Effect of Dietary Moringa oleifera Leaves Nanoparticles on Growth Performance, Physiological, Immunological Responses, and Liver Antioxidant Biomarkers in Nile tilapia (Oreochromis niloticus) against Zinc Oxide Nanoparticles Toxicity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Synthesis of ZnO Nanoparticles (ZnO-NPs)
2.3. Synthesis of Moringa oleifera Leaves Nanoparticles
2.4. Transmission Electron Microscopy (TEM)
2.5. Fish Maintenance
2.6. Experimental Design
2.7. Growth Performance Assessment
2.8. Biochemical Assays
2.9. Oxidative Stress Biomarkers in Hepatic Tissues
2.10. Immunological Assay
2.11. Statistical Analysis
3. Results
3.1. TEM Analysis
3.2. Growth Parameters
3.3. Biochemical Analyses
3.4. Liver MDA and Antioxidant Biomarkers
3.5. Immunological Assay
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nasr-Eldahan, S.; Nabil-Adam, A.; Shreadah, M.A.; Maher, A.M.; Ali, T.E. A review article on nanotechnology in quaculture sustainability as a novel tool in fish disease control. Aquac. Int. 2021, 29, 1459–1480. [Google Scholar] [CrossRef] [PubMed]
- El-Bouhy, Z.M.; Reda, R.M.; Mahboub, H.H.; Gomaa, F.N. Bioremediation effect of pomegranate peel on subchronic mercury immunotoxicity on African catfish (Clarias gariepinus). Environ. Sci. Pollut. Res. 2021, 28, 2219–2235. [Google Scholar] [CrossRef] [PubMed]
- El-Bouhy, Z.M.; Reda, R.M.; Mahboub, H.H.; Gomaa, F.N. Chelation of mercury intoxication and testing different protective aspects of Lactococcus lactis probiotic in African catfish. Aquac. Res. 2021, 52, 3815–3828. [Google Scholar] [CrossRef]
- Mahboub, H.H.; Khedr, M.H.E.; Elshopakey, G.E.; Shakweer, M.S.; Mohamed, D.I.; Ismail, T.A.; Ismail, S.H.; Abdel Rahman, A.N. Impact of silver nanoparticles exposure on neuro-behavior, hematology, and oxidative stress biomarkers of African catfish (Clarias gariepinus). Aquaculture 2021, 544, 737082. [Google Scholar] [CrossRef]
- Al Jabri, H.; Saleem, M.H.; Rizwan, M.; Hussain, I.; Usman, K.; Alsafran, M. Zinc Oxide Nanoparticles and Their Biosynthesis: Overview. Life 2022, 12, 594. [Google Scholar] [CrossRef]
- Mahboub, H.H.; Shahin, K.; Zaglool, A.W.; Roushdy, E.M.; Ahmed, S.S.A. Efficacy of nano zinc oxide dietary supplements on growth performance, immunomodulation and disease resistance of African Catfish, Clarias gariepinus. Dis. Aquat. Org. 2020, 142, 147–160. [Google Scholar] [CrossRef]
- Mahboub, H.H.; Beheiry, R.R.; Shahin, S.E.; Behairy, A.; Khedr, M.H.E.; Ibrahim, S.M.; Elshopakey, G.E.; Daoush, W.M.; Altohamy, D.E.; Ismail, T.A.; et al. Adsorptivity of mercury on magnetite nano-particles and their influences on growth, economical, hemato-biochemical, histological parameters and bioaccumulation in Nile tilapia (Oreochromis niloticus). Aquat. Toxicol. 2021, 235, 105828. [Google Scholar] [CrossRef] [PubMed]
- Abdel Rahman, A.N.; Elshopakey, G.E.; Behairy, A.; Altohamy, D.E.; Ahmed, A.I.; Farroh, K.Y.; Alkafafy, M.; Shahin, S.A.; Ibrahim, R.E. Chitosan-Ocimum basilicum nanocomposite as a dietary additive in Oreochromis niloticus: Effects on immune-antioxidant response, head kidney gene expression, intestinal architecture, and growth. Fish Shellfish Immunol. 2022, 128, 425–435. [Google Scholar] [CrossRef]
- Elabd, H.; Youssuf, H.; Mahboub, H.H.; Salem, S.M.R.; Husseiny, W.A.; Khalid, A.; El-Desouky, H.S.; Faggio, C. Growth, hemato-biochemical, immune-antioxidant response, and gene expression in Nile tilapia (Oreochromis niloticus) received nano iron oxide-incorporated diets. Fish Shellfish Immunol. 2022, 128, 574–581. [Google Scholar] [CrossRef]
