Lamiaceae as Feed Additives in Fish Aquaculture
Abstract
:1. Introduction
2. Lamiaceae Family
3. Oregano
Feeding | Fish | Effects | Ref. | ||||
---|---|---|---|---|---|---|---|
Form | Inclusion Doses (% in Feed) | Period (Days) | Species | Vital Stage | Stress/Toxicant/Pathogen Challenge | ||
O. vulgare essential oil | 0.05, 0.1, 0.15, 0.2, 0.25 | 90 | Astyanax altiparanae | ↑ WG, SGR, PER | [40] | ||
Origanum spp. essential oil | 0.5, 1, 1.5, 2 | 56 | Cyprinus carpio | Juvenile | Aeromonas Hydrophila | ↑ LYS activity, phagocytic activity, and phagocytic index ↑ SOD and CAT activities ↑ IL-1β and IL-10 | [41] |
Origanum spp. essential oil | 0.5, 1, 1.5, 2 | 60 | Cyprinus carpio | Fingerling | ↑ WG and SGR | [42] | |
O. vulgare essential oil | 0.05, 0.15, 0.45 | 56 | Cyprinus carpio | Juvenile | Aeromonas Hydrophila | ↑ LYS and complement activities ↑ SOD, CAT and GPx activities ↓ TNFα and TGFβ | [43] |
O. majorana hydroalcoholic extract | 0.01, 0.02, 0.04 | 56 | Cyprinus carpio | Juvenile | Aeromonas Hydrophila | ↑ FW, WG and SGR ↑ RBC, WBC, Hct and Hb ↑ LYS and complement activities ↑ Total Ig levels ↑ SOD and CAT activities | [44] |
O. vulgare ethanolic extract | 0.5, 1, 2 | 56 | Danio rerio | Adult | Aeromonas Hydrophila | ↑ WG and SGR ↑ LYS and complement activities ↑ Total Ig levels ↑ SOD and CAT activities | [45] |
O. vulgare essential oil | 0.01, 0.02 | 60 | Dicentrarchus labrax | Juvenile | ↑ WG, SGR and PER ↓ Cholesterol and tryglicerides serum levels | [46] | |
O. vulgare essential oil | 0.01, 0.02 | 150 | Dicentrarchus labrax | Juvenile | Temperature change | ↑ WG and SGR ↑ SOD and CAT activities | [47] |
O. vulgare hydroalcoholic extract | 1 | 56 | Oncorynchus mykiss | Juvenile | ↑ Serum total protein, respiratory burst activity, phagocytic activity and LYS activity | [48] | |
O. vulgare hydroalcoholic extract | 1 | 56 | Oncorynchus mykiss | Juvenile | ↑ Serum total protein, respiratory burst activity, phagocytic activity and LYS activity | [49] | |
O. vulgare hydroalcoholic extract | 0.2, 0.6, 1, 1.4 | 60 | Oncorynchus mykiss | Juvenile | Diazinon (25% of the LC50 or 0.287 mg/L or 0.942 μM) | ↑ BWI and SGR ↑ SOD, CAT and GPx activities | [50,51] |
O. vulgare hydroalcoholic extract | 0.5, 1, 1.5 | 70 | Oreochromis niloticus | Fingerling | Pseudomonas aeruginosa; Pseudomonas flourscence | ↑ FCR, PER and energy utilization | [52] |
O. vulgare essential oil | 0.1, 0.2 | 70 | Oreochromis niloticus | Juvenile | ↑ FW, SGR and FCR ↑ SOD activity | [53] | |
O. vulgare leaves powder | 0.025, 0.5, 0.075, 0.1, 0.125, 0.15 | 30 | Oreochromis niloticus | Juvenile | Streptococcus agalactiae | NS on growth ↑ LYS activity | [54] |
O. vulgare hydroalcoholic extract | 0.2, 0.5 | 60 | Oreochromis niloticus | Juvenile | Aeromonas Hydrophila | ↑ FW, WG and SGR ↑ RBC, WBC, Hct and Hb ↑ LYS and complement activities ↑ SOD, CAT and GPx activities | [55] |
O. vulgare leaves powder | 0.5, 1 | 30 | Sparus aurata | Juvenile | NS on growth NS on LYS activity ↑ Ig levels | [56] |
3.1. Oregano’s Effects on Growth Performance
3.2. Oregano’s Effects on Oxidative Stress
3.3. Oregano’s Effects on Immune Response
3.4. Oregano’s Effects on Hemato-Biochemical Parameters
3.5. Oregano’s Effects against Pathogen Infections
3.6. Conclusions
4. Rosemary
4.1. Rosemary’s Effects on Growth Performance
4.2. Rosemary’s Effects on Oxidative Stress
4.3. Rosemary’s Effects on Immune Response
4.4. Rosemary’s Effects on Hemato-Biochemical Parameters
4.5. Rosemary’s Effects against Pathogen’s Infections
4.6. Conclusions
5. Sage
5.1. Sage’s Effects on Growth Performance
5.2. Sage’s Effects on Oxidative Stress
5.3. Sage’s Effects on Immune Response
5.4. Sage’s Effects on Hemato-Biochemical Parameters
5.5. Sage’s Effects against Pathogen’s Infections
5.6. Conclusions
6. Thyme
6.1. Thyme’s Effects on Growth Performance
6.2. Thyme’s Effects on Oxidative Stress
6.3. Thyme’s Effects on Immune Response
6.4. Thyme’s Effects on Hemato-Biochemical Parameters
6.5. Thyme’s Effects against Pathogen’s Infections
6.6. Conclusions
7. Mint
7.1. Mint’s Effects on Growth Performance
7.2. Mint’s Effects on Oxidative Stress
7.3. Mint’s Effects on Immune Response
7.4. Mint’s Effects on Hemato-Biochemical Parameters
7.5. Mint’s Effects against Pathogen’s Infections
7.6. Conclusions
8. General Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- FAO. The State of World Fisheries and Aquaculture; Food and Agriculture Organization of the United Nations: Rome, Italy, 2020. [Google Scholar]
- Awad, E.; Awaad, A. Role of Medicinal Plants on Growth Performance and Immune Status in Fish. Fish Shellfish Immunol. 2017, 67, 40–54. [Google Scholar] [CrossRef] [PubMed]
- Lieke, T.; Meinelt, T.; Hoseinifar, S.H.; Pan, B.; Straus, D.L.; Steinberg, C.E.W. Sustainable Aquaculture Requires Environmental-Friendly Treatment Strategies for Fish Diseases. Rev. Aquac. 2020, 12, 943–965. [Google Scholar] [CrossRef] [Green Version]
- Santos, L.; Ramos, F. Antimicrobial Resistance in Aquaculture: Current Knowledge and Alternatives to Tackle the Problem. Int. J. Antimicrob. Agents 2018, 52, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Tafi, A.A.; Meshkini, S.; Tukmechi, A.; Alishahi, M.; Noori, F. Immunological and Antistreptococcal Effects of Salvia Officinalis and Aloe Vera Extracts Supplemented Feed in Rainbow Trout (Oncorhynchus mykiss). Kafkas Univ. Vet. Fak. Derg. 2018, 24, 365–370. [Google Scholar]
- Stratev, D.; Zhelyazkov, G.; Noundou, X.S.; Krause, R.W.M. Beneficial Effects of Medicinal Plants in Fish Diseases. Aquacult. Int. 2018, 26, 289–308. [Google Scholar] [CrossRef]
- Hoseinifar, S.H.; Jahazi, M.A.; Nikdehghan, N.; van Doan, H.; Volpe, M.G.; Paolucci, M. Effects of Dietary Polyphenols from Agricultural By-Products on Mucosal and Humoral Immune and Antioxidant Responses of Convict Cichlid (Amatitlania Nigrofasciata). Aquaculture 2020, 517, 734790. [Google Scholar] [CrossRef]
- Taheri Mirghaed, A.; Hoseini, S.M.; Hoseinifar, S.H.; van Doan, H. Effects of Dietary Thyme (Zataria multiflora) Extract on Antioxidant and Immunological Responses and Immune-Related Gene Expression of Rainbow Trout (Oncorhynchus mykiss) Juveniles. Fish Shellfish Immunol. 2020, 106, 502–509. [Google Scholar] [CrossRef]
