Substituting Fish Meal with a Bacteria Protein (Clostridium autoethanogenum Protein) Derived from Industrial-Scale Gas Fermentation: Effects on Growth and Gut Health of Juvenile Large Yellow Croakers (Larimichthys crocea)
Abstract
:1. Introduction
2. Materials and Method
2.1. Experimental Diets
2.2. Fish and Feeding Trial
2.3. Sample Collection
2.4. Analytical Methods
2.4.1. Proximate Composition
2.4.2. Serum Biochemical Parameters
2.4.3. Intestinal Histology
2.4.4. Gut Microbiota Collection and Analyses
2.5. Statistical Analysis
3. Results
3.1. Growth and Feed Utilization
3.2. Body Composition
3.3. Non-Specific Immunity
3.4. Gut Morphology
3.5. Gut Microbial Communities
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Jia, S.; Li, X.; He, W.; Wu, G. Protein-Sourced Feedstuffs for Aquatic Animals in Nutrition Research and Aquaculture. Adv. Exp. Med. Biol. 2022, 1354, 237–261. [Google Scholar] [CrossRef] [PubMed]
- Muziri, M.; Mahmoud, A.O.D.; Fahad, K.; Hani, S. Replacement of fish meal with fermented plant proteins in the aquafeed industry: A systematic review and meta-analysis. Rev. Aquac. 2022. [Google Scholar] [CrossRef]
- Cho, J.H.; Kim, I.H. Fish meal–nutritive value. J. Anim. Physiol. Anim. Nutr. 2011, 95, 685–692. [Google Scholar] [CrossRef]
- Rumsey, G.L. Fish Meal and Alternate Sources of Protein in Fish Feeds Update 1993. Fisheries 2011, 18, 14–19. [Google Scholar] [CrossRef]
- Gatlin, D.M.; Barrows, F.T.; Brown, P.; Dabrowski, K.; Gaylord, T.G.; Hardy, R.W.; Herman, E.; Hu, G.; Krogdahl, Å.; Nelson, R.; et al. Expanding the utilization of sustainable plant products in aquafeeds: A review. Aquac. Res. 2007, 38, 551–579. [Google Scholar] [CrossRef]
- Floret, C.; Monnet, A.; Micard, V.; Walrand, S.; Michon, C. Replacement of animal proteins in food: How to take advantage of nutritional and gelling properties of alternative protein sources. Crit. Rev. Food Sci. 2021, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Litchfield, J.H. Microbial Protein Production. BioScience 1980, 30, 387–396. [Google Scholar] [CrossRef]
- Jacob-Lopes, E.Z.L.Q. Protein characterisation of the Aphanothece Microscopica Nägeli cyanobacterium cultivated in parboiled rice effluent. Food Sci. Technol. 2006, 26, 482–488. [Google Scholar] [CrossRef]
- Ritala, A.; Häkkinen, S.T.; Toivari, M.; Wiebe, M.G. Single Cell Protein-State-of-the-Art, Industrial Landscape and Patents 2001–2016. Front. Microbiol. 2017, 8, 2009. [Google Scholar] [CrossRef]
- Utturkar, S.M.; Klingeman, D.M.; Bruno-Barcena, J.M.; Chinn, M.S.; Grunden, A.M.; Köpke, M.; Brown, S.D. Sequence data for Clostridium autoethanogenum using three generations of sequencing technologies. Sci. Data 2015, 2, 150014. [Google Scholar] [CrossRef]