- Abdel Rahman, A.N.; Shakweer, M.S.; Algharib, S.A.; Abdelaty, A.I.; Kamel, S.; Ismail, T.A.; Daoush, W.M.; Ismail, S.H.; Mahboub, H.H. Silica nanoparticles acute toxicity alters ethology, neuro-stress indices, and physiological status of African catfish (Clarias gariepinus). Aquac. Rep. 2022, 23, 101034. [Google Scholar] [CrossRef]
- Piccinno, F.; Gottschalk, F.; Seeger, S.; Nowack, B. Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. J. Nanoparticle Res. 2012, 14, 1109. [Google Scholar] [CrossRef] [Green Version]
- Farre, J.C.; Krick, R.; Subramani, S.; Thumm, M. Turnover of organelles by autophagy in yeast. Curr. Opin. Cell Biol. 2009, 21, 522–530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hao, L.; Chen, L. Oxidative stress responses in different organs of carp (Cyprinus carpio) with exposure to ZnO nanoparticles. Ecotoxicol. Environ. Saf. 2012, 80, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Hao, L.; Chen, L.; Hao, J.; Zhong, N. Bioaccumulation and sub-acute toxicity of zinc oxide nanoparticles in juvenile carp (Cyprinus carpio): A comparative study with its bulk counterparts. Ecotoxicol. Environ. Saf. 2013, 91, 52–60. [Google Scholar] [CrossRef]
- Rashidian, G.; Lazado, C.C.; Mahboub, H.H.; Mohammadi-Aloucheh, R.; Proki´c, M.D.; Nada, H.S.; Faggio, C. Chemically and green synthesized ZnO nanoparticles alter key immunological molecules in common carp (Cyprinus carpio) Skin Mucus. Int. J. Mol. Sci. 2021, 22, 3270. [Google Scholar] [CrossRef]
- Rashidian, G.; Mahboub, H.H.; Hoseinifar, S.H.; Ghafarifarsani, H.; Zare, M.; Punyatong, M.; Doan, H.V. Allium hirtifolium protects Cyprinus carpio against the detrimental responses mediated by foodborne zinc oxide nanoparticle. Aquaculture 2022, 555, 738252. [Google Scholar] [CrossRef]
- Xiong, D.; Fang, T.; Yu, L.; Sima, X.; Zhu, W. Effects of nano-scale TiO2, ZnO and their bulk counterparts on zebrafish: Acute toxicity, oxidative stress and oxidative damage. Sci. Total Environ. 2011, 409, 1444–1452. [Google Scholar] [CrossRef]
- Kaya, H.; Aydın, F.; Gürkan, M.; Yılmaz, S.; Ates, M.; Demir, V.; Arslan, Z. Effects of zinc oxide nanoparticles on bioaccumulation and oxidative stress in different organs of tilapia (Oreochromis niloticus). Environ. Toxicol. Pharmacol. 2015, 40, 936–947. [Google Scholar] [CrossRef]
- Shahzad, K.; Naeem Khan, M.; Jabeen, F.; Kosour, N.; Shakoor Chaudhry, A.; Sohail, M.; Ahmad, N. Toxicity of zinc oxide nanoparticles (ZnO-NPs) in tilapia (Oreochromis mossambicus): Tissue accumulation, oxidative stress, histopathology and genotoxicity. Int. J. Environ. Sci. Technol. 2019, 16, 1973–1984. [Google Scholar] [CrossRef]
- Dezfoulnejad, M.C.; Molayemraftar, T. Use of dietary rosemary (Rosmarinus officinalis L.) extract as a growth promotor and immunostimulant in common carp. Aquac. Res. 2022, 53, 1553–1562. [Google Scholar] [CrossRef]
- Kurian, A.; Elumalai, P. Study on the impacts of chemical and green synthesized (Leucas aspera and oxy-cyclodextrin complex) dietary zinc oxide nanoparticles in Nile tilapia (Oreochromis niloticus). Environ. Sci. Pollut. Res. 2021, 28, 20344–20361. [Google Scholar] [CrossRef]