- Hoseinifar, S.H.; Shakouri, M.; Yousefi, S.; Van Doan, H.; Shafiei, S.; Yousefi, M.; Mazandarani, M.; Mozanzadeh, M.T.; Tulino, M.G.; Faggio, C. Humoral and skin mucosal immune parameters, intestinal immune related genes and antioxidant defense in rainbow trout (Oncorhynchus mykiss) fed dietary olive (Olea europea L.) waste. Fish Shellfish Immunol. 2020, 100, 171–178. [Google Scholar] [CrossRef]
- Dawood, M.A.O. Nutritional Immunity of Fish Intestines: Important Insights for Sustainable Aquaculture. Rev. Aquac. 2021, 13, 642–663. [Google Scholar] [CrossRef]
- Dawood, M.A.O.; Koshio, S.; Esteban, M.Á. Beneficial Roles of Feed Additives as Immunostimulants in Aquaculture: A Review. Rev. Aquac. 2018, 10, 950–974. [Google Scholar] [CrossRef]
- Al-Hisnawi, A.; Rodiles, A.; Rawling, M.D.; Castex, M.; Waines, P.; Gioacchini, G.; Carnevali, O.; Merrifield, D.L. Dietary Probiotic Pediococcus Acidilactici MA18/5M Modulates the Intestinal Microbiota and Stimulates Intestinal Immunity in Rainbow Trout (Oncorhynchus mykiss). J. World Aquac. Soc. 2019, 50, 1133–1151. [Google Scholar] [CrossRef]
- van Doan, H.; Hoseinifar, S.H.; Naraballobh, W.; Paolucci, M.; Wongmaneeprateep, S.; Charoenwattanasak, S.; Dawood, M.A.O.; Abdel-Tawwab, M. Dietary Inclusion of Watermelon Rind Powder and Lactobacillus plantarum: Effects on Nile Tilapia’s Growth, Skin Mucus and Serum Immunities, and Disease Resistance. Fish Shellfish Immunol. 2021, 116, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Ghafarifarsani, H.; Hoseinifar, S.H.; Talebi, M.; Yousefi, M.; van Doan, H.; Rufchaei, R.; Paolucci, M. Combined and Singular Effects of Ethanolic Extract of Persian Shallot (Allium Hirtifolium Boiss) and Synbiotic Biomin® IMBO on Growth Performance, Serum-and Mucus-Immune Parameters and Antioxidant Defense in Zebrafish (Danio rerio). Animals 2021, 11, 2995. [Google Scholar] [CrossRef] [PubMed]
- Hoseini, S.M.; Moghaddam, A.A.; Ghelichpour, M.; Pagheh, E.; Haghpanah, A.; Gharavi, B.; Mansouri, B.; Arghideh, M. Dietary Glycine Supplementation Modulates Antioxidant and Immune Responses of Beluga, Huso Huso, Juveniles. Aquac. Rep. 2022, 23, 101026. [Google Scholar] [CrossRef]
- Evliyaoğlu, E.; Kilercioğlu, S.; Yılmaz, H.A.; Turchini, G.M.; Paolucci, M.; Clark, T.D.; Demirkale, İ.; Eroldoğan, O.T. Iron Supplementation in Plant-Based Aquafeed: Effects on Growth Performance, Tissue Composition, Iron-Related Serum Parameters and Gene Expression in Rainbow Trout (Oncorhynchus mykiss). Aquaculture 2022, 550, 737884. [Google Scholar] [CrossRef]
- Hoseinifar, S.H.; Sohrabi, A.; Paknejad, H.; Jafari, V.; Paolucci, M.; van Doan, H. Enrichment of Common Carp (Cyprinus carpio) Fingerlings Diet with Psidium Guajava: The Effects on Cutaneous Mucosal and Serum Immune Parameters and Immune Related Genes Expression. Fish Shellfish Immunol. 2019, 86, 688–694. [Google Scholar] [CrossRef]
- Motlagh, H.A.; Safari, O.; Paolucci, M. Effect of Different Levels of Milkweed (Calotropis persica) Seed Powder on the Growth Parameters, Immunity and Gut Microbiota of Oncorhynchus mykiss. Iran J. Vet. Sci. Technol. 2019, 11, 43–50. [Google Scholar]
- Orso, G.; Solovyev, M.M.; Facchiano, S.; Tyrikova, E.; Sateriale, D.; Kashinskaya, E.; Pagliarulo, C.; Hoseinifar, H.S.; Simonov, E.; Varricchio, E.; et al. Chestnut Shell Tannins: Effects on Intestinal Inflammation and Dysbiosis in Zebrafish. Animals 2021, 11, 1538. [Google Scholar] [CrossRef]
- Imperatore, R.; Orso, G.; Facchiano, S.; Scarano, P.P.; Hoseinifar, S.H.; Ashouri, G.; Guarino, C.; Paolucci, M. Anti-inflammatory and immunostimulant effect of different timing-related administration of dietary polyphenols on intestinal inflammation in zebrafish, Danio rerio. Aquaculture 2023, 563, 738878. [Google Scholar] [CrossRef]
- Reverter, M.; Tapissier-Bontemps, N.; Sarter, S.; Sasal, P.; Caruso, D. Moving towards More Sustainable Aquaculture Practices: A Meta-Analysis on the Potential of Plant-Enriched Diets to Improve Fish Growth, Immunity and Disease Resistance. Rev. Aquac. 2021, 13, 537–555. [Google Scholar] [CrossRef]
- van Hai, N. The Use of Medicinal Plants as Immunostimulants in Aquaculture: A Review. Aquaculture 2015, 446, 88–96. [Google Scholar] [CrossRef]
- Abdel-Tawwab, M.; Adeshina, I.; Jenyo-Oni, A.; Ajani, E.K.; Emikpe, B.O. Growth, Physiological, Antioxidants, and Immune Response of African Catfish, Clarias Gariepinus (B.), to Dietary Clove Basil, Ocimum gratissimum, Leaf Extract and Its Susceptibility to Listeria Monocytogenes Infection. Fish Shellfish Immunol. 2018, 78, 346–354. [Google Scholar] [CrossRef] [PubMed]
- Sarhadi, I.; Alizadeh, E.; Ahmadifar, E.; Adineh, H.; Dawood, M.A.O. Skin Mucosal, Serum Immunity and Antioxidant Capacity of Common Carp (Cyprinus carpio) Fed Artemisia (Artemisia annua). Ann. Anim. Sci. 2020, 20, 1011–1027. [Google Scholar] [CrossRef]
- Ahmadifar, E.; Yousefi, M.; Karimi, M.; Fadaei Raieni, R.; Dadar, M.; Yilmaz, S.; Dawood, M.A.O.; Abdel-Latif, H.M.R. Benefits of Dietary Polyphenols and Polyphenol-Rich Additives to Aquatic Animal Health: An Overview. Rev. Fish. Sci. Aquac. 2021, 29, 478–511. [Google Scholar] [CrossRef]
- Sutili, F.J.; Gatlin, D.M.; Heinzmann, B.M.; Baldisserotto, B. Plant Essential Oils as Fish Diet Additives: Benefits on Fish Health and Stability in Feed. Rev. Aquac. 2018, 10, 716–726. [Google Scholar] [CrossRef]
- Firmino, J.P.; Galindo-Villegas, J.; Reyes-López, F.E.; Gisbert, E. Phytogenic Bioactive Compounds Shape Fish Mucosal Immunity. Front. Immunol. 2021, 12, 695973. [Google Scholar] [CrossRef]
- Barbero, F.; Maffei, M. Biodiversity and chemotaxonomic significance of specialized metabolites. In Plant Specialized Metabolism: Genomics, Biochemistry, and Biological Functions, 1st ed.; Arimura, G., Maffei, M., Eds.; CRC Press: Boca Raton, FL, USA, 2016; pp. 24–63. [Google Scholar]
- Napoli, E.; Siracusa, L.; Ruberto, G. New Tricks for Old Guys: Recent Developments in the Chemistry, Biochemistry, Applications and Exploitation of Selected Species from the Lamiaceae Family. Chem. Biodivers. 2020, 17, e1900677. [Google Scholar] [CrossRef]
- Sönmez, A.Y.; Bilen, S.; Alak, G.; Hisar, O.; Yanik, T.; Biswas, G. Growth performance and antioxidant enzyme activities in rainbow trout (Oncorhynchus mykiss) juveniles fed diets supplemented with sage, mint and thyme oils. Fish Physiol. Biochem. 2015, 41, 165–175. [Google Scholar] [CrossRef]
