Polyculture of Pacific White Shrimp Litopenaeus vannamei (Boone) and Red Seaweed Gracilaria birdiae (Greville) under Different Densities
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Boyd, C.E.; D’abramo, L.R.; Glencross, B.D.; Huyben, D.C.; Juarez, L.M.; Lockwood, G.S.; Mcnevin, A.A.; Tacon, A.G.J.; Teletchea, F.; Tomasso, J.R.; et al. Achieving sustainable aquaculture: Historical and current perspectives and future needs and challenges. J. World Aquac. Soc. 2020, 51, 578–633. [Google Scholar] [CrossRef]
- Flickinger, D.L.; Costa, G.A.; Dantas, D.P.; Proença, D.C.; David, F.S.; Durborow, R.M.; Moraes-Valenti, P.; Valenti, W.C. The budget of carbon in the farming of the Amazon river prawn and tambaqui fish in earthen pond monoculture and integrated multitrophic systems. Aquac. Rep. 2020, 17, 100340. [Google Scholar] [CrossRef]
- Wang, X.; Olsen, L.; Reitan, K.; Olsen, Y. Discharge of nutrient wastes from salmon farms: Environmental effects, and potential for integrated multi-trophic aquaculture. Aquac. Environ. Interact. 2012, 2, 267–283. [Google Scholar] [CrossRef] [Green Version]
- Bessa-Junior, A.P.; Flickinger, D.L.; Henry-Silva, G.G. Sedimentation rates of nutrients and particulate material in pond mariculture of shrimp (Litopenaeus vannamei) carried out with different management strategies. Aquaculture 2021, 534, 736307. [Google Scholar] [CrossRef]
- Moura, R.S.T.; Valenti, W.C.; Henry-Silva, G.G. Sustainability of Nile tilapia net-cage culture in a reservoir in a semi-arid region. Ecol. Indic. 2016, 66, 574–582. [Google Scholar] [CrossRef] [Green Version]
- Valenti, W.C.; Kimpara, J.M.; Preto, B.L.; Moraes-Valenti, P. Indicators of sustainability to assess aquaculture systems. Ecol. Indic. 2018, 88, 402–413. [Google Scholar] [CrossRef] [Green Version]
- Simão, B.R.; Silva, L.O.B.; Maia, A.S.C.; Miranda, L.C.; Azevedo, C.M.S.B. Stocking densities and feeding strategies in shrimp and tilapia polyculture in tanks. Pesqui. Agropecuária Bras. 2013, 48, 1088–1095. [Google Scholar] [CrossRef] [Green Version]
- Henry-Silva, G.G.; Maia, C.P.; Moura, R.S.T.; Bessa Junior, A.; Valenti, W.C. Integrated multi-trophic culture of Nile tilapia (Oreochromis niloticus) and Amazon river prawn (Macrobrachium amazonicum) in brackish water. Arq. Braileiro De Med. Veterinária E Zootec. 2015, 67, 265–273. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, C.G.; Garcia, B.F.; Verdegem, M.; Santos, M.R.; Amorim, R.V.; Valenti, W.C. Integrated culture of Nile tilapia and Amazon river prawn in stagnant ponds, using nutrient-rich water and substrates. Aquaculture 2019, 503, 111–117. [Google Scholar] [CrossRef]
- Dantas, D.P.; Flickinger, D.L.; Costa, G.A.; Batlouni, S.R.; Moraes-Valenti, P.; Valenti, W.C. Technical feasibility of integrating Amazon river prawn culture during the first phase of tambaqui grow-out in stagnant ponds, using nutrient-rich water. Aquaculture 2020, 516, 734611. [Google Scholar] [CrossRef]
- Yokoyama, H. Growth and food source of the sea cucumber Apostichopus japonicus cultured below fish cages—Potential for integrated multi-trophic aquaculture. Aquaculture 2013, 372–375, 28–38. [Google Scholar] [CrossRef]
- Kerrigan, D.; Suckling, C.C. A meta-analysis of integrated multitrophic aquaculture: Extractive species growth is most successful within close proximity to open-water fish farms. Rev. Aquac. 2018, 10, 560–572. [Google Scholar] [CrossRef]
- Franchini, A.C.; Costa, G.A.; Pereira, S.A.; Valenti, W.C.; Moraes-Valenti, P. Improving production and diet assimilation in fish-prawn integrated aquaculture, using iliophagus species. Aquaculture 2020, 521, 735048. [Google Scholar] [CrossRef]