- Jeyavani, J.; Sibiya, A.; Sivakamavalli, J.; Divya, M.; Preetham, E.; Vaseeharan, B.; Faggio, C. Phytotherapy and combined nanoformulations as a promising disease management in aquaculture: A review. Aquac. Int. 2022, 30, 1071–1086. [Google Scholar] [CrossRef]
- Moyo, B.; Masika, P.J.; Hugo, A.; Muchenje, V. Nutritional characterization of Moringa (Moringa oleiferalam.) leaves. Afr. J. Biotechnol. 2011, 10, 12925–12933. [Google Scholar]
- Fakurazi, S.; Sharifudin, S.A.; Arulselvan, P. Moringa oleifera hydroethanolic extracts effectively alleviate acetaminopheninduced hepatotoxicity in experimental rats through their antioxidant nature. Molecules 2012, 17, 8334–8350. [Google Scholar] [CrossRef]
- Amaglo, N.K.; Bennett, R.N.; Lo Curto, R.B.; Rosa, E.A.S.; Lo Turco, V.; Giuffrida, A.; Curto, A.L.; Crea, F.; Timpo, G.M. Profiling selected phytochemicals and nutrients in different tissues of the multipurpose tree Moringa oleifera L., grown in Ghana. Food Chem. 2010, 122, 1047–1054. [Google Scholar] [CrossRef]
- Hamed, H.S.; El-Sayed, Y.S. Antioxidant activities of Moringa oleifera leaf extract against pendimethalin-induced oxidative stress and genotoxicity in Nile tilapia, Oreochromis niloticus (L.). Fish Physiol. Biochem. 2019, 45, 71–82. [Google Scholar] [CrossRef] [PubMed]
- Gopalakrishnan, L.; Doriya, K.; Kumar, D.S. Moringa oleifera: A review on nutritive importance and its medicinal application. Food Sci. Hum. Wellness 2016, 5, 49–56. [Google Scholar] [CrossRef] [Green Version]
- Oduro, I.; Ellis, W.O.; Owusu, D. Nutritional potential of two leafy vegetables: Moringa oleifera and Ipomoea batatas leaves. Sci. Res. Essays 2008, 3, 57–60. [Google Scholar]
- Kamalakkannan, N.; Prince, P.S.M. Antihyperglycaemic and antioxidant effect of rutin, a polyphenolic flavonoid, in streptozotocin-induced diabetic wistar rats. Basic Clin. Pharmacol. Toxicol. 2006, 98, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Al-Malki, A.L.; El Rabey, H.A. The antidiabetic effect of low doses of Moringa oleifera Lam. seeds on streptozotocin induced diabetes and diabetic nephropathy in male rats. Biomed. Res. Int. 2015, 2015, 381040. [Google Scholar] [CrossRef] [Green Version]
- Baker, K.; Marcus, C.B.; Huffman, K.; Kruk, H.; Malfroy, B.; Doctrow, S.R. Synthetic combined superoxide dismutase/catalase mimetics are protective as a delayed treatment in a rat stroke model: A key role for reactive oxygen species in ischemic brain injury. J. Pharmacol. Exp. Ther. 1998, 284, 215–221. [Google Scholar] [PubMed]
- Kirisattayakul, W.; Wattanathorn, J.; Tong-Un, T.; Muchimapura, S.; Wannanon, P.; Jittiwat, J. Cerebroprotective effect of Moringa oleifera against focal ischemic stroke induced by middle cerebral artery occlusion. Oxid. Med. Cell. Longev. 2013, 2013, 10–13. [Google Scholar] [CrossRef] [PubMed]
- Anwar, F.; Latif, S.; Ashraf, M.; Gilani, A.H. Moringa oleifera: A food plant with multiple medicinal uses. Phytother. Res. 2007, 21, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Coppin, J.P.; Xu, Y.; Chen, H.; Pan, M.H.; Ho, C.T.; Juliani, R.; Simon, J.E.; Wu, Q. Determination of flavonoids by LC/MS and anti-inflammatory activity in Moringa oleifera. J. Funct. Foods 2013, 5, 1892–1899. [Google Scholar] [CrossRef]
