Food Web Connectivity in a Mangrove–Seagrass–Patch Reef (MSP) Seascape: Lessons from a Tropical Back-Reef in Puerto Rico
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection
2.3. Stable Isotope Analysis
2.4. Data Analysis
3. Results
3.1. Primary Producers
3.2. Consumers
3.3. Mixing Models
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bell, P.R.F. Eutrophication and coral reefs—Some examples in the Great Barrier Reef lagoon. Water Res. 1992, 26, 553–568. [Google Scholar] [CrossRef]
- Pandolfi, J.M.; Bradbury, R.H.; Sala, E.; Hughes, T.P.; Bjorndal, K.A.; Cooke, R.G.; McArdle, D.; McClenachan, L.; Newman, M.J.H.; Paredes, G.; et al. Global trajectories of the long-term decline of coral reef ecosystems. Science 2003, 301, 955–958. [Google Scholar] [CrossRef] [Green Version]
- Mumby, P.J.; Edwards, A.J.; Arias-González, J.E.; Lindeman, K.C.; Blackwell, P.G.; Gall, A.; Gorczynska, M.I.; Harborne, A.R.; Pescod, C.L.; Renken, H.; et al. Mangroves enhance the biomass of coral reef fish communities in the Caribbean. Nature 2004, 427, 533–536. [Google Scholar] [CrossRef] [Green Version]
- Wyatt, A.S.J.; Waite, A.M.; Humphries, S. Stable isotope analysis reveals community-level variation in fish trophodynamics across a fringing coral reef. Coral Reefs 2012, 31, 1029–1044. [Google Scholar] [CrossRef]
- Whithall, D.; Bauer, L.J.; Sherman, C.; Edwards, K.; Mason, A.; Pait, T.; Caldow, C. Baseline Assessment of Guánica Bay, Puerto Rico in Support of Watershed Restoration; NOAA Technical Memorandum NOS NCCOS 176; NOAA Institutional Repository: Silver Spring, MD, USA, 2013; p. 169. [Google Scholar]
- Nagelkerken, I.; Sheaves, M.; Baker, R.; Connolly, R.M. The seascape nursery: A novel spatial approach to identify and manage nurseries for coastal marine fauna. Fish Fish. 2015, 2015, 362–371. [Google Scholar] [CrossRef] [Green Version]
- Freeman, L.A.; Corbett, D.R.; Fitzgerald, A.; Lemley, D.A.; Quigg, A.; Steppe, C. Impacts of Urbanization on Estuarine Ecosystems and Water Quality. Estuar Coasts 2019, 42, 1821–1838. [Google Scholar] [CrossRef]
- Skinner, C.; Cobain, M.; Zhu, Y.; Wyatt, A.; Polunin, N. Progress and direction in the use of stable isotopes to understand complex coral reef ecosystems: A review. Oceanogr. Mar. Biol. 2022, 60, 375–434. [Google Scholar] [CrossRef]
- Polidoro, B.A.; Carpenter, K.E.; Collins, L.; Duke, N.C.; Ellison, A.M.; Ellison, J.C.; Farnsworth, E.J.; Fernando, E.S.; Kathiresan, K.; Koedam, N.E.; et al. The Loss of Species: Mangrove Extinction Risk and Geographic Areas of Global Concern. PLoS ONE 2010, 5, e10095. [Google Scholar] [CrossRef] [PubMed]
- McMahon, K.W.; Berumen, M.L.; Thorrold, S.R. Linking habitat mosaics and connectivity in a coral reef seascape. Proc. Nat. Acad. Sci. USA 2012, 109, 15372–15376. [Google Scholar] [CrossRef] [Green Version]
- Acosta, C.; Butler, M.H. Role of mangrove habitat as a nursery for juvenile spiny lobster, Panulirus argus, in Belize. Mar. Freshw. Res. 1997, 48, 721–727. [Google Scholar] [CrossRef]
- Nagelkerken, I.; van der Velde, G. Are Caribbean mangroves important feeding grounds for juvenile reef fish from adjacent seagrass beds? Mar. Ecol. Prog. Ser. 2004, 274, 143–151. [Google Scholar] [CrossRef]
- Adams, A.; Dahlgren, C.P.; Kellison, G.T.; Kendall, M.S.; Layman, C.A.; Ley, J.A.; Nagelkerken, I.; Serafy, J.E. Nursery function of tropical backreef systems. Mar. Ecol. Prog. Ser. 2006, 318, 287–301. [Google Scholar] [CrossRef]
