First Report on Genome Analysis and Pathogenicity of Vibrio tubiashii FP17 from Farmed Ivory Shell (Babylonia areolata)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Disease Outbreak Description and Bacterial Isolation
2.3. Infection Experiment
2.4. Biochemical and Physiological Characterization
2.5. DNA Extraction for the Whole Genome Sequencing
2.6. Genome Assembly, Annotation and Analysis
2.7. Phylogenetic Analyses
2.8. Comparative Genome Analysis
2.9. Antibiotic Resistance Profiling
2.10. Statistical Analysis
3. Results
3.1. Phenotypic Characteristics
3.2. Pathogenic Activity
3.3. Genome Characteristics
3.4. Phylogenetic Tree Analysis
3.5. Comparative Genome Analysis
3.6. Virulence Factors
3.7. Genomic Islands (GIs) and Prophage
3.8. Antibiotic Susceptibility
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, J.; Liu, C.; Yang, Y.; Yang, Y.; Gu, Z.; Wang, A.; Liu, C. Effects of long-term exposure to ammonia on growth performance, immune response, and body biochemical composition of juvenile ivory shell, Babylonia areolata. Aquaculture 2023, 562, 738857. [Google Scholar] [CrossRef]
- Wang, J.; Wang, R.; Su, Y.; Wu, K.; Guo, Z.; Jiang, J.; Liu, G.; Zhao, W. Pathogen and pathology of “acute death syndrome” of Babylonia areolata. Sou. Fish. Chin. Sci. 2013, 9, 93–99. [Google Scholar]
- Liu, X.; Wang, R.; Ling, H.; Yao, T.; Wang, J. Studies on the pathogenic bacteria and their virulence factors of “acute death syndrome” in Babylonia areolata. Mar. Environ. Res. 2019, 38, 7–15. [Google Scholar]
- Tubiash, H.S.; Chanley, P.E.; Leifson, E. Bacillary necrosis, a disease of larval and juvenile bivalve mollusks. I. Etiology and epizootiology. J. Bacteriol. 1965, 90, 1036–1044. [Google Scholar] [PubMed]
- Travers, M.A.; Mersni Achour, R.; Haffner, P.; Tourbiez, D.; Cassone, A.L.; Morga, B.; Doghri, I.; Garcia, C.; Renault, T.; Fruitier-Arnaudin, I. First description of French V. tubiashii strains pathogenic to mollusk: I. Characterization of isolates and detection during mortality events. J. Invertebr. Pathol. 2014, 123, 38–48. [Google Scholar] [CrossRef] [Green Version]
- Mersni-Achour, R.; Imbert-Auvray, N.; Huet, V.; Cheikh, Y.B.; Faury, N.; Doghri, I.; Rouatbi, S.; Bordenave, S.; Travers, M.A.; Saulnier, D.; et al. First description of French V. tubiashii strains pathogenic to mollusk: II. Characterization of properties of the proteolytic fraction of extracellular products. J. Invertebr. Pathol. 2014, 123, 49–59. [Google Scholar] [CrossRef] [Green Version]
- Mersni-Achour, R.; Cheikh, Y.B.; Pichereau, V.; Doghri, I.; Etien, C.; Dégremont, L.; Saulnier, D.; Fruitier-Arnaudin, I.; Travers, M.A. Factors other than metalloprotease are required for full virulence of French Vibrio tubiashii isolates in oyster larvae. Microbiology 2015, 161, 997–1007. [Google Scholar] [CrossRef]
- Shao, P.; Yong, P.; Wang, X.; Xie, S.; Sun, J. Isolation, identification, and histopathological analysis of Vibrio tubiashii from lined seahorse Hippocampus erectus. Dis. Aquat. Organ. 2019, 133, 195–205. [Google Scholar] [CrossRef]