- Sharifudin, S.A.; Fakurazi, S.; Hidayat, M.T.; Hairuszah, I.; Moklas, M.A.; Arulselvan, P. Therapeutic potential of Moringa oleifera extracts against acetaminophen-induced hepatotoxicity in rats. Pharm. Biol. 2013, 51, 279–288. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, R.E.; El-Houseiny, W.; Behairy, A.; Mansour, M.F.; Abd-Elhakim, Y.M. Ameliorative effects of Moringa oleifera seeds and leaves on chlorpyrifos-induced growth retardation, immune suppression, oxidative stress, and DNA damage in Oreochromis niloticus. Aquaculture 2019, 505, 225–234. [Google Scholar] [CrossRef]
- Mahboub, H.H.; Rashidian, G.; Hoseinifar, S.H.; Kamel, S.; Zare, M.; Ghafarifarsani, H.; Algharib, S.A.; Moonmanee, T.; Doan, H.V. Protective effects of Allium hirtifolium extract against foodborne toxicity of Zinc oxide nanoparticles in common carp (Cyprinus carpio). Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2022, 257, 109345. [Google Scholar] [CrossRef]
- Ismail, S.H.; Hamdy, A.; Ismail, T.A.; Mahboub, H.H.; Mahmoud, W.H.; Daoush, W.M. Synthesis and Characterization of Antibacterial Carbopol/ZnO Hybrid Nanoparticles Gel. Crystals 2021, 11, 1092. [Google Scholar] [CrossRef]
- Goda, M.N.; Shaheen, A.A.M.; Hamed, H.S. Antagonistic effects of dietary parsley and parsley nanoparticles against zinc oxide nanoparticles induced behavioral, physiological, histopathological alterations and oxidative stress in Nile Tilapia, Oreochromis niloticus. Fishes, 2022; in press. [Google Scholar]
- Tietz, N.W.; Burtis, C.A.; Duncan, P.; Ervin, K.; Petitclerc, C.J.; Rinker, A.D.; Shuey, D.; Zygowicz, E.R. A reference method for measurement of alkaline phosphatase activity in human serum. Clin. Chem. 1983, 29, 751–761. [Google Scholar] [CrossRef]
- Reitman, S.; Frankel, S. A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. Am. J. Clin. Pathol. 1957, 28, 56–63. [Google Scholar] [CrossRef]
- Allain, C.C.; Poon, L.S.; Chan, C.S.; Richmond, W.; Fu, P.C. Enzymatic determination of total serum cholesterol. Clin. Chem. 1974, 20, 470–475. [Google Scholar] [CrossRef] [PubMed]
- Vassault, A. Lactate dehydrogenase: UV-method with pyruvate and NADH. In Methods of Enzymatic Analysis, 3rd ed.; Bergmeyer, H.U., Ed.; Plenum: New York, NY, USA, 1983; pp. 118–125. [Google Scholar]
- Larsen, K. Creatinine assay by a reaction-kinetic principle. Clin. Chim. Acta 1972, 41, 209–217. [Google Scholar] [CrossRef]
- Henry, R.J. Colorimetric Determination of Total Protein. In Clinical Chemistry; Harper & Row Publishers: New York, NY, USA, 1964; Volume 181, pp. 166–173. [Google Scholar]
- Trinder, P. Determination of blood glucose using 4-amino phenazone as oxygen acceptor. J. Clin. Pathol. 1969, 22, 246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foster, L.; Dunn, R. Single antibody technique for radioimmunoassay of cortisol in un extracted serum or plasma. Clin. Chem. 1974, 20, 365. [Google Scholar] [CrossRef] [PubMed]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef]
- Doumas, B.T.; Watson, W.A.; Biggs, H.G. Albumin standards and the measurement of serum albumin with bromcresol green. Clin. Chim. Acta 1971, 31, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Mihara, M.; Uchiyama, M. Determination of malonaldehydeprecursor in tissues by thiobarbituric acid test. Anal. Biochem. 1978, 86, 271–278. [Google Scholar]
- Nishikimi, M.; Appaji, N.; Yagi, K. The occurrence of superoxide anion in the reaction of reducedphenazine methosulfate and molecular oxygen. Biochem. Biophys. Res. Commun. 1972, 46, 849–854. [Google Scholar] [CrossRef]
- Aebi, H. Catalase in vitro. In Methods Enzymology; Academic Press: Cambridge, MA, USA, 1984; pp. 121–126. [Google Scholar]
