62, 157–162. [Google Scholar]
- Oh, W.T.; Kim, J.H.; Jun, J.W.; Giri, S.S.; Yun, S.; Kim, H.J.; Kim, S.G.; Kim, S.W.; Han, S.J.; Kwon, J.; et al. Genetic Characterization and Pathological Analysis of a Novel Bacterial Pathogen, Pseudomonas tructae, in Rainbow Trout (Oncorhynchus mykiss). Microorganisms 2019, 7, 432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tartor, Y.; Taha, M.; Mahboub, H.; El Ghamery, M. Yeast species associated with diseased fish: Occurrence, identification, experimental challenges and antifungal susceptibility testing. Aquaculture 2018, 488, 134–144. [Google Scholar] [CrossRef]
- Mahboub, H.H.; Elsheshtawy, H.M.; Sheraiba, N.I.; Fahmy, E.M.; Masoud, S.R.; Mohamed, E.A.A.; Abdelnaeim, N.S.; Mohamed, D.I.; Ismail, T.A.; Ahmed, S.A.A. Dietary black cumin (Nigella sativa) improved hemato-biochemical, oxidative stress, gene expression, and immunological response of Nile tilapia (Oreochromis niloticus) infected by Burkholderia cepacia. Aquac. Rep. 2022, 22, 100943. [Google Scholar] [CrossRef]
- Mahboub, H.H.; Faggio, C.; Hendam, B.M.; Algharib, S.A.; Mansour, D.A.; Khamis, T.; Abdel-Ghany, H.M.; Ismail, T.A.; Abdel Rahman, A.N. Immune-antioxidant trait, Aeromonas veronii resistance, growth, intestinal architecture, and splenic cytokines expression of Cyprinus carpio fed Apricot kernel-enriched diets. Fish Shellfish. Immunol. 2022, 124, 182–191. [Google Scholar] [CrossRef]
- Mahboub, H.H.; Tartor, Y.H. Carvacrol essential oil stimulates growth performance, immune response, and tolerance of Nile tilapia to Cryptococcus uniguttulatus infection. Dis. Aquat. Org. 2020, 141, 1–14. [Google Scholar] [CrossRef]
- Ng, W.K.; Koh, C. The utilization and mode of action of organic acids in the feeds of cultured aquatic animals. Rev. Aquac. 2017, 9, 342–368. [Google Scholar] [CrossRef]
- Mohammadian, T.; Momeni, H.; Mesbah, M.; Tabandeh, M.R.; Khosravi, M. Effect of different levels of dietary acidifier ”sodium diformat” on the innate immune system and expression of growth and immunological related genes in Salmo trutta caspius. Aquac. Nutr. 2020, 25, 2074–2085. [Google Scholar] [CrossRef]
- Jedi Mostafaloo, A.; Hedayatifard, M.; Keshavarz, M.; Mohammadian, T. Effects of different levels of Sodium diformate and Formic acid salt on growth performance, digestive enzymes, and innate immunological parameters of Beluga (Huso huso) juveniles. Iran. J. Fish. Sci. 2021, 20, 879–900. [Google Scholar] [CrossRef]
- Adams, D.; Boopathy, R. Use of formic acid to control vibriosis in shrimp aquaculture. Biologia 2013, 68, 1017–1021. [Google Scholar] [CrossRef] [Green Version]