- Bolton, J.J.; Robertson-Andersson, D.V.; Shuuluka, D.; Kandjengo, L. Growing Ulva (Chlorophyta) in integrated systems as a commercial crop for abalone feed in South Africa: A SWOT analysis. J. Appl. Phycol. 2009, 21, 575–583. [Google Scholar] [CrossRef]
- Cruz-Suárez, L.E.; León, A.; Peña-Rodríguez, A.; Rodríguez-Peña, G.; Moll, B.; Ricque-Marie, D. Shrimp/Ulva co-culture: A sustainable alternative to diminish the need for artificial feed and improve shrimp quality. Aquaculture 2010, 301, 64–68. [Google Scholar] [CrossRef]
- Wu, H.; Kim, J.K.; Huo, Y.; Zhang, J.; He, P. Nutrient removal ability of seaweeds on Pyropia yezoensis aquaculture rafts in China’s radial sandbanks. Aquat. Bot. 2017, 137, 72–79. [Google Scholar] [CrossRef]
- Biswas, G.; Kumar, P.; Ghoshal, T.K.; Kailasam, M.D.; Bera, A.; Mandal, B.; Sukumaran, K.; Vijayan, K.K. Integrated multi-trophic aquaculture (IMTA) outperforms conventional polyculture with respect to environmental remediation, productivity and economic return in brackishwater ponds. Aquaculture 2020, 516, 734626. [Google Scholar] [CrossRef]
- Pereira, S.A.; Kimpara, J.M.; Valenti, W.C. Sustainability of the seaweed Hypnea pseudomusciformis farming in the tropical Southwestern Atlantic. Ecol. Indic. 2021, 121, 107101. [Google Scholar] [CrossRef]
- Cunha, M.E.; Quental-Ferreira, H.; Parejo, A.; Gamito, S.; Ribeiro, L.; Moreira, M.; Monteiro, I.; Soares, F.; Pousão-Ferreira, P. Understanding the individual role of fish, oyster, phytoplankton and macroalgae in the ecology of integrated production in earthen ponds. Aquaculture 2019, 512, 734297. [Google Scholar] [CrossRef]
- Neori, A.; Chopin, T.; Troell, M.; Buschmann, A.H.; Kraemer, G.P.; Halling, C.; Shpigel, M.; Yarish, C. Integrated aquaculture: Rationale, evolution and state of the art emphasizing seaweed biofiltration in modern mariculture. Aquaculture 2004, 231, 361–391. [Google Scholar] [CrossRef]
- Hoang, M.N.; Nguyen, P.N.; Bossier, A.M.V.E.M.; Bossier, P. The effects of two fish species mullet, Mugil cephalus, and tilapia, Oreochromis niloticus, in polyculture with white shrimp, Litopenaeus vannamei, on system performances: A comparative study. Aquac. Res. 2020, 51, 2603–2612. [Google Scholar] [CrossRef]
- Lerat, Y.; Cornish, M.L.; Critchley, A.T. Applications of algal biomass in global food and feed markets: From traditional usage to the potential for functional products. In Blue Biotechnology; Barre, S.L., Bates, S.S., Eds.; Commonwealth Secretariat: London, UK, 2018; pp. 143–189. [Google Scholar] [CrossRef]
- Abreu, M.H.; Pereira, R.; Yarish, C.; Buschmann, A.H.; Sousa-Pinto, I. IMTA with Gracilaria vermiculophylla: Productivity and nutrient removal performance of the seaweed in a land-based pilot scale system. Aquaculture 2011, 312, 77–87. [Google Scholar] [CrossRef]
- Alves, J.P.; Bessa-Junior, A.P.; Henry-Silva, G.G. Salinity tolerance of macroalgae Gracilaria birdiae. Ciência Rural. 2021, 51, 1–7. [Google Scholar] [CrossRef]
- Oliveira, V.P.; Freire, F.A.M.; Soriano, E.M. Influence of depth on the growth of the seaweed Gracilaria birdiae (Rhodophyta) in a shrimp pond. Braz. J. Aquat. Sci. Technol. 2012, 16, 33–39. [Google Scholar] [CrossRef]
- Marinho-Soriano, E.; Morales, C.; Moreira, W.S.C. Cultivation of Gracilaria (Rhodophyta) in shrimp pond effluents in Brazil. Aquac. Res. 2002, 33, 1081–1086. [Google Scholar] [CrossRef]
- Brito, L.O.; Chagas, A.M.; Silva, E.P.; Soares, R.B.; Severi, W.; Gálvez, A.O. Water quality, Vibrio density and growth of Pacific white shrimp Litopenaeus vannamei (Boone) in an integrated biofloc system with red seaweed Gracilaria birdiae (Greville). Aquac. Res. 2016, 47, 940–950. [Google Scholar] [CrossRef]