- Beutler, E.; Duron, O.; Kelly, B.M. Improve method for the determination of blood glutathione. J. Lab. Clin. Med. 1963, 61, 882–888. [Google Scholar]
- Koracevic, D.; Koracevic, G.; Djordjevic, V.; Andrejevic, S.; Cosic, V. Method for the measurement of antioxidant activity in human fluids. J. Clin. Pathol. 2001, 54, 356–361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Secombes, C.J. Isolation of salmonid macrophages and analysis of their killing activity. Tech. Fish Immunol. 1990, 1, 137–154. [Google Scholar]
- Abdel-Tawwab, M.; Adeshina, I.; Jenyo-Oni, A.; Ajani, E.K.; Emikpe, B.O. Growth, physiological, antioxidants, and immune response of African catfish, Clarias gariepinus (B.) to dietary clove basil, Ocimum gratissimum leaf extract and its susceptibility to Listeria monocytogenes infection. Fish Shellfish Immunol. 2018, 78, 346–354. [Google Scholar] [CrossRef]
- Ellis, A.E. Lysozyme assays. In Techniques in Fish Immunology; Stolen, J.S., Ed.; SOS Publications: Fair Haven, CT, USA, 1990; pp. 101–103. [Google Scholar]
- Siwicki, A.; Anderson, D. Nonspecific defense mechanisms assay in fish: II. Potential killing activity of neutrophils and macrophages, lysozyme activity in serum and organs and total immunoglobulin level in serum. In Fish Diseases Diagnosis and Preventions Methods; Siwicki, A.K., Anderson, D.P., Waluga, J., Eds.; IRS: Olsztyn, Poland, 1993; pp. 105–112. [Google Scholar]
- Dytham, C. Choosing and Using Statistics: A Biologist ’s Guide; Blackwell Science Ltd.: London, UK, 2011. [Google Scholar]
- Elabd, H.; Faggio, C.; Mahboub, H.H.; Emam, M.A.; Kamel, S.; El Kammar, R.; Abdelnaeim, N.S.; Shaheen, A.; Tresnakova, N.; Matter, A. Mucuna pruriens seeds extract boosts growth, immunity, testicular histology, and expression of immune-related genes of mono-sex Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol. 2022, 127, 672–680. [Google Scholar] [CrossRef] [PubMed]
- Hamed, H.S.; Abdel Tawwab, M. Dietary pomegranate (Punica granatum) peel mitigated the adverse effects of silver nanoparticles on the performance, haemato-biochemical, antioxidant, and immune responses of Nile tilapia fingerlings. Aquaculture 2021, 540, 736742. [Google Scholar] [CrossRef]
- Hamed, H.S.; Ali, R.M.; Shaheen, A.A.; Hussein, N.M. Chitosan nanoparticles alleviated endocrine disruption, oxidative damage, and genotoxicity of Bisphenol-A- intoxicated female African catfish. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2021, 248, 109104. [Google Scholar] [CrossRef]
- Sayed, A.H.; Hamed, H.S. Induction of apoptosis and DNA damage by 4-nonylphenol in African catfish (Clarias gariepinus) and the antioxidant role of Cydonia oblonga. Ecotoxicol. Environ. Saf. 2017, 139, 97–101. [Google Scholar] [CrossRef]
- Andrawes, N.G.; Abo Nour, A.A.; Shaheen, A.A.; Hamed, H.S. Effect of Nigella sativa enriched diet on biochemical variables and antioxidant damage caused by silver nanoparticles toxicity in African catfish, Clarias gariepinus. Egypt J. Aquat. Biol. Fish 2021, 25, 63–76. [Google Scholar] [CrossRef]
- Abdel Rahman, A.N.; Mansour, D.A.; Abd El-Rahman, G.I.; Elseddawy, N.M.; Zaglool, A.W.; Khamis, T.; Mahmoud, S.F.; Mahboub, H.H. Imidacloprid toxicity in Clarias gariepinus: Protective role of dietary Hyphaene thebaica against biochemical and histopathological disruption, oxidative stress, immune genes expressions, and Aeromonas sobria infection. Aquaculture 2022, 555, 738170. [Google Scholar] [CrossRef]