- Verweij, M.C.; Nagelkerken, I.; de Graaf, D.; Peeters, M.; Bakker, E.J.; van der Velde, G. Structure, food and shade attract juvenile coral reef fish to mangrove and seagrass habitats: A field experiment. Mar. Ecol. Prog. Ser. 2006, 306, 257–268. [Google Scholar] [CrossRef]
- Nagelkerken, I.; Bothwell, J.; Nemeth, R.S.; Pitt, J.M.; van der Velde, G. Interlinkage between Caribbean coral reefs and seagrass beds through feeding migrations by grunts (Haemulidae) depends on habitat accessibility. Mar. Ecol. Prog. Ser. 2008, 368, 155–164. [Google Scholar] [CrossRef] [Green Version]
- Huijbers, C.M.; Grol, M.G.G.; Nagelkerken, I. Shallow patch reefs as alternative habitats for early juveniles of some mangrove/seagrass-associated fish species in Bermuda. Rev. Biol. Trop. 2008, 56, 161–169. [Google Scholar] [CrossRef] [Green Version]
- McMahon, K.W.; Thorrold, S.R.; Houghton, L.A.; Berumen, M.L. Tracing carbon flow through coral reef food webs using a compound specific stable isotope approach. Oecologia 2015, 180, 809–821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rooker, J.R.; Dance, M.A.; Wells, R.J.D.; Quigg, A.; Hill, R.L.; Appeldoorn, R.S.; Padovani Ferreira, B.; Boswell, K.M.; Sanchez, P.J.; Moulton, D.L.; et al. Seascape connectivity and the influence of predation risk on the movement of fishes inhabiting a back-reef ecosystem. Ecosphere 2018, 4, e02200. [Google Scholar] [CrossRef]
- Rooker, J.R.; Dennis, G.D. Diel, lunar and seasonal changes in a mangrove fish assemblage off southwestern Puerto Rico. Bull. Mar. Sci. 1991, 49, 684–698. [Google Scholar]
- Dahlgren, C.P.; Eggleston, D.B. Ecological processes underlying ontogenetic habitat shifts in a coral reef fish. Ecology 2000, 81, 2227–2240. [Google Scholar] [CrossRef]
- Sanchirico, J.N.; Mumby, P.J. Mapping ecosystem functions to the valuation of ecosystem services: Implications of species-habitat associations for coastal land-use decisions. Theor. Ecol. 2009, 2, 67–77. [Google Scholar] [CrossRef] [Green Version]
- Damar, A.; Colijn, F.; Hesse, K.-J.; Kurniawan, F. Coastal phytoplankton pigments composition in three tropical estuaries of Indonesia. J. Mar. Sci. Eng. 2020, 8, 311. [Google Scholar] [CrossRef]
- Cloern, J.E. Our evolving conceptual model of the coastal eutrophication problem. Mar. Ecol. Prog. Ser. 2001, 210, 223–253. [Google Scholar] [CrossRef] [Green Version]
- Jeffrey, S.W. Photosynthetic pigments of the phytoplankton of some coral reef waters. Limnol. Oceangr. 1968, 13, 350–355. [Google Scholar] [CrossRef]
- Pinckney, J.L.; Quigg, A.; Roelke, D.L. Interannual and seasonal patterns of estuarine phytoplankton diversity in Galveston Bay, Texas, USA. Estuaries Coasts 2017, 40, 310–316. [Google Scholar] [CrossRef]
- Pinckney, J.L.; Millie, D.F.; Howe, K.E.; Paerl, H.W.; Hurley, J.P. Flow scintillation counting of 14C-labeled microalgal photosynthetic pigments. J. Plankton Res. 1996, 18, 1867–1880. [Google Scholar] [CrossRef] [Green Version]
- Schlüter, L.; Møhlenberg, F.; Havskum, H.; Larsen, S. The use of phytoplankton pigments for identifying and quantifying phytoplankton groups in coastal areas: Testing the influence of light and nutrients on pigment/chlorophyll a ratios. Mar. Ecol. Prog. Ser. 2000, 192, 49–63. [Google Scholar] [CrossRef] [Green Version]
- Dorado, S.; Rooker, J.R.; Wissel, B.; Quigg, A. Isotope baseline shifts in pelagic food webs of the Gulf of Mexico. Mar. Ecol. Prog. Ser. 2012, 464, 37–49. [Google Scholar] [CrossRef] [Green Version]