- Koroleff, K. Determination of phosphorus. In Methods of Seawater Analysis, 2nd ed.; Grasshoff, K., Erhardt, M., Kremling, K., Eds.; Wiley: New York, NY, USA, 1863; pp. 125–139. [Google Scholar]
- AOAC. Official Methods of Analysis, 21th ed.; (Online); Gaithersburg, M.D., Ed.; AOAC International (Association of Analytical Communities): Rockville, MD, USA, 2019; ISBN 9780935584899. [Google Scholar]
- Jones, A.B.; Preston, N.P.; Dennison, W.C. Integrated treatment of shrimp effluent by sedimentation, oyster filtration and macroalgas absorption: A laboratory scale study. Aquaculture 2001, 193, 155–178. [Google Scholar] [CrossRef]
- Rocha, N.M.; Souza Junior, J.; Farias, W.R.L. Reuse of water in an integrated system with shrimps, sedimentation, oysters and marine macroalgae. Rev. Ciência Agronômica 2008, 39, 540. [Google Scholar]
- Raposo, D.M.T.; Oliveira, S.R.; Afonso, F.; Câmara, M.R.; Fernandes, F.O.; Marinho-Soriano, E. Performance of Shrimp Litopenaeus Vannamei and Seaweed Gracilaria Birdiae and Ulva Fasciata in an Integrated Multi-Trophic Aquaculture System; Aquaculture Europe: Trondheim, Norway, 2013. [Google Scholar]
- Fourooghifard, H.; Matinfar, A.; Mortazavi, M.S.; Roohani Ghadikolaee, K.; Mirbakhsh, M. Nitrogen and phosphorous budgets for integrated culture of white leg shrimp Litopenaeus vannamei with red seaweed Gracilaria corticata in zero water exchange system. Iran. J. Fish. Sci. 2018, 17, 471–486. [Google Scholar] [CrossRef]
- Marinho-Soriano, E.; Panucci, R.A.; Carneiro, M.A.A.; Pereira, D.C. Evaluation of Gracilaria caudata J. Agardh for bioremediation of nutrients from shrimp farming wastewater. Bioresour. Technol. 2009, 100, 6192–6198. [Google Scholar] [CrossRef]
- Nelson, S.G.; Glenn, E.P.; Conn, J.; Moore, M.; Walsh, T.; Akutagawa, M. Cultivation of Gracilaria parvispora Rhodophyta in shrimp-farm effluent ditches and floating cages in Hawaii: A two-phase polyculture system. Aquaculture 2001, 193, 239–248. [Google Scholar] [CrossRef]
Treatments | Temperature (°C) | pH | DO (mg/L) | Turbidity (NTU) | Transparency (cm) | Salinity |
---|---|---|---|---|---|---|
T0 | 29.7 ± 0.5 | 8.35 ± 0.1 | 4.4 ± 0.2 | 160.1 a ± 69.9 | 25.0 ± 2.2 | 35.0 ± 0.9 |
T500 | 29.6 ± 0.4 | 8.33 ± 0.1 | 4.4 ± 0.1 | 152.6 a ± 63.8 | 25.5 ± 2.4 | 35.6 ± 0.8 |
T1000 | 29.6 ± 0.6 | 8.27 ± 0.2 | 4.5 ± 0.3 | 116.8 b ± 45.9 | 28.5 ± 3.1 | 35.2 ± 1.3 |
T2000 | 29.4 ± 0.3 | 8.28 ± 0.1 | 4.3 ± 0.2 | 108.9 b ± 59.1 | 30.7 ± 3.5 | 35.8 ± 0.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Henry-Silva, G.G.; Alves, J.; Flickinger, D.; Gomes-Rebouças, R.; Bessa-Junior, A. Polyculture of Pacific White Shrimp Litopenaeus vannamei (Boone) and Red Seaweed Gracilaria birdiae (Greville) under Different Densities. Fishes 2023, 8, 54. https://doi.org/10.3390/fishes8010054
Henry-Silva GG, Alves J, Flickinger D, Gomes-Rebouças R, Bessa-Junior A. Polyculture of Pacific White Shrimp Litopenaeus vannamei (Boone) and Red Seaweed Gracilaria birdiae (Greville) under Different Densities. Fishes. 2023; 8(1):54. https://doi.org/10.3390/fishes8010054
Chicago/Turabian StyleHenry-Silva, Gustavo Gonzaga, Joseanna Alves, Dallas Flickinger, Renata Gomes-Rebouças, and Ambrosio Bessa-Junior. 2023. "Polyculture of Pacific White Shrimp Litopenaeus vannamei (Boone) and Red Seaweed Gracilaria birdiae (Greville) under Different Densities" Fishes 8, no. 1: 54. https://doi.org/10.3390/fishes8010054
APA StyleHenry-Silva, G. G., Alves, J., Flickinger, D., Gomes-Rebouças, R., & Bessa-Junior, A. (2023). Polyculture of Pacific White Shrimp Litopenaeus vannamei (Boone) and Red Seaweed Gracilaria birdiae (Greville) under Different Densities. Fishes, 8(1), 54. https://doi.org/10.3390/fishes8010054