- Künili, İ.E.; Ertürk Gürkan, S.; Aksu, A.; Turgay, E.; Çakir, F.; Gürkan, M.; Altinağaç, U. Mass mortality in endangered fan mussels Pinna nobilis (Linnaeus 1758) caused by co-infection of Haplosporidium pinnae and multiple Vibrio infection in Çanakkale Strait, Turkey. Biomarkers 2021, 26, 450–461. [Google Scholar] [CrossRef]
- Austin, B.; Austin, D.; Sutherland, R.; Thompson, F.; Swings, J. Pathogenicity of vibrios to rainbow trout (Oncorhynchus mykiss, Walbaum) and Artemia nauplii. Environ. Microbiol. 2005, 7, 1488–1495. [Google Scholar] [CrossRef]
- Meistertzheim, A.L.; Nugues, M.M.; Quéré, G.; Galand, P.E. Pathobiomes Differ between Two Diseases Affecting Reef Building Coralline Algae. Front. Microbiol. 2017, 8, 1686. [Google Scholar]
- Richards, G.P.; Needleman, D.S.; Watson, M.A.; Bono, J.L. Complete Genome Sequence of the Larval Shellfish Pathogen Vibrio tubiashii Type Strain ATCC 19109. Genome Announc. 2014, 2, e01252-14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elston, R.A.; Hasegawa, H.; Humphrey, K.L.; Polyak, I.K.; Häse, C.C. Re-emergence of Vibrio tubiashii in bivalve shellfish aquaculture: Severity, environmental drivers, geographic extent and management. Dis. Aquat. Organ. 2008, 82, 119–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hasegawa, H.; Häse, C.C. TetR-type transcriptional regulator VtpR functions as a global regulator in Vibrio tubiashii. Appl. Environ. Microbiol. 2009, 75, 7602–7609. [Google Scholar] [CrossRef] [Green Version]
- Hasegawa, H.; Lind, E.J.; Boin, M.A.; Häse, C.C. The extracellular metalloprotease of Vibrio tubiashii is a major virulence factor for pacific oyster (Crassostrea gigas) larvae. Appl. Environ. Microbiol. 2008, 74, 4101–4110. [Google Scholar] [CrossRef] [Green Version]
- Hasegawa, H.; Häse, C.C. The extracellular metalloprotease of Vibrio tubiashii directly inhibits its extracellular haemolysin. Microbiology 2009, 155, 2296–2305. [Google Scholar] [CrossRef]
- Temperton, B.; Thomas, S.; Tait, K.; Parry, H.; Emery, M.; Allen, M.; Quinn, J.; MacGrath, J.; Gilbert, J. Permanent draft genome sequence of Vibrio tubiashii strain NCIMB 1337 (ATCC19106). Stand. Genom. Sci. 2011, 4, 183–190. [Google Scholar] [CrossRef]
- Richards, G.P.; Watson, M.A.; Needleman, D.S.; Church, K.M.; Hase, C.C. Mortalities of Eastern and Pacific oyster Larvae caused by the pathogens Vibrio coralliilyticus and Vibrio tubiashii. Appl. Environ. Microbiol. 2015, 81, 292–297. [Google Scholar] [CrossRef] [Green Version]
- Reed, L.J.; Muench, H.A. Simple method of estimating fifty per cent endpoints. Am. J. Epidmiol. 1938, 27, 493–497. [Google Scholar] [CrossRef]
- Besemer, J.; Borodovsky, M. GeneMark: Web software for gene finding in prokaryotes, eukaryotes and viruses. Nucleic Acids Res. 2005, 33, W451–W454. [Google Scholar] [CrossRef] [Green Version]
- Grant, J.R.; Stothard, P. The CGView Server: A comparative genomics tool for circular genomes. Nucleic Acids Res. 2008, 36, W181–W184. [Google Scholar] [CrossRef] [PubMed]