- Yang, P.; Li, X.; Song, B.; He, M.; Wu, C.; Leng, X. The potential of Clostridium autoethanogenum, a new single cell protein, in substituting fish meal in the diet of largemouth bass (Micropterus salmoides): Growth, feed utilization and intestinal histology. Aquac. Fish. 2021, 8, 67–75. [Google Scholar] [CrossRef]
- Fackler, N.; Heffernan, J.; Juminaga, A.; Doser, D.; Nagaraju, S.; Gonzalez-Garcia, R.A.; Simpson, S.D.; Marcellin, E.; Köpke, M. Transcriptional control of Clostridium autoethanogenum using CRISPRi. Synth. Biol. 2021, 6, ysab008. [Google Scholar] [CrossRef] [PubMed]
- Shujie, Z.; Weihua, G.; Zhengyong, W.; Shuyan, C.; Yuhui, S.; Wei, H.; Beiping, T. Partial substitution of fish meal by Clostridium autoethanogenum protein in the diets of juvenile largemouth bass (Micropterus salmoides). Aquac. Rep. 2021, 22, 100938. [Google Scholar] [CrossRef]
- Wenxiang, Y.; Pinxian, Y.; Xin, Z.; Xiaoying, X.; Chunyan, Z.; Xiaoqin, L.; Xiangjun, L. Effects of replacing dietary fish meal with Clostridium autoethanogenum protein on growth and flesh quality of Pacific white shrimp (Litopenaeus vannamei). Aquaculture 2021, 549, 737770. [Google Scholar] [CrossRef]
- Zhenhua, W.; Xiaojun, Y.; Jinshu, G.; Yonghao, F.; Yanlin, G.; Mingzhu, P.; Wenbing, Z.; Kangsen, M. Replacement of dietary fish meal with Clostridium autoethanogenum protein on growth performance, digestion, mTOR pathways and muscle quality of abalone Haliotis discus hannai. Aquaculture 2022, 553, 738070. [Google Scholar] [CrossRef]
- Mai, K.; Wan, J.; Ai, Q.; Xu, W.; Liufu, Z.; Zhang, L.; Zhang, C.; Li, H. Dietary methionine requirement of large yellow croaker, Pseudosciaena crocea R. Aquaculture 2006, 253, 564–572. [Google Scholar] [CrossRef]
- Zhang, C.; Ai, Q.; Mai, K.; Tan, B.; Li, H.; Zhang, L. Dietary lysine requirement of large yellow croaker, Pseudosciaena crocea R. Aquaculture 2008, 283, 123–127. [Google Scholar] [CrossRef]
- Cai, L.; Wang, L.; Song, K.; Lu, K.; Zhang, C.; Rahimnejad, S. Evaluation of protein requirement of spotted seabass (Lateolabrax maculatus) under two temperatures, and the liver transcriptome response to thermal stress. Aquaculture 2020, 516, 734615. [Google Scholar] [CrossRef]
- Zhou, W.; Rahimnejad, S.; Lu, K.; Wang, L.; Liu, W. Effects of berberine on growth, liver histology, and expression of lipid-related genes in blunt snout bream (Megalobrama amblycephala) fed high-fat diets. Fish Physiol. Biochem. 2018, 45, 83–91. [Google Scholar] [CrossRef]
- Yanzou, D.; Lei, L.; Tian, X.; Lina, W.; Liping, X.; Nengshui, D.; Youlin, W.; Kangle, L. Oxidative Stress Can Be Attenuated by 4-PBA Caused by High-Fat or Ammonia Nitrogen in Cultured Spotted Seabass: The Mechanism Is Related to Endoplasmic Reticulum Stress. Antioxidants 2022, 11, 1276. [Google Scholar] [CrossRef]
- AOAC. Official methods of analysis of Analysis of Offical Analytical Chemists International, 17th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 2002. [Google Scholar]