- Diler, O.; Gormez, O.; Diler, I.; Metin, S. Effect of oregano (Origanum onites L.) essential oil on growth, lysozyme and antioxidant activity and resistance against Lactococcus garvieae in rainbow trout, Oncorhynchus mykiss (Walbaum). Aquac. Nutr. 2017, 23, 844–851. [Google Scholar] [CrossRef]
- Hoseini, S.M.; Yousefi, M. Beneficial effects of thyme (Thymus vulgaris) extract on oxytetracycline-induced stress response, immunosuppression, oxidative stress and enzymatic changes in rainbow trout (Oncorhynchus mykiss). Aquac. Nutr. 2019, 25, 298–309. [Google Scholar] [CrossRef]
- Chishti, S.; Kaloo, Z.A.; Sultan, P. Medicinal importance of genus Origanum: A review. J. Pharmacogn. Phytother. 2013, 5, 170–177. [Google Scholar]
- García-Beltrán, J.M.; Esteban, M.A. Properties and applications of plants of Origanum sp. Genus. SM J. Biol. 2016, 2, 1006. [Google Scholar]
- Dundar, E.; Olgun, E.G.; Isiksoy, S.; Kurkcuoglu, M.; Baser, K.; Bal, C. The Effects of intra-rectal and intra-peritoneal application of Origanum onites L. essential oil on 2, 4, 6-trinitrobenzenesulfonic acid-induced colitis in the rat. Exp. Toxicol. Pathol. 2008, 59, 399–408. [Google Scholar] [CrossRef]
- Pezzani, R.; Vitalini, S.; Iriti, M. Bioactivities of Origanum vulgare L.: An update. Phytochem. Rev. 2017, 16, 1253–1268. [Google Scholar] [CrossRef]
- Scocco, P.; Forte, C.; Franciosini, M.P.; Mercati, F.; Casagrande-Proietti, P.; Dall’Aglio, C.; Acuti, G.; Tardella, F.M.; Trabalza-Marinucci, M. Gut complex carbohydrates and intestinal microflora in broiler chickens fed with oregano (Origanum vulgare L.) aqueous extract and Vitamin E. J. Anim. Physiol. Anim. Nutr. 2017, 101, 676–684. [Google Scholar] [CrossRef]
- Mercati, F.; Dall’Aglio, C.; Acuti, G.; Faeti, V.; Tardella, F.M.; Pirino, C.; De Felice, E.; Scocco, P. Oregano Feed Supplementation Affects Glycoconjugates Production in Swine Gut. Animals 2020, 10, 149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oniga, I.; Pușcaș, C.; Silaghi-Dumitrescu, R.; Olah, N.K.; Sevastre, B.; Marica, R.; Marcus, I.; Sevastre-Berghian, A.; Benedec, D.; Pop, C.; et al. Origanum vulgare ssp. vulgare: Chemical Composition and Biological Studies. Molecules 2018, 23, 2077. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, P.M.; da Silva Nascimento, L.; Coelho Dias, D.; da Veiga Moreira, D.M.; Lúcia Salaro, A.; Duca de Freitas, M.B.; Souza Carneiro, A.P.; Sampaio Zuanon, J.A. Essential Oregano Oil as a Growth Promoter for the Yellowtail tetra, Astyanax altiparanae. J. World Aquac. Soc. 2014, 45, 28–34. [Google Scholar] [CrossRef]
- Abdel-Latif, H.M.R.; Abdel-Tawwab, M.; Khafaga, A.F.; Dawood, M.A.O. Dietary oregano essential oil improved antioxidative status, immune-related genes, and resistance of common carp (Cyprinus carpio L.) to Aeromonas hydrophila infection. Fish Shellfish Immunol. 2020, 104, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Latif, H.M.R.; Abdel-Tawwab, M.; Khafaga, A.F.; Dawood, M.A.O. Dietary oregano essential oil improved the growth performance via enhancing the intestinal morphometry and hepato-renal functions of common carp (Cyprinus carpio L.) fingerlings. Aquaculture 2020, 526, 735432. [Google Scholar] [CrossRef]
- Zhang, R.; Wang, X.W.; Liu, L.L.; Cao, Y.C.; Zhu, H. Dietary oregano essential oil improved the immune response, activity of digestive enzymes, and intestinal microbiota of the koi carp, Cyprinus carpio. Aquaculture 2020, 518, 734781. [Google Scholar] [CrossRef]
- Yousefi, M.; Ghafarifarsani, H.; Hoseinifar, S.H.; Rashidian, G.; Van Doan, H. Effects of dietary marjoram, Origanum majorana extract on growth performance, hematological, antioxidant, humoral and mucosal immune responses, and resistance of common carp, Cyprinus carpio against Aeromonas hydrophila. Fish Shellfish Immunol. 2020, 108, 127–133. [Google Scholar] [CrossRef]
- Rashidian, G.; Boldaji, J.T.; Rainis, S.; Proki’c, M.D.; Faggio, C. Oregano (Origanum vulgare) Extract Enhances Zebrafish (Danio rerio) Growth Performance, Serum and Mucus Innate Immune Responses and Resistance against Aeromonas hydrophila Challenge. Animals 2021, 11, 299. [Google Scholar] [CrossRef]
- Dinardo, F.R.; Deflorio, M.; Casalino, E.; Crescenzo, G.; Centoducati, G. Effect of feed supplementation with Origanum vulgare L. essential oil on sea bass (Dicentrarchus labrax): A preliminary framework on metabolic status and growth performances. Aquac. Rep. 2020, 18, 100511. [Google Scholar] [CrossRef]
- Dinardo, F.R.; Maggiolino, A.; Casalino, E.; Deflorio, M.; Centoducati, G. A Multi-Biomarker Approach in European Sea Bass Exposed to Dynamic Temperature Changes under Dietary Supplementation with Origanum vulgare Essential Oil. Animals 2021, 11, 982. [Google Scholar] [CrossRef]
- Pourmoghim, H.; Haghighi, M.; Rohani, M.S. Effect of dietary inclusion of Origanum vulgare extract on nonspecific immune responses and hematological parameters of rainbow trout (Oncorhynchus mykiss). Bull. Pharm. Sci. 2015, 4, 33–39. [Google Scholar]
- Haghighi, M.; Pourmoghim, H.; Sharif Rohani, M. Effect of Origanum vulgare extract on immune responses and hematological parameters of rainbow trout (Oncorhynchus mykiss). Oceanogr. Fish. Open Access J. 2018, 6, 555687. [Google Scholar]
- Rafieepour, A.; Hajirezaee, S.; Rahimi, R. Dietary oregano extract (Origanum vulgare L.) enhances the antioxidant defence in rainbow trout, Oncorhynchus mykiss against toxicity induced by organophosphorus pesticide, diazinon. Toxin Rev. 2019, 39, 397–407. [Google Scholar] [CrossRef]
- Rafieepour, A.; Hajirezaee, S.; Rahimi, R. Moderating Effects of Dietary Oregano Extract (Origanum vulgare) on the Toxicity Induced by Organophosphate Pesticide, Diazinon in Rainbow Trout, Oncorhynchus mykiss: Metabolic Hormones, Histology and Growth Parameters. Turk. J. Fish. Aquat. Sci. 2020, 20, 207–219. [Google Scholar] [CrossRef] [PubMed]
- El Araby, D.A.; El Arabey, A.A. New Approach to use Origanum vulgare Extract as Immunostimulant to Increase Resistance to Pseudomonas aeruginosa and Pseudomonas flourscence. J. Mar. Sci. Res. Dev. 2015, 6, 1000182. [Google Scholar] [CrossRef] [Green Version]
- El-Hawarry, W.N.; Mohamed, R.A.; Ibrahim, S.A. Collaborating effects of rearing density and oregano oil supplementation on growth, behavioral and stress response of Nile tilapia (Oreochromis niloticus). Egypt. J. Aquat. Res. 2018, 44, 173–178. [Google Scholar] [CrossRef]