- Scheidegger, E.; Fracalanzza, S.; Teixeira, L.; Cardarelli-Leite, P. RFLP analysis of a PCR-amplified fragment of the 16S rRNA gene as a tool to identify Enterococcus strains. Mem. Inst. Oswaldo Cruz 2009, 104, 1003–1008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, F.; Song, W.; Shao, Q.; Peng, X.; Xiao, J.; Hua, Y.; Owari, B.N.; Zhang, T.; Ng, W.K. Partial replacement of fish meal by fermented soybean meal in diets for black sea bream, Acanthopagrus schlegelii, juveniles. J. World Aquacult. Soc. 2011, 42, 184–197. [Google Scholar] [CrossRef]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.T.; Carmeli, Y.; Falagas, M.T.; Giske, C.T.; Olsson-Lijiequist, B. Multidrug resistant, extensively drug resistant and pandrug resistant bacteria:An international expert proposal for interim standered definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [Green Version]
- Majali, I.; Qaralleh, H.; Idid, S.Z.; Saad, S.; Susanti, D.; Althunibat, O. Potential Antimicrobial Activity of Marine Sponge Neopetrosia exigua. J. Basic Appl. Res. 2015, 1, 1–13. [Google Scholar]
- Khattab, M.A.; Nour, M.S.; ElSheshtawy, N.M. Genetic identification of Pseudomonas aeruginosa virulence genes among different isolates. J. Microb. Biochem. Technol. 2015, 7, 274–277. [Google Scholar]
- Lucky, Z. Methods for the Diagnosis of Fish Diseases; Fish and Wildlife Service by Amerind Pub., Co.: New Delhi, India, 1977. [Google Scholar]
- Ellis, A.E. Lysozyme assays. Tech. Fish Immunol. 1990, 1, 101–103. [Google Scholar]
- Sun, J.; Zhang, X.; Broderick, M.; Fein, H. Measurement of nitric oxide production in biological systems by using Griess reaction assay. Sensors 2003, 3, 276–284. [Google Scholar] [CrossRef]
- Velkova-Jordanoska, L.; Kostoski, G.; Jordanoska, B. Antioxidative enzymes in fish as biochemical indicators of aquatic pollution. Bulg. J. Agric. Sci. 2008, 14, 235–237. [Google Scholar]
- Hadwan, H.M. Simple spectrophotometric assay for measuring catalase activity in biological tissues. BMC Biochem. 2018, 19, 7. [Google Scholar] [CrossRef] [Green Version]
- Tartor, Y.H.; EL-Naenaeey, E.S.Y.; Abdallah, H.M.; Samir, M.; Yassen, M.M.; Abdelwahab, A.M. Virulotyping and genetic diversity of Aeromonas hydrophila isolated from Nile tilapia (Oreochromis niloticus) in aquaculture farms in Egypt. Aquaculture 2021, 541, 736781. [Google Scholar] [CrossRef]
- Eissa, N.M.E.; Abou El-Ghiet, E.N.; Shaheen, A.A.; Abbass, A. Characterization of Pseudomonas Species Isolated from Tilapia “Oreochromis niloticus” in Qaroun and Wadi-El-Rayan Lakes, Egypt. Glob. Vet. 2010, 5, 116–121. [Google Scholar]
- Elshopakey, G.E.; Mahboub, H.H.; Sheraiba, N.I.; Abduljabbar, M.H.; Mahmoud, Y.K.; Abomughaid, M.M.; Ismail, A.K. Ammonia toxicity in Nile tilapia: Potential role of dietary baicalin on biochemical profile, antioxidant status and inflammatory gene expression. Aquac. Rep. 2023, 28, 101434. [Google Scholar] [CrossRef]
- Elabd, H.; Faggio, C.; Mahboub, H.H.; Emam, M.A.; Kamel, S.; El Kammar, R.; Abdelnaeim, N.S.; Shaheen, A.; Tresnakova, N.; Matter, A. Mucuna pruriens seeds extract boosts growth, immunity, testicular histology, and expression of immune-related genes of mono-sex Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol. 2022, 127, 672–680. [Google Scholar] [CrossRef] [PubMed]