- Syedbasha, M.; Linnik, J.; Santer, D.; O’Shea, D.; Barakat, K.; Joyce, M.; Khanna, N.; Tyrrell, D.L.; Houghton, M.; Egli, A. An ELISA Based Binding and Competition Method to Rapidly Determine Ligand-receptor Interactions. J. Vis. Exp. 2016, 109, 53575. [Google Scholar] [CrossRef] [PubMed]
- Rahimnejad, S.; Zhang, J.; Wang, L.; Sun, Y.; Zhang, C. Evaluation of Bacillus pumillus SE5 fermented soybean meal as a fish meal replacer in spotted seabass (Lateolabrax maculatus) feed. Aquaculture 2021, 531, 735975. [Google Scholar] [CrossRef]
- Dong, Y.; Li, L.; Espe, M.; Lu, K.; Rahimnejad, S. Hydroxytyrosol Attenuates Hepatic Fat Accumulation via Activating Mitochondrial Biogenesis and Autophagy through the AMPK Pathway. J. Agric. Food Chem. 2020, 68, 9377–9386. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Yu, M.; Wu, Y.; Xia, T.; Wang, L.; Song, K.; Zhang, C.; Lu, K.; Rahimnejad, S. Hydroxytyrosol Promotes the Mitochondrial Function through Activating Mitophagy. Antioxidants 2022, 11, 893. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Liang, H.; Longshaw, M.; Wang, J.; Ge, X.; Zhu, J.; Li, S.; Ren, M. Effects of replacing fishmeal with methanotroph (Methylococcus capsulatus, Bath) bacteria meal (FeedKind®) on growth and intestinal health status of juvenile largemouth bass (Micropterus salmoides). Fish Shellfish Immun. 2022, 122, 298–305. [Google Scholar] [CrossRef]
- Wei, H.Y.H.C. Effects of soybean meal replaced by Clostridium autoethanogenum protein on growth performance, plasma biochemical indexes and hepatopancreas and intestinal histopathology of Grass Carp (Ctenopharyngodon idllus). Chin. J. Anim. Nutr. 2018, 30, 4190–4201. [Google Scholar]
- Ahmadifar, E.; Kalhor, N.; Dawood, M.A.O.; Ahmadifar, M.; Moghadam, M.S.; Yousefi, M. Effects of dietary p-coumaric acid on the growth performance, digestive enzyme activity, humoral immunity and immune-related gene expression in common carp, Cyprinus carpio. Aquac. Nutr. 2021, 27, 747–756. [Google Scholar] [CrossRef]
- Jia, R.; Liu, B.; Han, C.; Huang, B.; Lei, J. The physiological performance and immune response of juvenile turbot (Scophthalmus maximus) to nitrite exposure. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2016, 181–182, 40–46. [Google Scholar] [CrossRef]
- Lallès, J. Biology, environmental and nutritional modulation of skin mucus alkaline phosphatase in fish: A review. Fish Shellfish Immun. 2019, 89, 179–186. [Google Scholar] [CrossRef]
- Dos Santos Silva, M.J.; Da Costa, F.F.B.; Leme, F.P.; Takata, R.; Costa, D.C.; Mattioli, C.C.; Luz, R.K.; Miranda-Filho, K.C. Biological responses of Neotropical freshwater fish Lophiosilurus alexandri exposed to ammonia and nitrite. Sci. Total Environ. 2017, 616–617, 1566–1575. [Google Scholar] [CrossRef]