- Santo, E.; Amanda, H.; Brito, T.S.; Brandão, L.L.; Tavares, G.C.; Leibowitz, M.P.; Prado, S.A.; Ferraz, V.P.; Hoyos, D.C.M.; Turra, E.M.; et al. Dietary supplementation of dry oregano leaves increases the innate immunity and resistance of Nile tilapia against Streptococcus agalactiae infection. J. World Aquac. Soc. 2019, 51, 418–436. [Google Scholar] [CrossRef]
- Mohammadi, G.; Rafiee, G.; El Basuini, M.F.; Van Doan, H.; Ahmed, H.A.; Dawood, M.A.O.; Abdel-Latif, H.M.R. Oregano (Origanum vulgare), St John’s-wort (Hypericum perforatum), and lemon balm (Melissa officinalis) extracts improved the growth rate, antioxidative, and immunological responses in Nile tilapia (Oreochromis niloticus) infected with Aeromonas hydrophila. Aquac. Rep. 2020, 18, 100445. [Google Scholar] [CrossRef]
- García Beltrán, J.M.; Silvera, D.G.; Ruiz, C.E.; Campo, V.; Chupani, L.; Faggio, C.; Esteban, M.Á. Effects of dietary Origanum vulgare on gilthead seabream (Sparus aurata L.) immune and antioxidant status. Fish Shellfish Immunol. 2020, 99, 452–461. [Google Scholar] [CrossRef]
- AziziBasir, M.; Imani, A.; Moghanloo, K.S.; Meshkini, S. The effect of Marjoram (Origanum vulgare L.) and St John’s Wort (Hypericum perforatum) hydro-alcoholic extracts on growth, immunity, digestive and antioxidative enzymes activity of rainbow trout (Oncorhynchus mykiss) under the commercial farming condition. J. Fish. 2020, 72, 339–351. [Google Scholar]
- Heluy, G.M.; Ramos, L.R.V.; Pedrosa, V.F.; Sarturi, C.; Figueiredo, P.G.P.; Vidal, L.G.P.; Franca, I.d.F.; Pereira, M.M. Oregano (Origanum vulgare) essential oil as an additive in diets for Nile tilapia (Oreochromis niloticus) fingerlings reared in salinized water. Aquac. Res. 2020, 51, 3237–3243. [Google Scholar] [CrossRef]
- Romero, J.; Ringø, E. The gut microbiota of fish. In Aquaculture Nutrition (Gut Health, Probiotics and Prebiotics), 1st ed.; Merrifield, D., Ringø, E., Eds.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2014; pp. 75–100. [Google Scholar]
- Ran, C.; Hu, J.; Liu, W.; Liu, Z.; He, S.; Dan, B.C.T.; Diem, N.N.; Ooi, E.L.; Zhou, Z. Thymol and Carvacrol Affect Hybrid Tilapia through the Combination of Direct Stimulation and an Intestinal Microbiota-Mediated Effect: Insights from a Germ-Free Zebrafish Model. Nutr. J. 2016, 115, 229377. [Google Scholar] [CrossRef]
- Giannenas, I.; Triantafillou, E.; Stavrakakis, S.; Margaroni, M.; Mavridis, S.; Steiner, T.; Karagouni, E. Assessment of dietary supplementation with carvacrol or thymol containing feed additives on performance, intestinal microbiota and antioxidant status of rainbow trout (Oncorhynchus mykiss). Aquaculture 2012, 350–353, 26–32. [Google Scholar] [CrossRef]
- Coccimiglio, J.; Alipour, M.; Jiang, Z.H.; Gottardo, C.; Suntres, Z. Antioxidant, Antibacterial, and Cytotoxic Activities of the Ethanolic Origanum vulgare Extract and Its Major Constituents. Oxidative Med. Cell. Longev. 2016, 2016, 1404505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, Z.L.; Justin, Y.W.T.; Liu, H.Y.; Zhou, X.H.; Xiang, X.; Wang, K.Y. Evaluation of oregano essential oil (Origanum heracleoticum L.) on growth, antioxidant effect and resistance against Aeromonas hydrophila in channel catfish (Ictalurus punctatus). Aquaculture 2009, 292, 214–218. [Google Scholar] [CrossRef]
- Swain, P.; Dash, S.; Sahoo, P.K.; Routray, P.; Sahoo, S.K.; Gupta, S.D.; Meher, P.K.; Sarangi, N. Nonspecific immune parameters of brood Indian major carp Labeo rohita and their seasonal variations. Fish Shellfish Immunol. 2007, 22, 38–43. [Google Scholar] [CrossRef]
- Song, Q.; Xiao, Y.; Xiao, Z.; Liu, T.; Li, J.; Li, P.; Han, F. Lysozymes in Fish. J. Agric. Food Chem. 2021, 69, 15039–15051. [Google Scholar] [CrossRef] [PubMed]
- Mabrok, M.A.E.; Wahdan, A. The immune modulatory effect of oregano (Origanum vulgare L.) essential oil on Tilapia zillii following intraperitoneal infection with Vibrio anguillarum. Aquacult. Int. 2018, 26, 1147–1160. [Google Scholar] [CrossRef]
- Pastorino, P.; Bergagna, S.; Vercelli, C.; Pagliasso, G.; Dellepiane, L.; Renzi, M.; Barbero, R.; Re, G.; Elia, A.C.; Dondo, A.; et al. Changes in Serum Blood Parameters in Farmed Rainbow Trout (Oncorhynchus mykiss) Fed with Diets Supplemented with Waste Derived from Supercritical Fluid Extraction of Sweet Basil (Ocimum basilicum). Fishes 2022, 7, 89. [Google Scholar] [CrossRef]
- Hoseini, S.M.; Taheri Mirghaed, A.; Iri, Y.; Hoseinifar, S.H.; van Doan, H.; Miriam Reverter, M. Effects of dietary Russian olive, Elaeagnus angustifolia, leaf extract on growth, hematological, immunological, and antioxidant parameters in common carp, Cyprinus carpio. Aquaculture 2021, 536, 736461. [Google Scholar] [CrossRef]
- Al-Asgah, N.A.; Abdel-Warith, A.W.; Younis, E.-S.M.; Allam, H.Y. Haematological and biochemical parameters and tissue accumulations of cadmium in Oreochromis niloticus exposed to various concentrations of cadmium chloride. Saudi J. Biol. Sci. 2015, 22, 543–550. [Google Scholar] [CrossRef] [Green Version]
- Alagawany, M.; Farag, M.R.; Salah, A.S.; Mahmoud, M.A. The role of oregano herb and its derivatives as immunomodulators in fish. Rev. Aquac. 2020, 12, 2481–2492. [Google Scholar] [CrossRef]
- Sánchez-Camargo, A.D.P.; Herrero, M. Rosemary (Rosmarinus officinalis) as a functional ingredient: Recent scientific evidence. Curr. Opin. Food Sci. 2017, 14, 13–19. [Google Scholar] [CrossRef]
- Yousefi, M.; Hoseini, S.M.; Vatnikov, Y.A.; Kulikov, E.V.; Drukovsky, S.G. Rosemary leaf powder improved growth performance, immune and antioxidant parameters, and crowding stress responses in common carp (Cyprinus carpio) fingerlings. Aquaculture 2019, 505, 473–480. [Google Scholar] [CrossRef]
- Takayama, C.; de-Faria, F.M.; de Almeida, A.C.A.; Dunder, R.J.; Manzo, L.P.; Socca, E.A.R.; Batista, L.M.; Salvador, M.J.; Souza-Brito, A.R.M.; Luiz-Ferreira, A. Chemical composition of Rosmarinus officinalis essential oil and antioxidant action against gastric damage induced by absolute ethanol in the rat. Asian Pac. J. Trop. Biomed. 2016, 6, 677–681. [Google Scholar] [CrossRef] [Green Version]
- D’Auria, M.; Racioppi, R. The Effect of Drying of the Composition of Volatile Organic Compounds in Rosmarinus officinalis, Laurus nobilis, Salvia officinalis and Thymus serpyllum. A HS-SPME-GC-MS Study. J. Essent. Oil-Bear 2015, 18, 1209–1223. [Google Scholar] [CrossRef]