- Pearlin, B.V.; Muthuvel, S.; Govidasamy, P.; Villavan, M.; Alagawany, M.; Ragab Farag, M.; Dhama, K.; Gopi, M. Role of acidifiers in livestock nutrition and health: A review. J. Anim. Physiol. Anim. Nutr. 2019, 104, 558–569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, M.; Wu, X.; Zhai, S. Effect of Dietary Compound Acidifiers Supplementation on Growth Performance, Serum Biochemical Parameters, and Body Composition of Juvenile American Eel (Anguilla rostrata). Fishes 2022, 7, 203. [Google Scholar] [CrossRef]
- Zhang, M.L.; Wang, Y.; Zhai, S.W. Effects of dietary compound acidifiers supplementation on growth performance and intestinal health of juvenile American eels (Anguilla rostrata) cultured in cement tanks. Isr. J. Aquac. Bamidgeh 2021, 73, 1520998. [Google Scholar] [CrossRef]
- Sardar, P.; Shamna, N.; Sahu, N.P. 2020. Acidifiers in aquafeed as an alternate growth promoter: A short review. Anim. Nutr. Feed. Technol. 2021, 20, 353–366. [Google Scholar] [CrossRef]
- Reda, R.M.; El-Murr, A.; Abd Elhakim, Y. Wessam El-Shahat, W. Aeromonas veronii detection in Egyptian fish farms with summer tilapia mortality outbreaks and the role of formic acid in limiting its spread. Aquac. Res. 2021, 53, 940–956. [Google Scholar] [CrossRef]
- Cai, S.; Zhang, Y.; Wu, F.; Wu, R.; Yang, S.; Li, Y.; Xu, Y. Iden-tification and functional characterization of a c-typelysozyme from Fenneropenaeus penicillatus. Fish Shellfish Immunol. 2019, 88, 161–169. [Google Scholar] [CrossRef]
- Rashidian, G.; Lazado, C.C.; Mahboub, H.H.; Mohammadi-Aloucheh, R.; Proki’c, M.D.; Nada, H.S.; Faggio, C. Chemically and green synthesized ZnO nanoparticles alter key immunological molecules in Common carp (Cyprinus carpio) skin mucus. Int. J. Mol. Sci. 2021, 22, 3270. [Google Scholar] [CrossRef] [PubMed]
- Grayfer, L.; Kerimoglu, B.; Yaparla, A.; Hodgkinson, J.W.; Xie, J.; Belosevic, M. Mechanisms of fish macrophage antimicrobial immunity. Front. Immunol. 2018, 9, 1105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abd El-Naby, A.S.; Khattaby, A.-E.-R.-A.; Samir, F.; Awad, S.M.; Abdel-Tawwab, M. Stimulatory effect of dietary butyrate on growth, immune response, and resistance of Nile tilapia, Oreochromis niloticus against Aeromonas hydrophila infection. Anim. Feed Sci. Technol. 2019, 254, 114212. [Google Scholar] [CrossRef]
- Abdel-Latif, H.M.; Khafaga, A.F. Natural co-infection of cultured Nile tilapia Oreochromis niloticus with Aeromonas hydrophila and Gyrodactylus cichlidarum experiencing high mortality during summer. Aquac. Res. 2020, 51, 1880–1892. [Google Scholar] [CrossRef]
- Guemouri, L.; Artur, Y.; Herbeth, B.; Jeandel, C.; Cuny, G.; Siest, G. Biological variability of superoxide dismutase, glutathione peroxidase, and catalase in blood. Clin. Chem. 1991, 37, 1932–1937. [Google Scholar] [CrossRef]
- Morel, Y.; Barouki, R. Repression of gene expression by oxidative stress. Biochem. J. 1999, 342, 481–496. [Google Scholar] [CrossRef]
- Derome, N.; Gauthier, J.; Boutin, S.; Llewellyn, M. The rasputin effect: When commensals and symbionts become parasitic. Adv. Environ. Microbiol. 2016. [Google Scholar] [CrossRef]