- Dawood, M.A.O.; Koshio, S.; Ishikawa, M.; Yokoyama, S. Immune responses and stress resistance in red sea bream, Pagrus major, after oral administration of heat-killed Lactobacillus plantarum and vitamin C. Fish Shellfish Immun. 2016, 54, 266–275. [Google Scholar] [CrossRef] [PubMed]
- Adel, M.; Yeganeh, S.; Dadar, M.; Sakai, M.; Dawood, M.A.O. Effects of dietary Spirulina platensis on growth performance, humoral and mucosal immune responses and disease resistance in juvenile great sturgeon (Huso huso Linnaeus, 1754). Fish Shellfish Immun. 2016, 56, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Copenhaver, M.; Yu, C.; Hoffman, R.P. Complement Components, C3 and C4, and the Metabolic Syndrome. Curr. Diabetes Rev. 2018, 15, 44–48. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.; Wu, T.; Zhao, Z.; Pan, X. Effects of fish protein hydrolysate on growth performance and humoral immune response in large yellow croaker (Pseudosciaena crocea R.). J. Zhejiang Univ. Sci. B 2008, 9, 684–690. [Google Scholar] [CrossRef]
- Pereira, S.A.; Jesus, G.F.A.; Cardoso, L.; Silva, B.C.; Ferrarezi, J.V.S.; Ferreira, T.H.; Sterzelecki, F.C.; Sugai, J.K.; Martins, M.L.; Mouriño, J.L.P. The intestinal health of silver catfish Rhamdia quelen can be changed by organic acid salts, independent of the chelating minerals. Aquaculture 2019, 505, 118–126. [Google Scholar] [CrossRef]
- Zhe, W.; Manqi, Y.; Ling, W.; Kangle, L.; Kai, S.; Chunxiao, Z. Bacillus subtilis LCBS1 supplementation and replacement of fish meal with fermented soybean meal in bullfrog (Lithobates catesbeianus) diets: Effects on growth performance, feed digestibility and gut health. Aquaculture 2021, 545, 737217. [Google Scholar] [CrossRef]
- Li, Y.; Hu, H.; Liu, J.; Yang, P.; Zhang, Y.; Ai, Q.; Xu, W.; Zhang, W.; Mai, K. Dietary soya allergen β-conglycinin induces intestinal inflammatory reactions, serum-specific antibody response and growth reduction in a carnivorous fish species, turbot Scophthalmus maximus L. Aquac. Res. 2016, 48, 4022–4037. [Google Scholar] [CrossRef]
- Liu, X.; Cheng, Y.; Shao, L.; Ling, Z. Alterations of the Predominant Fecal Microbiota and Disruption of the Gut Mucosal Barrier in Patients with Early-Stage Colorectal Cancer. BioMed Res. Int. 2020, 2020, 2948282. [Google Scholar] [CrossRef]
- Yin, Z.; Liu, Q.; Liu, Y.; Gao, S.; He, Y.; Yao, C.; Huang, W.; Gong, Y.; Mai, K.; Ai, Q. Early Life Intervention Using Probiotic Clostridium butyricum Improves Intestinal Development, Immune Response, and Gut Microbiota in Large Yellow Croaker (Larimichthys crocea) Larvae. Front. Immunol. 2021, 12, 640767. [Google Scholar] [CrossRef]
- Zhao, F.; Guo, M.; Zhang, M.; Duan, M.; Zheng, J.; Liu, Y.; Qiu, L. Sub-lethal concentration of metamifop exposure impair gut health of zebrafish (Danio rerio). Chemosphere 2022, 303, 135081. [Google Scholar] [CrossRef]