- Ahmadifar, E.; Pourmohammadi Fallah, H.; Yousefi, M.; Dawood, M.A.O.; Hoseinifar, S.H.; Adineh, H.; Yilmaz, S.; Paolucci, M.; Doan, H.V. The Gene Regulatory Roles of Herbal Extracts on the Growth, Immune System, and Reproduction of Fish. Animals 2021, 11, 2167. [Google Scholar] [CrossRef] [PubMed]
- Barbieri, J.B.; Goltz, C.; Cavalheiro, F.B.; Toci, A.T.; Igarashi-Mafra, L.M.; Mafra, M.R. Deep eutectic solvents applied in the extraction and stabilization of rosemary (Rosmarinus officinalis L.) phenolic compounds. Ind. Crop. Prod. 2020, 144, 112049. [Google Scholar] [CrossRef]
- Dezfoulnejad, M.C.; Molayemraftar, T. Use of dietary rosemary (Rosmarinus officinalis L.) extract as a growth promotor and immunostimulant in common carp. Aquac. Res. 2022, 53, 1553–1562. [Google Scholar] [CrossRef]
- Hassan, A.A.M.; Yacout, M.H.; Khalel, M.S.; Hafsa, S.H.A.; Ibrahim, M.A.R.; Mocuta, D.N.; Turek Rahoveanu, A.; Dediu, L. Effects of some herbal plant supplements on growth performance and the immune response in Nile tilapia (Oreochromis niloticus). Life Agric. Conf. Proc. 2018, 1, 134–141. [Google Scholar] [CrossRef] [Green Version]
- Yilmaz, E.; Çoban, D.; Kirim, B.; Güler, M. Effects of Extracts of Feed Additives Including Rosemary (Rosmarinus officinalis) and Aloe Vera (Aloe barbadensis) on the Growth Performance and Feed Utility of Nile Tilapia (Oreochromis niloticus). Turk. J. Agric.-Food Sci. Technol. 2019, 7, 866–870. [Google Scholar] [CrossRef] [Green Version]
- Naiel, M.A.E.; Ismael, N.E.M.; Negm, S.S.; Ayyat, M.S.; Al-Sagheer, A.A. Rosemary leaf powder supplemented diet enhances performance, antioxidant properties, immune status, and resistance against bacterial diseases in Nile Tilapia (Oreochromis niloticus). Aquaculture 2020, 526, 735370. [Google Scholar] [CrossRef]
- Hernández, A.; García García, B.; Caballero, M.J.; Hernández, M.D. Preliminary insights into the incorporation of rosemary extract (Rosmarinus officinalis L.) in fish feed: Influence on performance and physiology of gilthead seabream (Sparus aurata). Fish Physiol. Biochem. 2015, 41, 1065–1074. [Google Scholar] [CrossRef]
- Hosseini, S.M.; Hoseinifar, S.H.; Mazandarani, M.; Paknejad, H.; Van Doan, H.; El-Haroun, E. The potential benefits of orange peels derived pectin on serum and skin mucus immune parameters, antioxidant defence and growth performance in common carp (Cyprinus carpio). Fish Shellfish Immunol. 2020, 103, 17–22. [Google Scholar] [CrossRef]
- Koga, K.; Shibata, H.; Yoshino, K.; Nomoto, K. Effects of 50% ethanol extract from rosemary (Rosmarinus officinalis) on α-glucosidase inhibitory activity and the elevation of plasma glucose level in rats, and its active compound. J. Food Sci. 2006, 71, 507–512. [Google Scholar] [CrossRef]
- Ebrahimi, E.; Haghjou, M.; Nematollahi, A.; Goudarzian, F. Effects of rosemary essential oil on growth performance and hematological parameters of young great sturgeon (Huso huso). Aquaculture 2020, 521, 734909. [Google Scholar] [CrossRef]
- Di Turi, L.; Ragni, M.; Caputi Jambrenghi, A.; Lastilla, M.; Vicenti, A.; Colonna, M.A.; Giannico, F.; Vonghia, G. Effect of dietary rosemary oil on growth performance and flesh quality of farmed seabass (Dicentrarchus labrax), Ital. J. Anim. Sci. 2009, 8, 857–859. [Google Scholar]
- Naiel, M.A.; Ismael, N.E.; Shehata, S.A. Ameliorative effect of diets supplemented with rosemary (Rosmarinus officinalis) on aflatoxin B1 toxicity in terms of the performance, liver histopathology, immunity and antioxidant activity of Nile Tilapia (Oreochromis niloticus). Aquaculture 2019, 511, 734264. [Google Scholar] [CrossRef]
- Turan, F.; Yiğitarslan, D. The Effects of Rosemary Extract (Rosemaria officinalis) as a Feed Additive on Growth and Whole-body Composition of the African Catfish (Clarias gariepinus (Burchell, 1822)). Nat. Eng. Sci. 2016, 1, 49–55. [Google Scholar] [CrossRef] [Green Version]
- Eftekhar, N.; Moghimi, A.; Boskabady, M.H. Prophylactic effect of rosmarinic acid on tracheal responsiveness, white blood cell count and oxidative stress markers in lung lavage of sensitized rats. Pharmacol. Rep. 2018, 70, 119–125. [Google Scholar] [CrossRef]
- Gabriel, N.N.; Qiang, J.; Ma, X.Y.; He, J.; Xu, P.; Liu, K. Dietary Aloe vera improves plasma lipid profile, antioxidant, and hepatoprotective enzyme activities in GIFT-tilapia (Oreochromis niloticus) after Streptococcus iniae challenge. Fish Physiol. Biochem. 2015, 41, 1321–1332. [Google Scholar] [CrossRef]
- Farkhondeh, T.; Samarghandian, S.; Pourbagher-Shahri, A.M. Hypolipidemic effects of Rosmarinus officinalis L. J. Cell. Physiol. 2019, 234, 14680–14688. [Google Scholar] [CrossRef]
- Zilberg, D.; Tal, A.; Froyman, N.; Abutbul, S.; Dudai, N.; Golan-Goldhirsh, A. Dried leaves of Rosmarinus officinalis as a treatment for streptococcosis in tilapia. J. Fish Dis. 2010, 33, 361–369. [Google Scholar] [CrossRef]
- Jiang, Y.; Wu, N.; Fu, Y.-J.; Wang, W.; Luo, M.; Zhao, C.-J.; Zu, Y.-G.; Liu, X.-L. Chemical composition and antimicrobial activity of the essential oil of rosemary. Environ. Toxicol. Pharmacol. 2011, 32, 63–68. [Google Scholar] [CrossRef]
- Rozman, T.; Jersek, B. Antimicrobial activity of rosemary extracts (Rosmarinus officinalis L.) against different species of listeria. Acta Agric. Slov. 2009, 93, 51. [Google Scholar] [CrossRef] [Green Version]
- Bruneton, J. Pharmacognosy, Phytochemistry, Medicinal Plants, 2nd ed.; Lavoisier Publishing: Paris, France, 1999; pp. 540–544. [Google Scholar]
- Cuvelier, M.E.; Berset, C.; Richard, H. Antioxidant constituents in sage (Salvia officinalis). J. Agric. Food Chem. 1994, 42, 665–669. [Google Scholar] [CrossRef]
- Salomón, R.; Firmino, J.P.; Reyes-López, F.E.; Andre, K.B.; González-Silvera, D.; Esteband, M.A.; Tort, L.; Quintela, J.C.; Pinilla-Rosas, J.M.; Vallejos-Vidal, E.; et al. The growth promoting and immunomodulatory effects of a medicinal plant leaf extract obtained from Salvia officinalis and Lippia citriodora in gilthead seabream (Sparus aurata). Aquaculture 2020, 524, 735291. [Google Scholar] [CrossRef]
- Dadras, H.; Hayatbakhsh, M.R.; Golpour, A. Dietary Administration of Common Sage (Salvia officinalis) and Coneflower (Echinacea angustifolia) Extracts Affects Growth, Blood Parameters and Immune Responses of Beluga, Huso huso. Turk. J. Fish. Aquat. Sci. 2020, 20, 367–374. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Navarro, M.; Peragón, J.; Esteban, F.J.; de la Higuera, M.; Lupiáñez, J.A. Maslinic acid as a feed additive to stimulate growth and hepatic proteinturnover rates in rainbow trout (Onchorhynchus mykiss). Comp. Biochem. Physiol. Toxicol. Pharmacol. 2006, 144, 130–140. [Google Scholar] [CrossRef]