- Abdel Rahman, A.N.; Mahmoud, S.M.; Khamis, T.; Rasheed, N.; Mohamed, D.I.; Ghanem, R.; Mansour, D.M.; Ismail, T.A.; Mahboub, H.H. Palliative effect of dietary common sage leaves against toxic impacts of nonylphenol in Mirror carp. (Cyprinus carpio var specularis): Growth, gene expression, immune-antioxidant status, and histopathological alterations. Aquac. Rep. 2022, 25, 101200. [Google Scholar] [CrossRef]
- Ahmed, S.A.A.; Nada, H.S.; Ibrahim, S.M.; Fahmy, E.M.; Khedr, M.H.E.; Moustafa, S.M.; Mahboub, H.H. Comparative antitoxic potency of honey and natamycin- supplemented diets against aflatoxicosis and their influences on growth, serum biochemistry, immunohistochemistry, and residual deposition in Nile tilapia (Oreochromis niloticus). Aquaculture 2022, 551, 737934. [Google Scholar] [CrossRef]
- Hamed, H.S.; Ismal, S.M.; Abdel Tawwab, M. Modulatory effects of cinnamon (Cinnamomum zeylanicum) against waterborne lead toxicity in Niletilapia fingerlings: Growth performance, haemato-biochemical, innate immunity and hepatic antioxidant capacity. Aquac. Rep. 2022, 25, 101190. [Google Scholar] [CrossRef]
- Kizhakkumpat, A.; Syed, A.; Elgorban, A.M.; Bahkali, A.H.; Khan, S.S. The toxicity analysis of PVP, PVA and PEG surface functionalized ZnO nanoparticles on embryonicas well as adult Danio rerio. Environ. Monit. Assess. 2021, 193, 824. [Google Scholar] [CrossRef]
- Sarkar, M.; Bhowmick, S.; Hussain, J.; Hasan, M.; Hossain, S. Hot water extract of Moringa oleifera leaves protects erythrocytes from hemolysis and major organs from oxidative stress in vitro. J. Basic Appl. Res. 2017, 3, 120–126. [Google Scholar]
- Guyton, A.; Hall, J. Blood cells, immunity, and blood clotting: Blood groups. In Text Book of Medical Physiology, 11th ed.; WB Saunders Company: Philadelphia, PA, USA, 2005; pp. 458–459. [Google Scholar]
- Glencross, B.D.; Booth, M.; Allen, G.I. A feed is only as good as its ingredients-a review of ingredient evaluation strategies for aquaculture feeds. Aquac. Nutr. 2007, 13, 17–34. [Google Scholar] [CrossRef]
- Camacho-Murillo, M.; Obando-Víquez, M.; Lilia, S.; Vega-Baudrit, J.R. Toxicity of nanoparticles: A development opportunity in environment and health. J. Clin. Exp. Tox. 2022, 6, 1–6. [Google Scholar]
- Taheri, S.; Banaee, M.; Haghi, B.N.; Mohiseni, M. Effects of dietary supplementation of zinc oxide nanoparticles on some biochemical biomarkers in common carp (Cyprinus carpio). Int. J. Aquat. Biol. 2017, 5, 286–294. [Google Scholar]
- Selvakumar, D.; Natarajan, P. Hepato-protective activity of Moringa oleifera Lam leaves in carbon tetrachloride induced hepato-toxicity in albino rats. Pharmacogn. Mag. 2008, 4, 97. [Google Scholar]
- Sensi, S.L.; Yin, H.Z.; Carriedo, S.G.; Rao, S.S.; Weiss, J.H. Preferential Zn2+ influx through Ca2+-permeable AMPA/kainate channels triggers prolonged mitochondrial superoxide production. Proc. Natl. Acad. Sci. USA 1999, 96, 2414–2419. [Google Scholar] [CrossRef] [Green Version]
- Heng, B.C.; Zhao, X.; Xiong, S.; Ng, K.W.; Boey, F.Y.C.; Loo, J.S.C. Toxicity of zinc oxide (ZnO) nanoparticles on human bronchial epithelial cells (BEAS-2B) is accentuated by oxidative stress. Food Chem. Toxicol. 2010, 48, 1762–1766. [Google Scholar] [CrossRef]