- Goris, J.; Konstantinidis, K.T.; Klappenbach, J.A.; Coenye, T.; Vandamme, P.; Tiedje, J.M. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int. J. Syst. Evol. Microbiol. 2007, 57, 81–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tu, Z.; Li, H.; Zhang, X.; Sun, Y.; Zhou, Y. Complete genome sequence and comparative genomics of the golden pompano (Trachinotus ovatus) pathogen, Vibrio harveyi strain QT520. PeerJ 2017, 5, e4127. [Google Scholar] [CrossRef] [PubMed]
- Hudzicki, J. Kirby-Bauer disk diffusion susceptibility test protocol. Am. Soc. Microbiol. 2009, 15, 55–63. [Google Scholar]
- Hada, H.S.; West, P.A.; Lee, J.V.; Stemmler, J.; Colwell, R.R. Vibrio tubiashii sp. nov., a pathogen of bivalve mollusks. Int. J. Syst. Evol. Microbiol. 1984, 34, 1–4. [Google Scholar] [CrossRef]
- Brenner, D.J.; Krieg, N.R.; Staley, J.T. Bergey’s Manual of Systematic Bacteriology. Vol 2 Part B, 2nd ed.; Springer: New York, NY, USA, 2005; pp. 520–527, 544. [Google Scholar]
- Heidelberg, J.F.; Eisen, J.A.; Nelson, W.C.; Clayton, R.A.; Gwinn, M.L.; Dodson, R.J.; Haft, D.H.; Hickey, E.K.; Peterson, J.D.; Umayam, L.; et al. DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae. Nature 2000, 406, 477–483. [Google Scholar] [CrossRef] [Green Version]
- Makino, K.; Oshima, K.; Kurokawa, K.; Yokoyama, K.; Uda, T.; Tagomori, K.; Iijima, Y.; Najima, M.; Nakano, M.; Yamashita, A.; et al. Genome sequence of Vibrio parahaemolyticus: A pathogenic mechanism distinct from that of V cholerae. Lancet 2003, 361, 743–749. [Google Scholar] [CrossRef]
- Sha, J.; Rosenzweig, J.A.; Kozlova, E.V.; Wang, S.; Erova, T.E.; Kirtley, M.L.; van Lier, C.J.; Chopra, A.K. Evaluation of the roles played by Hcp and VgrG type 6 secretion system effectors in Aeromonas hydrophila SSU pathogenesis. Microbiology 2013, 159, 1120–1135. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Meng, H.; Gu, D.; Li, Y.; Jia, M. Molecular mechanisms of Vibrio parahaemolyticus pathogenesis. Microbiol. Res. 2019, 222, 43–51. [Google Scholar] [CrossRef]
- Tanabe, T.; Funahashi, T.; Nakao, H.; Miyoshi, S.; Shinoda, S.; Yamamoto, S. Identification and characterization of genes required for biosynthesis and transport of the siderophore vibrioferrin in Vibrio parahaemolyticus. J. Bacteriol. 2003, 185, 6938–6949. [Google Scholar] [CrossRef] [Green Version]
- Tanabe, T.; Funahashi, T.; Nakao, H.; Maki, J.; Yamamoto, S. The Vibrio parahaemolyticus small RNA RyhB promotes production of the siderophore vibrioferrin by stabilizing the polycistronic mRNA. J. Bacteriol. 2013, 195, 3692–3703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shinoda, S.; Miyoshi, S. Proteases produced by vibrios. Biocontrol. Sci. 2011, 16, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gal-Mor, O.; Finlay, B.B. Pathogenicity islands: A molecular toolbox for bacterial virulence. Cell. Microbiol. 2006, 8, 1707–1719. [Google Scholar] [CrossRef] [PubMed]
- Dubert, J.; Romalde, J.L.; Spinard, E.J.; Nelson, D.R.; Gomez-Chiarri, M.; Barja, J.L. Reclassification of the larval pathogen for marine bivalves Vibrio tubiashii subsp. europaeus as Vibrio europaeus sp. nov. Int. J. Syst. Evol. Microbiol. 2016, 66, 4791–4796. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Qin, L.; Ma, Y.; Zhou, L.; Zhang, Y. Isolation, sequencing and characterization of cluster genes involved in the biosynthesis and utilization of the siderophore of marine fish pathogen Vibrio alginolyticus. Arch. Microbiol. 2007, 188, 433–439. [Google Scholar] [CrossRef]