- Abdellatief, A.N.; Rahman, A.; Abdallah, F.D.M. Evaluation of Immunostimulant Activity of Spirulina platensis (Arthrospira platensis) and Sage (Salvia officinalis) in Nile Tilapia (Oreochromis niloticus). Zagazig Vet. J. 2018, 46, 25–36. [Google Scholar] [CrossRef] [Green Version]
- Boruga, O.; Jianu, C.; Mişcă, C.; Goleţ, I.; Gruia, A.; Horhat, F. Thymus vulgaris essential oil: Chemical composition and antimicrobial activity. J. Med. Life 2014, 7, 56–60. [Google Scholar]
- Antih, J.; Houdkova, M.; Urbanova, K.; Kokoska, L. Antibacterial Activity of Thymus vulgaris L. Essential Oil Vapours and Their GC/MS Analysis Using Solid-Phase Microextraction and Syringe Headspace Sampling Techniques. Molecules 2021, 26, 6553. [Google Scholar] [CrossRef]
- Abdollahzadeh, E.; Rezaei, M.; Hosseini, H. Antibacterial activity of plant essential oils and extracts: The role of thyme essential oil, nisin, and their combination to control Listeria monocytogenes inoculated in minced fish meat. Food Control. 2014, 35, 177–183. [Google Scholar] [CrossRef]
- Hossain, M.A.; AL-Raqmi, K.A.S.; AL-Mijizy, Z.H.; Weli, A.M.; Al-Riyami, Q. Study of total phenol, flavonoids contents and phytochemical screening of various leaves crude extracts of locally grown Thymus vulgaris. Asian Pac. J. Trop. Biomed. 2013, 3, 705–710. [Google Scholar] [CrossRef]
- ALsafah, A.H.; AL-Faragi, J.K. Influence of thyme (Thymus vulgaris) as feed additives on growth performance and antifungal activity on Saprolegnia spp. in Cyprinus carpio L. J. Entomol. Zool. Stud. 2017, 5, 1598–1602. [Google Scholar]
- Yousefi, M.; Ghafarifarsani, H.; Hoseini, S.M.; Hoseinifar, S.H.; Abtahi, B.; Vatnikov, Y.A.; Kulikov, E.V.; Van Doan, H. Effects of dietary thyme essential oil and prebiotic administration on rainbow trout (Oncorhynchus mykiss) welfare and performance. Fish Shellfish Immunol. 2022, 120, 737–744. [Google Scholar] [CrossRef]
- Zargar, A.; Rahimi-Afzal, Z.; Soltani, E.; Taheri Mirghaed, A.; Ebrahimzadeh-Mousavi, H.A.; Soltani, M.; Yuosefi, P. Growth performance, immune response and disease resistance of rainbow trout (Oncorhynchus mykiss) fed Thymus vulgaris essential oils. Aquac. Res. 2019, 50, 3097–3106. [Google Scholar] [CrossRef]
- Ghafarifarsani, H.; Kachuei, R.; Imani, A. Dietary supplementation of garden thyme essential oil ameliorated the deteriorative effects of aflatoxin B1 on growth performance and intestinal inflammatory status of rainbow trout (Oncorhynchus mykiss). Aquaculture 2021, 531, 735928. [Google Scholar] [CrossRef]
- Valladão, G.M.R.; Gallani, S.U.; Kotzent, S.; Assane, I.M.; Pilarski, F. Effects of dietary thyme essential oil on hemato-immunological indices, intestinal morphology, and microbiota of Nile tilapia. Aquac. Int. 2019, 27, 399–411. [Google Scholar] [CrossRef]
- Dorojan, O.V.; Cristea, V.; Petrea, Ş.M. The influence of some phytobiotics (Thyme, Seabuckthorn) on growth performance of stellate sturgeon. Int. J. Recirc. Aquac. 2014, 47, 205–210. [Google Scholar]
- Dorojan, O.G.; Cristea, V.; Creţu, M.; Coadă, M.T.; Dediu, L.; Grecu, I. Effect of thyme (Thymus vulgaris) and vitamin E on growth performance and body composition of Acipenser stellatus juveniles. Aquac. Aquar. Conserv. Legis. 2015, 8, 195–202. [Google Scholar]
- Perez-Roses, R.; Risco, E.; Vila, R.; Penalver, P.; Canigueral, S. Biological and non- biological antioxidant activity of some essential oils. J. Agric. Food Chem. 2016, 64, 4716–4724. [Google Scholar] [CrossRef]
- Wei, H.K.; Xue, H.X.; Zhou, Z.X.; Peng, J. A carvacrol-thymol blend decreased intestinal oxidative stress and influenced selected microbes without changing the messenger RNA levels of tight junction proteins in jejunal mucosa of weaning piglets. Animal 2017, 11, 193–201. [Google Scholar] [CrossRef] [Green Version]
- Hashemipour, H.; Kermanshahi, H.; Golian, A.; Veldkamp, T. Effect of thymol and carvacrol feed supplementation on performance, antioxidant enzyme activities, fatty acid composition, digestive enzyme activities, and immune response in broiler chickens. Poult. Sci. 2013, 92, 2059–2069. [Google Scholar] [CrossRef]
- Li, S.; Ru, Y.; Liu, M.; Xu, B.; Peron, A.; Shi, X. The effect of essential oils on performance, immunity and gut microbial population in weaner pigs. Livest. Sci. 2012, 145, 119–123. [Google Scholar] [CrossRef]
- Gulec, A.; Azime, K.; Durali, D.; Mesut, U.; Engin, S.; Ali, A. Effect of mixed use of thyme and fennel oils on biochemical properties and electrolytes in rainbow trout as a response to Yersinia ruckeri infection. Acta Vet. Brno 2013, 82, 297–302. [Google Scholar] [CrossRef] [Green Version]
- Gültepe, N.; Bilen, S.; Yılmaz, S.; Güroy, D.; Aydın, S. Effects of herbs and spice on health status of tilapia (Oreochromis mossambicus) challenged with Streptococcus iniae. Acta Vet. Brno 2014, 83, 125–131. [Google Scholar] [CrossRef]
- Ashfaq, H.; Soliman, H.; Saleh, M.; El-Matbouli, M. CD4: A vital player in the teleost fish immune system. Vet. Res. 2019, 7, 1. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.R.; Shushni, M.A.M.; Belkheir, A. Antibacterial and antioxidant activities of Mentha piperita L. Arab. J. Chem. 2015, 8, 322–328. [Google Scholar] [CrossRef] [Green Version]
- Brahmi, F.; Khodir, M.; Mohamed, C.; Pierre, D. Chemical composition and biological activities of Mentha species. In Aromatic and Medicinal Plants—Back to Nature, 1st ed.; El-Shemy, H.A., Ed.; InTechOpen: London, UK, 2017; pp. 47–79. [Google Scholar]
- de Souza Silva, L.T.; de Pádua Pereira, U.; de Oliveira, H.M.; Brasil, E.M.; Pereira, S.A.; Chagas, E.C.; Jesus, G.F.A.; Cardoso, L.; Mouriño, J.L.P.; Martins, M.L. Hemato- immunological and zootechnical parameters of Nile tilapia fed essential oil of Mentha piperita after challenge with Streptococcus agalactiae. Aquaculture 2019, 506, 205–211. [Google Scholar] [CrossRef]
- Balakrishnan, A. Therapeutic uses of peppermint—A review. J. Pharm. Sci. 2015, 7, 474–476. [Google Scholar]
- McKay, D.L.; Blumberg, J.B. A review of the bioactivity and potential health benefits of peppermint tea (Mentha piperita L.). Phytother. Res. 2006, 20, 619–633. [Google Scholar] [CrossRef]