- Wang, P.; Zhou, Q.; Feng, J.; He, J.; Lou, Y.; Zhu, J. Effect of dietary fermented soybean meal on growth, intestinal morphology and microbiota in juvenile large yellow croaker, Larimichthys crocea. Aquac. Res. 2019, 50, 748–757. [Google Scholar] [CrossRef]
- Gong, S.; Ye, T.; Wang, M.; Wang, M.; Li, Y.; Ma, L.; Yang, Y.; Wang, Y.; Zhao, X.; Liu, L.; et al. Traditional Chinese Medicine Formula Kang Shuai Lao Pian Improves Obesity, Gut Dysbiosis, and Fecal Metabolic Disorders in High-Fat Diet-Fed Mice. Front. Pharmacol. 2020, 11, 297. [Google Scholar] [CrossRef] [PubMed]
Ingredients | Protein Sources | |
---|---|---|
FM | CAP | |
Aspartic acid | 6.20 | 8.94 |
Glutamic acid | 9.45 | 8.58 |
Serine | 2.02 | 3.36 |
Histidine | 1.82 | 1.22 |
Glycine | 4.01 | 3.93 |
Threonine | 2.33 | 4.40 |
Arginine | 3.87 | 3.42 |
Alanine | 4.11 | 4.88 |
Tyrosine | 1.78 | 2.96 |
Cystine | 0.52 | 1.37 |
Valine | 3.54 | 5.09 |
Methionine | 1.67 | 2.32 |
Phenylalanine | 3.09 | 3.17 |
Leucine | 2.85 | 6.06 |
Isoleucine | 4.86 | 4.98 |
Lysine | 4.78 | 7.40 |
Proline | 2.55 | 2.76 |
Tryptophan | 0.57 | 0.49 |
Total | 60.02 | 75.33 |
Proximate analysis | ||
Crude protein | 68.00 | 85.31 |
Crude lipid | 9.66 | 2.59 |
Ingredients | Experimental Diets | |||
---|---|---|---|---|
CAP0 | CAP15 | CAP30 | CAP45 | |
Fish meal | 40.00 | 34.00 | 28.00 | 22.00 |
Chicken meal | 13.00 | 13.00 | 13.00 | 13.00 |
Soybean meal | 10.00 | 10.00 | 10.00 | 10.00 |
CAP a | 0.00 | 4.80 | 9.50 | 14.20 |
High gluten flour | 23.00 | 23.30 | 23.80 | 24.10 |
Soybean oil | 1.50 | 1.50 | 1.50 | 1.50 |
Fish oil | 2.50 | 3.00 | 3.40 | 3.90 |
Lecithin | 1.50 | 1.50 | 1.50 | 1.50 |
Fish cream | 6.00 | 6.00 | 6.00 | 6.00 |
Vitamin C | 0.10 | 0.10 | 0.10 | 0.10 |
Vitamin premix b | 0.40 | 0.40 | 0.40 | 0.40 |
Mineral premix c | 0.50 | 0.50 | 0.50 | 0.50 |
Ca(H2PO4)2 | 1.00 | 1.40 | 1.80 | 2.30 |
Choline chloride | 0.50 | 0.50 | 0.50 | 0.50 |
Proximate analysis | ||||
Dry matter | 98.02 | 98.00 | 97.92 | 98.41 |
Crude protein | 47.98 | 48.20 | 47.80 | 48.65 |
Crude lipid | 8.25 | 8.27 | 8.83 | 8.73 |
Ash | 11.12 | 10.52 | 9.95 | 9.50 |
Methionine | 2.60 | 2.69 | 2.77 | 2.85 |
Lysine | 0.93 | 1.00 | 1.07 | 1.14 |
Total Phosphorus | 1.38 | 1.37 | 1.37 | 1.39 |
Experimental Diets | ||||
---|---|---|---|---|
CAP0 | CAP15 | CAP30 | CAP45 | |
SR (%) | 84.22 ± 3.86 | 83.11 ± 2.12 | 88.44 ± 2.70 | 80.67 ± 2.34 |
IBW (g) | 11.76 ± 0.06 | 11.93 ± 0.20 | 11.74 ± 0.03 | 11.89 ± 0.02 |
FBW (g) | 26.59 ± 0.27 c | 26.03 ± 0.32 bc | 25.22 ± 0.42 b | 22.19 ± 0.03 a |
WGR (%) | 124.92 ± 2.30 c | 120.26 ± 2.68 bc | 113.38 ± 3.54 b | 87.75 ± 0.27 a |
FE | 0.72 ± 0.02 b | 0.66 ± 0.02 ab | 0.71 ± 0.03 ab | 0.61 ± 0.02 a |
PER | 1.50 ± 0.04 b | 1.38 ± 0.04 ab | 1.49 ± 0.06 b | 1.26 ± 0.05 a |