- Silliker, J.H. Microbial Ecology of Foods; Academic Press: Cambridge, MA, USA, 1980. [Google Scholar]
No. | Pseudomonas Genes | Primary Denaturation | Secondary Denaturation | Annealing | Extension | No. of Cycles | Final Extension |
---|---|---|---|---|---|---|---|
1 | exoS | 94 °C 5 min. | 94 °C 30 s. | 55 °C 30 s. | 72 °C 30 s. | 35 | 72 °C 7 min. |
2 | nan1 | 95 °C 10 min. | 94 °C 1 min. | 58 °C 1 m | 72 °C 1 min. | 30 | 72 °C 10 min. |
3 | toxA | 95 °C 10 min. | 94 °C 1 min. | 58 °C 30 s. | 72 °C 1 min. | 35 | 72 °C 10 min. |
Pseudomonas Genes | Primer Sequence 5′–3′ | Amplified Product | Reference |
---|---|---|---|
exoS | CTT GAA GGG ACT CGA CAA GG | 504 bp | Khattab et al., 2015 [26] |
′ TTC AGG TCC GCG TAG TGA AT | |||
nan1 | AGG ATG AAT ACT TAT TTT GAT | 1316 bp | |
TCA CTA AAT CCA TCT CTG ACC CGA TA | |||
toxA | GGT AAC CAG CTC AGC CAC AT | 352 bp | |
TGA TGT CCA GGT CAT GCT TC |
Antibacterial Agent | Disc Content (mcg) | P. putida |
---|---|---|
Amoxicillin (Ax) | 25 | * |
Ampicillin (AM) | 10 | * |
Chloramphenicol (C) | 30 | + |
Ciprofloxacin (CIP) | 5 | +++ |
Enrofloxacin (ENR) | 10 | ++ |
Erythromycin (E) | 15 | * |
Gentamicin (CN) | 10 | +++ |
Norfloxacin (NOR) | 10 | ++ |
Oxalinic acid (OA) | 2 | * |
Oxytetracycline (OT) | 30 | ++ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alzahrani, O.M.; Elumalai, P.; Nada, H.S.; Ahmed, S.A.A.; Zaglool, A.W.; Shawky, S.M.; Alkafafy, M.; Mahboub, H.H. Pseudomonas putida: Sensitivity to Various Antibiotics, Genetic Diversity, Virulence, and Role of Formic Acid to Modulate the Immune-Antioxidant Status of the Challenged Nile tilapia Compared to Carvacrol Oil. Fishes 2023, 8, 6. https://doi.org/10.3390/fishes8010006
Alzahrani OM, Elumalai P, Nada HS, Ahmed SAA, Zaglool AW, Shawky SM, Alkafafy M, Mahboub HH. Pseudomonas putida: Sensitivity to Various Antibiotics, Genetic Diversity, Virulence, and Role of Formic Acid to Modulate the Immune-Antioxidant Status of the Challenged Nile tilapia Compared to Carvacrol Oil. Fishes. 2023; 8(1):6. https://doi.org/10.3390/fishes8010006
Chicago/Turabian StyleAlzahrani, Othman M., Preetham Elumalai, Hend S. Nada, Shaimaa A. A. Ahmed, Asmaa W. Zaglool, Sherif M. Shawky, Mohamed Alkafafy, and Heba H. Mahboub. 2023. "Pseudomonas putida: Sensitivity to Various Antibiotics, Genetic Diversity, Virulence, and Role of Formic Acid to Modulate the Immune-Antioxidant Status of the Challenged Nile tilapia Compared to Carvacrol Oil" Fishes 8, no. 1: 6. https://doi.org/10.3390/fishes8010006
APA StyleAlzahrani, O. M., Elumalai, P., Nada, H. S., Ahmed, S. A. A., Zaglool, A. W., Shawky, S. M., Alkafafy, M., & Mahboub, H. H. (2023). Pseudomonas putida: Sensitivity to Various Antibiotics, Genetic Diversity, Virulence, and Role of Formic Acid to Modulate the Immune-Antioxidant Status of the Challenged Nile tilapia Compared to Carvacrol Oil. Fishes, 8(1), 6. https://doi.org/10.3390/fishes8010006