- Talpur, A.D. Mentha piperita (Peppermint) as feed additive enhanced growth performance, survival, immune response and disease resistance of Asian seabass, Lates calcarifer (Bloch) against Vibrio harveyi infection. Aquaculture 2014, 420–421, 71–78. [Google Scholar] [CrossRef]
- Dawood, M.A.; Metwally, A.E.-S.; Elkomy, A.H.; Gewaily, M.S.; Abdo, S.E.; Abdel-Razek, M.A.; Soliman, A.A.; Amer, A.A.; Abdel-Razik, N.I.; Abdel-Latif, H.M. The impact of menthol essential oil against inflammation, immunosuppression, and histopathological alterations induced by chlorpyrifos in Nile tilapia. Fish Shellfish Immunol. 2020, 102, 316–325. [Google Scholar] [CrossRef]
- Adel, M.; Safari, R.; Pourgholam, R.; Zorriehzahra, J.; Esteban, M.Á. Dietary peppermint (Mentha piperita) extracts promote growth performance and increase the main humoral immune parameters (both at mucosal and systemic level) of Caspian brown trout (Salmo trutta caspius Kessler, 1877). Fish Shellfish Immunol. 2015, 47, 623–629. [Google Scholar] [CrossRef]
- Adel, M.; Abedian Amiri, A.; Zorriehzahra, J.; Nematolahi, A.; Esteban, M.Á. Effects of dietary peppermint (Mentha piperita) on growth performance, chemical body composition and hematological and immune parameters of fry Caspian white fish (Rutilus frisii kutum). Fish Shellfish Immunol. 2015, 45, 841–847. [Google Scholar] [CrossRef] [PubMed]
- Valladão, G.M.R.; Gallani, S.U.; Pala, G.; Jesus, R.B.; Kotzent, S.; Costa, J.C.; Silva, T.F.A.; Pilarski, F. Practical diets with essential oils of plants activate the complement system and alter the intestinal morphology of Nile tilapia. Aquac. Res. 2017, 48, 5640–5649. [Google Scholar] [CrossRef]
- Harikrishnan, R.; Balasundaram, C.; Heo, M.-S. Impact of plant products on innate and adaptive immune system of cultured finfish and shellfish. Aquaculture 2011, 317, 1–15. [Google Scholar] [CrossRef]
- Hoseini, S.M.; Yousefi, M.; Hoseinifar, S.H.; Van Doan, H. Antioxidant, enzymatic and hematological responses of common carp (Cyprinus carpio) fed with myrcene- or menthol-supplemented diets and exposed to ambient ammonia. Aquaculture 2019, 506, 246–255. [Google Scholar] [CrossRef]
- Adel, M.; Pourgholam, R.; Zorriehzahra, J.; Ghiasi, M. Hemato—Immunological and biochemical parameters, skin antibacterial activity, and survival in rainbow trout (Oncorhynchus mykiss) following the diet supplemented with Mentha piperita against Yersinia ruckeri. Fish Shellfish Immunol. 2016, 55, 267–273. [Google Scholar] [CrossRef]
- Heydari, M.; Firouzbakhsh, F.; Paknejad, H. Effects of Mentha longifolia extract on some blood and immune parameters, and disease resistance against yersiniosis in rainbow trout. Aquaculture 2020, 515, 734586. [Google Scholar] [CrossRef]
- Mohamad, S.; Abasali, H. Effect of plant extracts supplemented diets on immunity and resistance to aeromonas hydrophila in common carp (Cyprinus carpio). Res. J. Anim. Sci. 2010, 4, 26–34. [Google Scholar]
- Serradell, A.; Torrecillas, S.; Makol, A.; Valdenegro, V.; Fernández-Montero, A.; Acosta, F.; Izquierdo, M.; Montero, D. Prebiotics and phytogenics functional additives in low fish meal and fish oil based diets for European sea bass (Dicentrarchus labrax): Effects on stress and immune responses. Fish Shellfish Immunol. 2020, 100, 219–229. [Google Scholar] [CrossRef]
- Hrubec, T.C.; Smith, S.A. Hematology of fishes. In Schalm’s Veterinary Hematology, 6th ed.; Weiss, D.J., Wardrop, J., Schalm, O.W., Eds.; Wiley-Blackwell: Ames, Iowa, 2010; pp. 994–1003. [Google Scholar]
- Sharifzadeh, S.A.; Khara, H.; Ghobadi, S. Effects of vitamins E and riboflavin (B2) and combinations of them on the hematological parameters of common carp, Cyprinus carpio L., fingerlings. Arch. Pol. Fish 2015, 23, 107–111. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, W.A.M.; Abd-Elhakim, Y.M.; Farouk, S.M. Protective effects of ethanolic extract of rosemary against lead-induced hepato-renal damage in rabbits. Exp. Toxicol. Pathol. 2016, 68, 451–461. [Google Scholar] [CrossRef]
- Glisic, S.B.; Ristic, M.; Skala, D.U. The combined extraction of sage (Salvia officinalis L.): Ultrasound followed by supercritical CO2 extraction. Ultrason. Sonochem. 2011, 18, 318–326. [Google Scholar] [CrossRef] [PubMed]
- Al Hashmi, L.S.; Hossain, M.A.; Weli, A.M.; Al-Riyami, Q.; AlSabahi, J.N. Gas chromatography–mass spectrometry analysis of different organic crude extracts from the local medicinal plant of Thymus vulgaris L. Asian Pac. J. Trop. Biomed. 2013, 3, 69–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buleandra, M.; Oprea, E.; Popa, D.E.; David, I.G.; Moldovan, Z.; Mihai, I.; Badea, I.A. Comparative Chemical Analysis of Mentha piperita and M. spicata and a Fast Assessment of Commercial Peppermint Teas. Nat. Prod. Commun. 2016, 11, 551–555. [Google Scholar] [PubMed]
- Riachi, L.G.; De Maria, C.A.B. Peppermint antioxidants revisited. Food Chem. 2015, 176, 72–81. [Google Scholar] [CrossRef] [PubMed]
Feeding | Fish | Effects | Ref. | ||||
---|---|---|---|---|---|---|---|
Form | Inclusion Doses (% in Feed) | Period (Days) | Species | Vital Stage | Stress/Toxicant/Pathogen Challenge | ||
R. officinalis leaf powder | 1, 2, 3 | 65 | Cyprinus carpio | Juvenile | ↑ WG, SGR and PER ↑ RBC, WBC, Hct and Hb ↑ LYS and complement activities ↑ Total Ig and protein levels ↑ SOD and CAT activities | [72] | |
R. officinalis hydroalcoholic extract | 0.25, 0.5, 1 | 65 | Cyprinus carpio | Juvenile | ↑ WG and SGR ↑ LYS and complement activites, phagocytic activity, and phagocytic index ↑ RBC, WBC, Hct and Hb ↓ Cholesterol and tryglicerides serum levels | [77] | |
R. officinalis leaf powder | 1 | 140 | Oreochromis niloticus | Fingerling | ↑ WG, SGR and PER ↑ Hct and leukocrit levels | [78] | |
R. officinalis commercial leaf extract | 0.1, 0.25, 0.5 | 90 | Oreochromis niloticus | Juvenile | NS on growth | [79] | |
R. officinalis leaf powder | 0.25, 0.5, 1 | 60 | Oreochromis niloticus | Fingerling | Aeromonas Hydrophila | ↑ WG, SGR and FCR ↑ Total serum protein ↑ LYS and complement activities ↑ Total Ig levels ↑ CAT activity | [80] |
R. officinalis commercial extract | 0.06, 0.12, 0.18, 0.24 | 84 | Sparus aurata | NS on growth ↓ Total serum protein | [81] |
Feeding | Fish | Effects | Ref. | ||||
---|---|---|---|---|---|---|---|
Form | Inclusion Doses (% in Feed) | Period (Days) | Species | Vital Stage | Stress/Toxicant/Pathogen Challenge | ||