- Kustusch, R.J.; Kuehl, C.J.; Crosa, J.H. Power plays: Iron transport and energy transduction in pathogenic vibrios. BioMetals 2011, 24, 559–566. [Google Scholar] [CrossRef] [Green Version]
- Kuehl, C.J.; Crosa, J.H. Molecular and genetic characterization of the TonB2-cluster TtpC protein in pathogenic vibrios. BioMetals 2009, 22, 109–115. [Google Scholar] [CrossRef] [Green Version]
- Stork, M.; Lorenzo, M.D.; Mouriño, S.; Osorio, C.R.; Lemos, M.L.; Crosa, J.H. Two tonB systems function in iron transport in Vibrio anguillarum, but only one is essential for virulence. Infect. Immun. 2004, 72, 7326–7329. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Liu, Q.; Cao, X.; Yang, M.; Zhang, Y. Characterization of two TonB systems in marine fish pathogen Vibrio alginolyticus: Their roles in iron utilization and virulence. Arch. Microbiol. 2008, 190, 595–603. [Google Scholar] [CrossRef]
- Price, M.N.; Huang, K.H.; Arkin, A.P.; Alm, E.J. Operon formation is driven by co-regulation and not by horizontal gene transfer. Genome Res. 2005, 15, 809–819. [Google Scholar] [CrossRef] [Green Version]
- Asmar, A.T.; Collet, J.F. Lpp, the Braun lipoprotein, turns 50-major achievements and remaining issues. FEMS Microbiol. Lett. 2018, 365, fny199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ismail, Z.B.; Abutarbush, S.M. Molecular characterization of antimicrobial resistance and virulence genes of Escherichia coli isolates from bovine mastitis. Vet. World 2020, 13, 1588–1593. [Google Scholar] [CrossRef] [PubMed]
Characteristic | FP17 | ATCC19109 [25] | V. tubiashii [26] |
---|---|---|---|
Shape | Curved rods | Curved rods | Curved rods |
Motility | + | + | + |
Polar flagella | + | + | + |
Gram staining | − | − | − |
Grow at 1%, NaCl | + | + | + |
3%, | + | + | + |
6%, | + | + | + |
8% | − | −/+ | −/+ |
10% | − | − | − |
β-galactosidase | − | − | −/+ |
Arginnine dihydrolase | − | + | −/+ |
Lysine decarboxylase | − | − | − |
Ornithine decarboxylase | − | − | − |
Citrate utilization | + | + | + |
H2S production | − | − | − |
Urease | − | − | − |
Tryptophan deaminase | − | + | N |
Indole production | − | + | + |
Voges–Proskauer | − | − | − |
Gelatinase production | − | + | + |
Glucose | − | − | + |
Mannose | − | − | + |
Inositol | − | − | − |
Sorbitol | − | − | − |
Rhamnose | − | − | − |
Sucrose | + | + | + |
Melibiose | − | − | − |
Amygdalin | −/+ | N | N |
Arabinose | − | − | − |
Oxidase | + | + | + |
Nitrate reduction | + | + | + |
Growth on TCBS | Y | Y | Y |
VF Groups | VF Genes | Annotation | Chromosome | Location |
---|---|---|---|---|
Adherence | mshA, mshE, mshG, mshL, pilD, pilT, pilU | Fimbrial adhesin | Chromosome I | 353,050–445,936, 2,854,510–2,862,684 |
rcpA, tadA | Fimbrial adhesin | Chromosome II | 724,950–726,275, 727,929–729,194 | |
Fphi_1039, htpB, IlpA, VP1611 | Non-fimbrial adhesin | Chromosome I | 2,916,318–2,917,502, 173,880–175,526, 2,472,897–2,473,706, 1,535,525–1,538,158 | |