CF (g cm−3) | 1.91 ± 0.03 b | 1.76 ± 0.01 a | 1.86 ± 0.01 ab | 1.82 ± 0.03 ab |
HSI (%) | 2.24 ± 0.17 | 2.60 ± 0.09 | 2.53 ± 0.09 | 2.58 ± 0.01 |
VSI (%) | 7.22 ± 0.16 | 7.75 ± 0.11 | 7.62 ± 0.16 | 7.72 ± 0.04 |
PDR (%) | 4.19 ± 0.08 b | 3.67 ± 0.18 b | 3.83 ± 0.26 b | 2.76 ± 0.08 a |
LDR (%) | 17.80 ± 0.85 c | 15.70 ± 0.37 bc | 14.01 ± 0.42 b | 11.29 ± 0.23 a |
Index (Wet Weight, %) | Experimental Diets | |||
---|---|---|---|---|
CAP0 | CAP15 | CAP30 | CAP45 | |
Whole-body | ||||
Moisture | 74.16 ± 0.18 a | 75.11 ± 0.37 ab | 75.41 ± 0.31 bc | 76.58 ± 0.12 c |
Crude protein | 13.65 ± 0.22 | 13.11 ± 0.21 | 13.66 ± 0.26 | 13.43 ± 0.19 |
Crude lipid | 7.71 ± 0.26 b | 7.25 ± 0.17 ab | 7.20 ± 0.12 ab | 7.08 ± 0.08 a |
Ash | 3.18 ± 0.08 | 3.33 ± 0.03 | 3.22 ± 0.16 | 3.41 ± 0.10 |
Liver | ||||
Crude lipid | 19.00 ± 0.27 | 18.37 ± 0.21 | 19.30 ± 0.25 | 18.84 ± 0.23 |
Experimental Diets | ||||
---|---|---|---|---|
CAP0 | CAP15 | CAP30 | CAP45 | |
AKP (μ/mL) | 25.65 ± 0.47 bc | 23.63 ± 0.29 b | 27.90 ± 1.12 c | 14.68 ± 0.84 a |
LZM (μg/mL) | 4.96 ± 0.18 a | 5.88 ± 0.14 ab | 5.88 ± 0.22 ab | 6.46 ± 0.25 b |
C3 (μg/mL) | 208.03 ± 7.42 a | 312.40 ± 16.91 b | 191.06 ± 6.75 a | 227.24 ± 7.11 a |
C4 (μg/mL) | 1099.97 ± 25.43 c | 1081.29 ± 46.82 c | 844.72 ± 10.60 b | 674.28 ± 31.36 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Dong, Y.; Song, K.; Wang, L.; Li, X.; Lu, K.; Tan, B.; Zhang, C. Substituting Fish Meal with a Bacteria Protein (Clostridium autoethanogenum Protein) Derived from Industrial-Scale Gas Fermentation: Effects on Growth and Gut Health of Juvenile Large Yellow Croakers (Larimichthys crocea). Fishes 2022, 7, 228. https://doi.org/10.3390/fishes7050228
Zhang J, Dong Y, Song K, Wang L, Li X, Lu K, Tan B, Zhang C. Substituting Fish Meal with a Bacteria Protein (Clostridium autoethanogenum Protein) Derived from Industrial-Scale Gas Fermentation: Effects on Growth and Gut Health of Juvenile Large Yellow Croakers (Larimichthys crocea). Fishes. 2022; 7(5):228. https://doi.org/10.3390/fishes7050228
Chicago/Turabian StyleZhang, Jian, Yanzou Dong, Kai Song, Ling Wang, Xueshan Li, Kangle Lu, Beiping Tan, and Chunxiao Zhang. 2022. "Substituting Fish Meal with a Bacteria Protein (Clostridium autoethanogenum Protein) Derived from Industrial-Scale Gas Fermentation: Effects on Growth and Gut Health of Juvenile Large Yellow Croakers (Larimichthys crocea)" Fishes 7, no. 5: 228. https://doi.org/10.3390/fishes7050228
APA StyleZhang, J., Dong, Y., Song, K., Wang, L., Li, X., Lu, K., Tan, B., & Zhang, C. (2022). Substituting Fish Meal with a Bacteria Protein (Clostridium autoethanogenum Protein) Derived from Industrial-Scale Gas Fermentation: Effects on Growth and Gut Health of Juvenile Large Yellow Croakers (Larimichthys crocea). Fishes, 7(5), 228. https://doi.org/10.3390/fishes7050228