S. officinalis ethanolic extract | 3, 6, 12 | 42 | Huso huso | Juvenile | ↑ FW, BWI and FCR ↑ RBC, WBC, Hct and Hb ↑ LYS and complement activities ↑ Total Ig levels ↓ Serum ALT and AST levels | [97] | |
S. officinalis and Arthrospira platensis leaf | 0.00075, 0.001 | 28 | Oreochromis niloticus | Juvenile | Pseudomonas aeruginosa | ↑ LYS and nitric oxide activites, IgM levels ↑ TNFα and IL-1β | [99] |
S. officinalis essential oil | 0.05, 0.1, 0.15 | 60 | Oncorynchus mykiss | Juvenile | ↑ WG, SGR and FCR ↑ SOD, G6PD and GPx activities | [30] | |
S. officinalis ethanolic extract | 0.5, 1, 1.5 | 30 | Oncorynchus mykiss | Juvenile | Streptococcus. iniae | ↑ Total Ig levels | [5] |
S. officinalis and Lippia citriodora ethanolic extract | 0.1 | 92 | Sparus aurata | Fingerling | LPS | ↑ SGR and FCR ↑ Total serum protein NS on bacteriolytic and complement activities ↑ LYS, IgM, TNFα, IL-1β, TGFβ and IL-10 ↑ SOD and CAT activities | [96] |
Feeding | Fish | Effects | Ref. | ||||
---|---|---|---|---|---|---|---|
Form | Inclusion Doses (% in Feed) | Period (Days) | Species | Vital Stage | Stress/Toxicant/Pathogen Challenge | ||
T. vulgaris leaf | 0.5, 1, 1.5, 2 | 56 | Cyprinus carpio | Fingerling | Saprolegnia spp. | ↑ WG, SGR and PER ↑ RBC, WBC, Hct and Hb ↑ Total serum protein levels | [104] |
T. vulgaris essential oil | 0.05, 0.1, 0.15 | 60 | Oncorynchus mykiss | Juvenile | ↑ WG, SGR and FCR ↑ SOD, CAT, G6PD and GPx activities | [30] | |
T. vulgaris essential oil | 0.05, 0.1, 0.2 | 60 | Oncorynchus mykiss | Juvenile | Aeromonas Hydrophila | ↑ WG and SGR ↑ LYS and complement activities | [106] |
T. vulgaris essential oil | 1 | 30 | Oncorynchus mykiss | Juvenile | Aflatoxin B1 | ↑ FW, WG, FCR and SGR ↑ LYS and complement activities ↑ Total serum protein levels ↓ TNFα, TGFβ and IL-8 ↑ IL-1β | [107] |
T. vulgaris essential oil | 1, 2 | 60 | Oncorynchus mykiss | Juvenile | ↑ FW, WG and SGR ↑ WBC and Hb ↓ ALT, ALP and AST ↑ LYS and complement and total Ig levels ↑ SOD, CAT, GR, and GPx activities | [105] | |
T. vulgaris leaf | 1 | 140 | Oreochromis niloticus | Fingerling | ↑ WG, SGR and PER | [78] | |
T. vulgaris essential oil | 0.1, 0.5, 1 | 15 | Oreochromis niloticus | Juvenile | ↑ WBC NS on ALT and AST levels | [108] |
Feeding | Fish | Effects | Ref. | ||||
---|---|---|---|---|---|---|---|
Form | Inclusion Doses (% in Feed) | Period (Days) | Species | Vital Stage | Stress/Toxicant/Pathogen Challenge | ||
M. piperita essential oil | 0.01, 0.025 | 60 | Lates calcarifer | Fingerling | Vibrio harveyi | ↑ WG and FCR ↑ RBC, WBC, Hct and Hb ↑ Phagocytic activity, respiratory burst, LYS, anti-protease and bactericidal activities ↑ Total serum protein and globulin levels | [123] |
M. piperita essential oil | 0.075, 0.125, 0.25 | 50 | Oreochromis niloticus | Fingerling | ↑ Complement activity ↑ SOD, CAT, G6PD and GPx activities NS on ALT and AST levels NS on RBC, WBC, Hct and Hb NS on total protein levels | [127] | |
M. piperita essential oil | 0.25 | 30 | Oreochromis niloticus | Fingerling | Streptococcus agalactiae | ↑ Total serum protein levels NS on growth parameters NS on LYS activity | [120] |
M. piperita hydroalcoholic extract | 1, 2, 3 | 56 | Oreochromis niloticus | Juvenile | Chlorpyrifos | ↑ FW, WG and SGR ↑ RBC, WBC, Hct and Hb ↓ ALT, ALP and AST | [124] |
M. piperita hydroalcoholic extract | 1, 2, 3 | 56 | Oncorynchus mykiss | Juvenile | Yersinia ruckeri | ↑ LYS activiys and total Ig levels ↑ Total serum protein and albumin levels NS on ALT, ALP and AST levels ↑ SOD, CAT, GR, and GPx activities | [130] |
M. piperita hydroalcoholic extract | 1, 2, 3 | 56 | Rutilus frisii kutum | Juvenile | ↑ WG and SGR ↑ LYS and respiratory burst activities ↑ RBC, WBC, Hct and Hb | [126] | |
M. piperita hydroalcoholic extract | 1, 2, 3 | 56 | Salmo trutta caspius | Juvenile | ↑ WG, SGR and FCR ↑ LYS and alkaline phosphatase activities ↑ RBC, WBC, Hct and Hb ↑ Total serum protein levels NS on ALT, ALP and AST levels | [125] |
Lamiaceae | Form | Main Bioactive Components | Method of Analysis | Ref. |
---|---|---|---|---|
Oregano | Essential oil | Carvacrol (63%), ρ-Cymene (12.8%), γ-Terpinene (8.4%), Thymol (4.7%) | H-R GC | [40] |
Hydroalcoholic extract | Carvacrol (59.4%), Thymol (25%), ρ-Cymene (6.9%), 1-Octacosanol (4%) | GC/MS | [62] | |
Dry leaves | Carvacrol (63%), ρ-Cymene (12.8%), γ-Terpinene (8.4%), Thymol (4.7%) | H-R GC | [54] | |
Rosemary | Hydroalcoholic extract | Camphor (4.8%), Phytol (3.28%), Borneol (3.27%), Caryophillene (3.20%) | GC-MS | [136] |
Dry leaves | α-Pinene (21.65%), β-Pinene (12.58%), Camphene (12.54%), Limonene (7.22%), Camphor (5.29%) | HS-SPME-GC-MS | [74] | |
Sage | Essential oil | α-Thujone (10–60%), β-Thujone (4–36%), Camphor (5–20%), 1.8 –Cineole (2–15%) | H-R GC | [29] |
Hydroalcoholic extract | Manool (7%), β-Thujone (6.2%), Carnosol (2.4%), Camphor (4.8%) | GC/MS | [137] | |
Dry leaves | β-Thujone (27%), 1.8 –Cineole (19.55%), β-Pinene (11.36%), Camphor (8.62%) | HS-SPME-GC-MS | [74] | |
Thyme | Essential oil | Thymol (37–55%), ρ-Cymene (14–28%), γ-Terpinene (4–12%), Carvacrol (0.5–5.5%) | H-R GC | [105] |
Hydroalcoholic extract | Thymol (42.6%) | GC/MS | [138] | |
Dry leaves | ρ-Cymene (30.35%), γ-Terpinene (11.85%) | HS-SPME-GC/MS | [74] | |
Mint | Essential oil | Menthol (33.8%), Menthone (15.2%), Methyl acetate (13%), Pulegone (8.3%) | H-R GC | [120] |
Hydroalcoholic extract | Menthone (25.4%), 1,8-cineole (17.7%), Menthol (12.1%) | GC/MS | [139] | |
Dry leaves | Menthol (35–60%), Menthone (2–44%), Methyl acetate (0.7–23%), 1.8—Cineole (1-13%), Menthofuran (0.3–14%) | GC/MS | [140] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orso, G.; Imperatore, R.; Coccia, E.; Ashouri, G.; Paolucci, M. Lamiaceae as Feed Additives in Fish Aquaculture. Fishes 2022, 7, 349. https://doi.org/10.3390/fishes7060349
Orso G, Imperatore R, Coccia E, Ashouri G, Paolucci M. Lamiaceae as Feed Additives in Fish Aquaculture. Fishes. 2022; 7(6):349. https://doi.org/10.3390/fishes7060349
Chicago/Turabian StyleOrso, Graziella, Roberta Imperatore, Elena Coccia, Ghasem Ashouri, and Marina Paolucci. 2022. "Lamiaceae as Feed Additives in Fish Aquaculture" Fishes 7, no. 6: 349. https://doi.org/10.3390/fishes7060349
APA StyleOrso, G., Imperatore, R., Coccia, E., Ashouri, G., & Paolucci, M. (2022). Lamiaceae as Feed Additives in Fish Aquaculture. Fishes, 7(6), 349. https://doi.org/10.3390/fishes7060349