- Zhu, X.; Wang, J.; Zhang, X.; Chang, Y.; Chen, Y. The impact of ZnO nanoparticle aggregates on the embryonic development of zebrafish (Danio rerio). Nanotechnology 2009, 20, 195103. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.S.; Jabeen, F.; Asghar, M.S.; Qureshi, N.A.; Shakeel, M.; Noureen, A.; Shabbir, S. Role of nao-ceria in the amelioration of oxidative stress: Current and future applications in medicine. Int. J. Biosci. 2015, 6, 89–109. [Google Scholar] [CrossRef]
- Nel, A.; Xia, T.; Mädler, L.; Li, N. Toxic potential of materials at the nano level. Science 2006, 311, 622–627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buerki-Thurnherr, T.; Xiao, L.; Diener, L.; Arslan, O.; Hirsch, C.; Maeder-althaus, X. In vitro mechanistic study towards a better understanding of ZnO nanoparticle toxicity. Nanotoxicology 2013, 7, 402–416. [Google Scholar] [CrossRef] [PubMed]
- Vimercati, L.; Cavone, D.; Caputi, A.; De Maria, L.; Tria, M.; Prato, E.; Ferri, G.M. Nanoparticles: An experimental study of zinc nanoparticles toxicity on marine crustaceans. General overview on the health implications in humans. Front. Public Health 2020, 8, 192. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Machado, D.I.; López-Cervantes, J.; Ríos Vázquez, N.J. High-performance liquid chromatography method to measureα-andγ-tocopherol in leaves, flowers and freshbeans from Moringa oleifera. J. Chromatogr. A 2006, 1105, 111–114. [Google Scholar] [CrossRef]
- Siddhuraju, P.; Becker, K. Antioxidant properties of various solvent extracts of totalphenolic constituents from three different agroclimatic origins of drumstick tree (Moringa oleifera Lam.) leaves. J. Agric. Food Chem. 2003, 51, 2144–2155. [Google Scholar] [CrossRef]
- De Pablo, M.A.; De Cienfuegos, G.Á. Modulatory effects of dietary lipids on im-mune system functions. Immunol. Cell Biol. 2000, 78, 31–39. [Google Scholar]
- Mora, J.R.; Iwata, M.; Von Andrian, U.H. Vitamin effects on the immune system:vitamins a and D take centre stage. Nat. Rev. Immunol. 2008, 8, 685–698. [Google Scholar] [CrossRef]
Groups | Control | MO-NPs | ZnO-NPS | MO/ZnO-NPS | |
---|---|---|---|---|---|
Parameters | |||||
Initial weight (g) | 26.3 ± 0.44 | 26.19 ± 0.52 | 26.45 ± 0.26 | 26.08 ± 0.41 | |
Final weight (g) | 52.34 ± 0.42 b | 0.32 ± 57.5 a | 37.47 ± 0.48 d | 45.61 ± 0.23 c | |
Weight gain (%) | 112.29 ± 4.64 b | 126.25 ± 4.31 a | 57.62 ± 2.82 d | 77.61 ± 3.81 c | |
SGR (%/day) | 1.42 ± 0.08 a | 1.38 ± 0.06 b | 0.69 ± 0.02 d | 0.98 ± 0.04 c | |
Feed intake (g feed/fish) | 36.7 ± 3.35 b | 43.26 ± 3.20 a | 20.61 ± 2.29 d | 29.42 ± 2.31 c | |
FCR | 1.54 ± 0.05 | 1.55 ± 0.03 | 1.58 ± 0.04 | 1.61 ± 0.05 | |
Fish survival (%) | 100.0 ± 1.09 | 100.0 ± 1.07 | 93.0 ± 1.0 | 97.0 ± 1.01 |
Groups | Control | MO-NPs | ZnO-NPS | MO/ZnO-NPS | |
---|---|---|---|---|---|
Parameters | |||||
AST (U/L) | 50.11 ± 0.24 b | 51.01 ± 1.04 b | 62.45 ± 1.05 a | 50.14 ± 0.13 b | |
ALT (U/L) | 43.22 ± 0.41 b | 43.67 ± 0.24 b | 56.70 ± 0.62 a | 42.98 ± 0.07 b | |
ALP (U/L) | 9.20 ± 0.17 b | 9.26 ± 0.18 b | 14.70 ± 0.14 a | 9.31 ± 0.29 b | |
Glucose (mg/dL) | 47.36 ± 0.11 c | 49.01 ± 0.56 b | 79.24 ± 1.63 a | 50.01 ± 1.61 b | |
Cortisol (µg/dL) | 6.13 ± 0.01 c | 7.08 ± 0.03 b | 12.02 ± 0.11 a | 7.18 ± 0.10 b |
Groups | Control | MO-NPs | ZnO-NPS | MO/ZnO-NPS | |
---|---|---|---|---|---|
Parameters | |||||
Creatinine (mg/dL) | 0.77 ± 0.04 b | 0.79 ± 0.02 b | 1.45 ± 0.03 a | 0.70 ± 0.04 c | |