- Quigg, A.; Al-Anasi, M.; Nour El Din, N.; Wei, C.-L.; Nunnally, C.C.; Al-Ansari, I.S.; Rowe, G.; Soliman, Y.; Al-Maslamani, I.; Mahmoud, I.; et al. Phytoplankton along the coastal shelf of an oligotrophic hypersaline environment in a semi-enclosed marginal sea: Qatar (Arabian Gulf). Cont. Shelf Res. 2013, 60, 1–16. [Google Scholar] [CrossRef]
- Grice, A.M.; Loneragan, N.R.; Dennison, W.C. Light intensity and the interactions between physiology, morphology and stable isotope ratios in five species of Seagrass. J. Exp. Mar. Biol. Ecol. 1996, 195, 91–110. [Google Scholar] [CrossRef]
- Kimirei, I.A.; Nagelkerken, I.; Mgaya, Y.D.; Huijbers, C.M. The mangrove nursery paradigm revisited: Otolith stable isotopes support nursery to reef movements by Indo-Pacific fishes. PLoS ONE 2013, 8, e66320. [Google Scholar] [CrossRef] [Green Version]
- Peterson, B.J.; Fry, B. Stable isotopes in ecosystem studies. Ann. Rev. Ecol. Syst. 1987, 18, 293–320. [Google Scholar] [CrossRef]
- Peterson, B.J.; Howarth, R.W.; Garritt, R.H. Multiple stable isotopes used to trace the flow of organic matter in estuarine food webs. Science 1985, 227, 1361–1363. [Google Scholar] [CrossRef]
- France, R.L.; Peters, R.H. Ecosystem differences in the trophic enrichment of 13C in aquatic food webs. Can. J. Fish. Aquat. Sci. 1997, 54, 1255–1258. [Google Scholar] [CrossRef]
- Post, D.M. Using stable isotopes to estimate trophic position: Models, methods, and assumptions. Ecology 2002, 83, 703–718. [Google Scholar] [CrossRef]
- Bouillon, S.; Connolly, R.M.; Gillikin, D.P. Use of stable isotopes to understand food webs and ecosystem functioning in estuaries. In Treatise on Estuarine and Coastal Science; Wolanski, E., McLusky, D.S., Eds.; Waltham Academic Press: Cambridge, MA, USA, 2011; Volume 7, pp. 143–173. [Google Scholar]
- Zhao, Y.; Quigg, A. Nutrient limitation in Northern Gulf of Mexico (NGOM): Phytoplankton communities and photosynthesis respond to nutrient pulse. PLoS ONE 2014, 9, e88732. [Google Scholar] [CrossRef] [PubMed]
- Latasa, M. Improving estimations of phytoplankton class abundances using CHEMTAX. Mar. Ecol. Prog. Ser. 2007, 329, 13–21. [Google Scholar] [CrossRef] [Green Version]
- Wells, R.J.D.; Cowan, J.H., Jr.; Fry, B. Feeding ecology of red snapper Lutjanus campechanus in the northern Gulf of Mexico. Mar. Ecol. Prog. Ser. 2008, 361, 213–225. [Google Scholar] [CrossRef] [Green Version]
- Bunn, S.E.; Loneragan, N.R.; Kempster, M.A. Effects of acid washing on stable isotope ratios of C and N in penaeid shrimp and seagrass: Implications for food-web studies using multiple stable isotopes. Limnol. Oceanogr. 1995, 40, 622–625. [Google Scholar] [CrossRef] [Green Version]
- Ng, J.S.; Wai, T.C.; Williams, G.A. The effects of acidification on the stable isotope signatures of marine algae and molluscs. Mar. Chem. 2007, 103, 97–102. [Google Scholar] [CrossRef]
- Serrano, O.; Serrano, L.; Mateo, M.A.; Colombini, I.; Chelazzi, L.; Gagnarli, E.; Fallaci, M. Acid washing effect on elemental and isotopic composition of whole beach arthropods: Implications for food web studies using stable isotopes. Acta Oecologica 2008, 34, 89–96. [Google Scholar] [CrossRef]
- Stock, B.C.; Semmens, B.X. MixSIAR GUI User Manual, Version 3.1; Scripps Institution of Oceanography: San Diego, CA, USA, 2013; Available online: https://github.com/brianstock/MixSIAR (accessed on 13 June 2021).