gbpA | Non-fimbrial adhesin | Chromosome II | 1,158,586–1,160,046 | |
Metabolic factor | psuA, pvsA, pvsB, pvsC, pvsD, pvsE, pvuA, pvuC, pvuD, pvuE | Iron uptake (Siderophore uptake system) | Chromosome I | 384,230–399,756 |
hemB, hemE, hemL | Iron uptake (Heme uptake system) | Chromosome I | 3,207,563:3,208,606, 2,950,897:2,951,964, 513,692–514,984 | |
vctA, vctC, vctD, vctG | Iron uptake (Ton system/ABC transporter system) | Chromosome II | 987,568–994,305 | |
Secretion | epsE, epsF, epsG,gspD | Type II secretion system | Chromosome I | 73,629–78,853 |
clpB/vasG, clpV, evpJ, icmF/vasK, vasA, vasB, vasD, vasE, vasF, VCA0109, vipA/mglA, vipB/mglB, | Type IV secretion system | Chromosome I | 600,132–602,705, 1,023,378–1,042,532 | |
hcp-2 | Type VI secretion system | Chromosome II | 417,585:418,103 | |
Motility | cheA, cheB, cheR, cheV, cheW, cheY, cheZ, flaA, flaB, flaC, flaD, flaE, fleN, flgB, flgC, flgD, flgE, flgF, flgG, flgH, flgI, flgK, flgL, flgO, flgP, flgT, flhA, flhB, flhF, fliA, fliE, fliF, fliG, fliI, fliJ, fliM, fliN, fliP, fliQ, fliR, flmH, flrA, flrB, flrC, motA, motB, motX, motY | Flagella-mediated motility | Chromosome I | 245,246–245,995, 881,531–995,408, 23,33,278–2,385,045 |
Immune modulation | rfaD, rmlA, rmlB, rmlC, wbfY, wbfU | Antiphagocytosis | Chromosome I | 132,236–162,322, |
ABBFA_003457 | Antiphagocytosis | Chromosome II | 695,532–696,542 | |
mrsA/glmM, pgi | Exopolysaccharide | Chromosome I | 531,610–532,950, 2,900,478–2,902,130 | |
gmhA/lpcA, kdsA, lpxC | Inflammatory signaling pathway | Chromosome I | 2,352,195–2,597,372 | |
PLES_19091 | Inflammatory signaling pathway | Chromosome II | 680,579–681,859 | |
Exoenzyme | hap/vvp, | Hemagglutinin protease | Chromosome II | 225,080–226,903 |
Biofilm | luxS | Quorum sensing | Chromosome I | 2,759,812–2,760,330 |
Stress/survival | katB | Catalase | Chromosome II | 594,195–596,372 |
Regulation | fur | Ferric uptake regulator | Chromosome I | 854,626–855,075 |
Other | huvB, huvC, huvX, huvZ | Chromosome II | 471,081–476,422 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, C.; Li, X.; Luo, D.; Liu, Q.; Sun, Y.; Tu, Z.; Shen, M. First Report on Genome Analysis and Pathogenicity of Vibrio tubiashii FP17 from Farmed Ivory Shell (Babylonia areolata). Fishes 2022, 7, 396. https://doi.org/10.3390/fishes7060396
Dai C, Li X, Luo D, Liu Q, Sun Y, Tu Z, Shen M. First Report on Genome Analysis and Pathogenicity of Vibrio tubiashii FP17 from Farmed Ivory Shell (Babylonia areolata). Fishes. 2022; 7(6):396. https://doi.org/10.3390/fishes7060396
Chicago/Turabian StyleDai, Chen, Xiaoxin Li, Dapeng Luo, Qingming Liu, Yun Sun, Zhigang Tu, and Minghui Shen. 2022. "First Report on Genome Analysis and Pathogenicity of Vibrio tubiashii FP17 from Farmed Ivory Shell (Babylonia areolata)" Fishes 7, no. 6: 396. https://doi.org/10.3390/fishes7060396
APA StyleDai, C., Li, X., Luo, D., Liu, Q., Sun, Y., Tu, Z., & Shen, M. (2022). First Report on Genome Analysis and Pathogenicity of Vibrio tubiashii FP17 from Farmed Ivory Shell (Babylonia areolata). Fishes, 7(6), 396. https://doi.org/10.3390/fishes7060396