Urea (mg/dL) | 18.34 ± 0.13 c | 19.07 ± 0.52 bc | 27.61 ± 0.12 a | 20.08 ± 0.03 b | |
Cholesterol mg/dL) | 139.29 ± 3.44 bc | 140.51 ± 2.31 b | 179.92 ± 1.50 a | 140.21 ± 3.21 b | |
LDH (U/L) | 20.19 ± 1.18 c | 21.02 ± 0.63 bc | 37.10 ± 0.62 a | 23.51 ± 0.12 b |
Groups | Control | MO-NPs | ZnO-NPS | MO/ZnO-NPS | |
---|---|---|---|---|---|
Parameters | |||||
Total protein (g/dL) | 8.22 ± 0.06 a | 8.17 ± 0.06 a | 4.21 ± 0.06 c | 7.58 ± 0.12 a | |
Albumin (g/dL) | 4.70 ± 0.03 a | 4.81 ± 0.13 a | 2.06 ± 0.09 c | 4.01 ± 0.30 b | |
Globulin (g/dL) | 3.52 ± 0.12 a | 3.36 ± 0.15 b | 2.15 ± 0.08 c | 3.57 ± 0.18 a |
Groups | Control | MO-NPs | ZnO-NPS | MO/ZnO-NPS | |
---|---|---|---|---|---|
Parameters | |||||
SOD (µg/mg protein) | 45.18 ± 0.62 a | 44.08 ± 0.43 b | 20.70 ± 0.12 c | 46.02 ± 0.30 a | |
TAC (µmol/mg protein) | 20.19 ± 0.41 b | 20.40 ± 0.81 b | 35.90 ± 0.03 a | 21.05 ± 0.31 b | |
CAT (µg/mg protein) | 32.41 ± 0.17 a | 33.10 ± 0.10 a | 19.04 ± 0.47 b | 32.51 ± 0.21 a | |
GSH (nmol/g protein) | 23.16 ± 0.13 a | 23.12 ± 0.40 a | 12.03 ± 0.08 c | 20.13 ± 0.62 b | |
MDA (nmol/g protein) | 22.15 ± 0.24 b | 20.94 ± 0.78 c | 37.40 ± 0.93 a | 23.43 ± 0.10 b |
Groups | Control | MO-NPs | ZnO-NPS | MO/ZnO-NPS | |
---|---|---|---|---|---|
Parameters | |||||
LYZ (mg/mL) | 5.82 ± 0.12 ab | 6.57 ± 0.24 a | 3.71 ± 0.03 c | 5.18 ± 0.32 ab | |
RBA (mg/mL) | 1.70 ± 0.21 a | 1.89 ± 0.34 a | 1.13 ± 0.11 c | 1.63 ± 0.34 b | |
IgM (mg/mL) | 13.53 ± 0.16 b | 15.47 ± 0.35 a | 8.83 ± 0.21 d | 11.94 ± 0.27 c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamed, H.S.; Amen, R.M.; Elelemi, A.H.; Mahboub, H.H.; Elabd, H.; Abdelfattah, A.M.; Moniem, H.A.; El-Beltagy, M.A.; Alkafafy, M.; Yassin, E.M.M.; et al. Effect of Dietary Moringa oleifera Leaves Nanoparticles on Growth Performance, Physiological, Immunological Responses, and Liver Antioxidant Biomarkers in Nile tilapia (Oreochromis niloticus) against Zinc Oxide Nanoparticles Toxicity. Fishes 2022, 7, 360. https://doi.org/10.3390/fishes7060360
Hamed HS, Amen RM, Elelemi AH, Mahboub HH, Elabd H, Abdelfattah AM, Moniem HA, El-Beltagy MA, Alkafafy M, Yassin EMM, et al. Effect of Dietary Moringa oleifera Leaves Nanoparticles on Growth Performance, Physiological, Immunological Responses, and Liver Antioxidant Biomarkers in Nile tilapia (Oreochromis niloticus) against Zinc Oxide Nanoparticles Toxicity. Fishes. 2022; 7(6):360. https://doi.org/10.3390/fishes7060360
Chicago/Turabian StyleHamed, Heba S., Rehab M. Amen, Azza H Elelemi, Heba H. Mahboub, Hiam Elabd, Abdelfattah M. Abdelfattah, Hebatallah Abdel Moniem, Marwa A. El-Beltagy, Mohamed Alkafafy, Engy Mohamed Mohamed Yassin, and et al. 2022. "Effect of Dietary Moringa oleifera Leaves Nanoparticles on Growth Performance, Physiological, Immunological Responses, and Liver Antioxidant Biomarkers in Nile tilapia (Oreochromis niloticus) against Zinc Oxide Nanoparticles Toxicity" Fishes 7, no. 6: 360. https://doi.org/10.3390/fishes7060360
APA StyleHamed, H. S., Amen, R. M., Elelemi, A. H., Mahboub, H. H., Elabd, H., Abdelfattah, A. M., Moniem, H. A., El-Beltagy, M. A., Alkafafy, M., Yassin, E. M. M., & Ismail, A. K. (2022). Effect of Dietary Moringa oleifera Leaves Nanoparticles on Growth Performance, Physiological, Immunological Responses, and Liver Antioxidant Biomarkers in Nile tilapia (Oreochromis niloticus) against Zinc Oxide Nanoparticles Toxicity. Fishes, 7(6), 360. https://doi.org/10.3390/fishes7060360