- Phillips, D.L.; Inger, R.; Bearhop, S.; Jackson, A.L.; Moore, J.W.; Parnell, A.C.; Semmens, B.X.; Ward, E.J. Best practices for use of stable isotope mixing models in food-web studies. Can. J. Zoo. 2014, 92, 823–835. [Google Scholar] [CrossRef]
- DeNiro, M.J.; Epstein, S. Influence of diet on the distribution of carbon isotopes in animals. Geochim. Cosmochim. Acta 1978, 42, 495–506. [Google Scholar] [CrossRef]
- Fry, B.; Sherr, E.B. δ13C measurements as indicators of carbon flow in marine and freshwater ecosystems. Contributions Mar. Sci. 1984, 27, 13–47. [Google Scholar]
- Vanderklift, M.A.; Ponsard, S. Sources of variation in consumer-diet δ15N enrichment: A meta-analysis. Oecologia 2003, 136, 169–182. [Google Scholar] [CrossRef] [PubMed]
- Vander Zanden, M.J.; Rasmussen, J.B. Variation in d15N and d13C trophic fractionation: Implications for aquatic food web studies. Limnol. Oceanogr. 2001, 46, 2061–2066. [Google Scholar] [CrossRef]
- Wells, R.J.D.; Rooker, J.R.; Quigg, A.; Wissel, B. Influence of mesoscale oceanographic features on pelagic food webs in the Gulf of Mexico. Mar. Biol. 2017, 164, 92–103. [Google Scholar] [CrossRef]
- Gelman, A.; Rubin, D.B. A single series from the Gibbs sampler provides a false sense of security. Bayesian Stat. 1992, 4, 625–631. [Google Scholar]
- Furnas, M.J.; Mitchell, A.W. Phytoplankton dynamics in the central Great Barrier Reef—I. Seasonal changes in biomass and community structure and their relation to intrusive activity. Cont. Shelf Res. 1986, 6, 363–384. [Google Scholar] [CrossRef]
- France, R.L. Estimating the assimilation of mangrove detritus by fiddler crabs in Laguna Joyuda, Puerto Rico, using dual stable isotopes. J. Trop. Ecol. 1988, 14, 413–425. [Google Scholar] [CrossRef]
- Briand, M.J.; Bonnet, X.; Goiran, C.; Guillou, G.; Letourneur, Y. Major sources of organic matter in a complex coral reef lagoon: Identification from isotopic signatures (δ13C and δ15N). PLoS ONE 2015, 10, e0131555. [Google Scholar] [CrossRef]
- Longeragan, N.R.; Bunn, S.E.; Kellaway, D.M. Are mangroves and seagrasses sources of organic carbon for penaeid prawns in a tropical Australian estuary? A multiple stable-isotope study. Mar. Biol. 1997, 130, 289–300. [Google Scholar] [CrossRef]
- Macko, S.A.; Ostrum, N.E. Pollution studies using stable isotopes. In Stable Isotopes in Ecology and Environmental Science; Lajtha, K., Michener, R., Eds.; Blackwell Scientific Publications: Oxford, UK, 1994; pp. 45–62. [Google Scholar]
- Wooller, M.; Smallwood, B.; Jacobson, M.; Fogel, M. Carbon and nitrogen stable isotopic variation in Laguncularia racemosa (L.) (White mangrove) from Florida and Belize: Implications for trophic level studies. Hydrobiologia 2003, 499, 13–23. [Google Scholar] [CrossRef]
- Wells, R.J.D.; Rooker, J.R. Feeding ecology of pelagic fish larvae and juveniles in slope waters of the Gulf of Mexico. J. Fish Biol. 2009, 75, 1719–1732. [Google Scholar] [CrossRef]
- Berman-Frank, I.; Falkowski, P. Nitrogen fixation and photosynthetic oxygen evolution in cyanobacteria. Res. Microbiol. 2003, 154, 157–164. [Google Scholar] [CrossRef]
- Van Duyl, F.C.; Gast, G.J.; Steinhoff, W.; Kloff, S.; Veldhuis, M.J.W.; Bak, R.P.M. Factors influencing the short-term variation in phytoplankton composition and biomass in coral reef waters. Coral Reefs 2002, 21, 293–306. [Google Scholar] [CrossRef]
- Gruber, N.; Sarmiento, J.L. Global patterns of marine nitrogen fixation and denitrification. Glob. Biogeochem Cycles 1997, 11, 235–266. [Google Scholar] [CrossRef]
- Goldberg, W.M. The Biology of Reefs and Reef Organisms; University of Chicago Press: Chicago, IL, USA, 2013. [Google Scholar]
- France, R.L. Carbon-13 enrichment in benthic compared to planktonic algae: Food web implications. Mar. Ecol. Prog. Ser. 1995, 124, 307–312. [Google Scholar] [CrossRef]
- Stoner, A.W.; Zimmerman, R.J. Food pathways associated with penaeid shrimps in a mangrove fringed estuary. Fish. Bull. 1988, 86, 543–551. [Google Scholar]
- Fry, B.; Ewel, K.C. Using stable isotopes in mangrove fisheries research—A review and outlook. Isot. Env. Health Stud. 2003, 3, 191–196. [Google Scholar] [CrossRef] [PubMed]
- Parrish, J.D. Fish communities of interacting shallow-water habitats in tropical oceanic regions. Mar. Ecol. Prog. Ser. 1989, 58, 143–160. [Google Scholar] [CrossRef]
- Blanar, C.A.; Hornbeck, J.R.; Kerstetter, D.W.; Hirons, A.C. Stable isotopes and community surveys reveal differential use of artificial and natural reefs by South Florida fishes. Heliyon 2021, 7, e07413. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, C.; Stoner, A.W. The epiphyte community of mangrove roots in a tropical estuary: Distribution and biomass. Aquat. Bot. 1990, 36, 117–126. [Google Scholar] [CrossRef]
- Serafy, J.; Shideler, G.; Araújo, R.; Nagelkerken, I. Mangroves Enhance Reef Fish Abundance at the Caribbean Regional Scale. PLoS ONE 2015, 10, e0142022. [Google Scholar] [CrossRef] [PubMed]
Type of Material | Lowest Taxon ID/Species | Common Name | δ13C (‰) | δ15N (‰) | C:N (mol:mol) | n |
---|---|---|---|---|---|---|
POM | −15.5 ± 1.2 | 3.7 ± 0.2 | 160 ± 23.2 | 33 | ||
BMA | −8.9 ± 0.7 | 3.4 ± 0.3 | 184 ± 4.5 | 6 | ||
BMA/Seagrass | −6.1 ± 2.3 | 1.5 ± 1.1 | 1175 ± 852 | 32 | ||
Seagrass | Halodule wrightii | shoal grass | −7.4 ± 1.1 | 1.4 ± 0.3 | 823 ± 191 | 6 |
Thalassia testudinum | turtle grass | −6.6 ± 0.3 | 1.1 ± 0.4 | 1347 ± 706 | 6 | |
Syringodium filiforme | manatee grass | −3.1 ± 0.7 | 0.7 ± 0.5 | 2085 ± 949 | 8 | |
epiphytes | −4.5 ± 0.8 | 2.4 ± 0.3 | 159 ± 35 | 4 | ||
Mangrove | Rhizophora mangle | red mangrove–green leaves | −27.8 ± 0.9 | 1.7 ± 0.3 | 734 ± 121 | 15 |
Rhizophora mangle | red mangrove–yellow leaves | −29.4 ± 0.4 | 0.6 ± 0.2 | 2247 ± 918 | 6 | |
epiphytes | −13.6 ± 2.4 | 4.7 ± 0.7 | 152 ± 46 | 3 | ||
Zooplankton | −17.2 ± 1.0 | 3.9 ± 0.4 | 79 ± 13 | 14 | ||
Invertebrates | Synalpheus sp. | snapping shrimp | −14.8 ± 0.4 | 7.5 ± 0.4 | 53 ± 10 | 7 |
Stenorhynchus sp. | arrow crab | −14.8 ± 1.2 | 6.6 ± 0.1 | 51 ± 6.7 | 3 | |
Paractaea sp. | rubble crab | −13.3 ± 0.4 | 6.6 ± 0.4 | 44 ± 4.6 | 4 | |
Mithraculus sp. | clinging crab | −13.2 ± 1.2 | 4.6 ± 0.3 | 59 ± 8.8 | 6 | |
mollusk | −22.8 ± 1.5 | 3.1 ± 0.4 | 116 ± 21 | 4 | ||
Anthozoa sp. | Cnidaria | −17.0 ± 0.3 | 4.5 ± 0.3 | 90 ± 25 | 5 | |
Fish | Haemulon plumierii | white grunt | −12.1 ± 0.5 | 9.0 ± 0.4 | 49 ± 3.2 | 8 |
Lutjanus apodus | schoolmaster snapper | −15.9 ± 3.0 | 9.2 ± 0.4 | 48 ± 2.9 | 7 | |
Sphyraena barracuda | great barracuda | −13.7 ± 0.7 | 9.6 ± 0.1 | 48 ± 3.6 | 4 | |
Holocentrus adscensionis | squirrelfish | −16.9 ± 1.8 | 8.3 ± 0.1 | 55 ± 7.5 | 3 | |
Pterois volitans | red lionfish | −13.0 ± 0.9 | 8.8 ± 0.4 | 51 ± 3.5 | 4 | |
Lutjanus synagris | lane snapper | −11.2 ± 0.4 | 8.5 ± 0.3 | 53 ± 3.4 | 3 | |
Cephalopholis cruentata | graysby | −13.8 ± 0.5 | 8.9 ± 0.3 | 55 ± 2.3 | 2 | |
Haemulon flavolineatum | French grunt | −12.1 ± 1.2 | 8.5 ± 0.9 | 59 ± 7.9 | 17 | |
Haemulon sciurus | bluestriped grunt | −11.4 ± 0.8 | 8.6 ± 0.3 | 55 ± 5.9 | 9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quigg, A.; Wells, R.J.D.; Rooker, J.R.; Hill, R.L.; Kitchens, L.L.; Dance, M.A.; Moulton, D.L.; Sanchez, P.J.; Ferreira, B.P. Food Web Connectivity in a Mangrove–Seagrass–Patch Reef (MSP) Seascape: Lessons from a Tropical Back-Reef in Puerto Rico. Fishes 2023, 8, 44. https://doi.org/10.3390/fishes8010044
Quigg A, Wells RJD, Rooker JR, Hill RL, Kitchens LL, Dance MA, Moulton DL, Sanchez PJ, Ferreira BP. Food Web Connectivity in a Mangrove–Seagrass–Patch Reef (MSP) Seascape: Lessons from a Tropical Back-Reef in Puerto Rico. Fishes. 2023; 8(1):44. https://doi.org/10.3390/fishes8010044
Chicago/Turabian StyleQuigg, Antonietta, R. J. David Wells, Jay R. Rooker, Ronald L. Hill, Larissa L. Kitchens, Michael A. Dance, David L. Moulton, Phillip J. Sanchez, and Beatrice Padovani Ferreira. 2023. "Food Web Connectivity in a Mangrove–Seagrass–Patch Reef (MSP) Seascape: Lessons from a Tropical Back-Reef in Puerto Rico" Fishes 8, no. 1: 44. https://doi.org/10.3390/fishes8010044
APA StyleQuigg, A., Wells, R. J. D., Rooker, J. R., Hill, R. L., Kitchens, L. L., Dance, M. A., Moulton, D. L., Sanchez, P. J., & Ferreira, B. P. (2023). Food Web Connectivity in a Mangrove–Seagrass–Patch Reef (MSP) Seascape: Lessons from a Tropical Back-Reef in Puerto Rico. Fishes, 8(1), 44. https://doi.org/10.3390/fishes8010044