Production of Marine Shrimp Integrated with Tilapia at High Densities and in a Biofloc System: Choosing the Best Spatial Configuration
Abstract
:1. Introduction
2. Materials & Methods
2.1. Study Location and Origin of the Animals
2.2. Experimental Design
2.3. Recirculation System
2.4. Feed Management
2.5. Shrimp and Fish Performance
- System productivity (Kg m−3): (Fsb + Ffb) − (Isb + Ifb)/Total useful volume (m3), where: Fsb is final shrimp biomass; Ffb is final fish biomass; Isb is initial shrimp biomass; Ifb is initial fish biomass; The total volume considered in the IMTA DT treatment was 0.44 m3 and the total volume considered in the IMTA ST treatment was 0.22 m3;
- Feed conversion rate (FCR) = (Fos+Fof)/(Fsb + Ffb) − (Isb − Ifb), where: Fos = feed offered to the shrimp; Fof = Feed offered to the fish
- Total final biomass (g): Σ final biomass of shrimps and biomass of the fish.
2.6. Water Quality
2.7. Statistical Analysis
3. Results
3.1. Water Quality
3.2. Shrimp and Tilapia Performances
4. Discussion
4.1. Water Quality
4.2. Shrimp and Tilapia Performances
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- FAO. The State of World Fisheries and Aquaculture 2022. Towards Blue Transformation; FAO: Rome, Italy, 2022; ISBN 978-92-5-136364-5. [Google Scholar]
- Wasielesky, W.; Atwood, H.; Stokes, A.; Browdy, C.L. Effect of Natural Production in a Zero Exchange Suspended Microbial Floc Based Super-Intensive Culture System for White Shrimp Litopenaeus Vannamei. Aquaculture 2006, 258, 396–403. [Google Scholar] [CrossRef]
- Ebeling, J.M.; Timmons, M.B.; Bisogni, J.J. Engineering Analysis of the Stoichiometry of Photoautotrophic, Autotrophic, and Heterotrophic Removal of Ammonia-Nitrogen in Aquaculture Systems. Aquaculture 2006, 257, 346–358. [Google Scholar] [CrossRef] [Green Version]
- Lara, G.; Honda, M.; Poersch, L.; Wasielesky, W. The Use of Biofilm and Different Feeding Rates in Biofloc Culture System: The Effects in Shrimp Growth Parameters. Aquac. Int. 2017, 25, 1959–1970. [Google Scholar] [CrossRef]
- Avnimelech, Y. Carbon r Nitrogen Ratio as a Control Element in Aquaculture Systems. Aquaculture 1999, 176, 227–235. [Google Scholar] [CrossRef]
- Samocha, T.M.; Prangnell, D.I. Water Quality Management; Samocha, T.M., Ed.; Elsevier: London, UK, 2019; ISBN 9780128180402. [Google Scholar]
- Gaona, C.A.P.; Poersch, L.H.; Krummenauer, D.; Foes, G.K.; Wasielesky, W.J. The Effect of Solids Removal on Water Quality, Growth and Survival of Litopenaeus Vannamei in a Biofloc Technology Culture System. Int. J. Recirc. Aquac. 2011, 12, 54–73. [Google Scholar] [CrossRef]
- Hargreaves, J.A. Biofloc Production Systems for Aquaculture; Southern Regional Aquaculture Center: Stoneville, MS, USA, 2013; pp. 1–12. [Google Scholar]
- Mendez, C.A.; Morales, M.C.; Merino, G.E. Settling Velocity Distribution of Bioflocules Generated with Different Carbon Sources during the Rearing of the River Shrimp Cryphiops Caementarius with Biofloc Technology. Aquac. Eng. 2021, 93. [Google Scholar] [CrossRef]
- Schveitzer, R.; Fonseca, G.; Orteney, N.; Menezes, F.C.T.; Thompson, F.L.; Thompson, C.C.; Gregoracci, G.B. The Role of Sedimentation in the Structuring of Microbial Communities in Biofloc-Dominated Aquaculture Tanks. Aquaculture 2020, 514, 734493. [Google Scholar] [CrossRef]
- Copetti, F.; Gregoracci, G.B.; Vadstein, O.; Schveitzer, R. Management of Biofloc Concentrations as an Ecological Strategy for Microbial Control in Intensive Shrimp Culture. Aquaculture 2021, 543, 736969. [Google Scholar] [CrossRef]
- Chopin, T.; Cooper, J.A.; Reid, G.; Cross, S.; Moore, C. Open-Water Integrated Multi-Trophic Aquaculture: Environmental Biomitigation and Economic Diversification of Fed Aquaculture by Extractive Aquaculture. Rev. Aquac. 2012, 4, 209–220. [Google Scholar] [CrossRef]
- Troell, M.; Joyce, A.; Chopin, T.; Neori, A.; Buschmann, A.H.; Fang, J.G. Ecological Engineering in Aquaculture—Potential for Integrated Multi-Trophic Aquaculture (IMTA) in Marine Offshore Systems. Aquaculture 2009, 297, 1–9. [Google Scholar] [CrossRef]
- Azim, M.E.; Little, D.C. The Biofloc Technology (BFT) in Indoor Tanks: Water Quality, Biofloc Composition, and Growth and Welfare of Nile Tilapia (Oreochromis Niloticus). Aquaculture 2008, 283, 29–35. [Google Scholar] [CrossRef]
- Ekasari, J.; Zairin, M.; Putri, D.U.; Sari, N.P.; Surawidjaja, E.H.; Bossier, P. Biofloc-Based Reproductive Performance of Nile Tilapia Oreochromis Niloticus L. Broodstock. Aquac. Res. 2015, 46, 509–512. [Google Scholar] [CrossRef]
- Hernández-Barraza, C.; Cantú, D.L.; Osti, J.L.; Fitzsimmons, K.; Nelson, S. Productivity of Polycultured Nile Tilapia (Oreochromis Niloticus) and Pacific White Shrimp (Litopenaeus Vannamei) in a Recirculating System. Isr. J. Aquac.—Bamidgeh 2013, 65, 5. [Google Scholar]
- Muangkeow, B.; Ikejima, K.; Powtongsook, S.; Gallardo, W. Growth and Nutrient Conversion of White Shrimp Litopenaeus Vannamei (Boone) and Nile Tilapia Oreochromis Niloticus L. in an Integrated Closed Recirculating System. Aquac. Res. 2011, 42, 1246–1260. [Google Scholar] [CrossRef]
- Poli, M.A.; Legarda, E.C.; de Lorenzo, M.A.; Pinheiro, I.; Martins, M.A.; Seiffert, W.Q.; do Nascimento Vieira, F. Integrated Multitrophic Aquaculture Applied to Shrimp Rearing in a Biofloc System. Aquaculture 2019, 511, 1–6. [Google Scholar] [CrossRef]
- Krummenauer, D.; Samocha, T.; Poersch, L.; Lara, G.; Wasielesky, W. The Reuse of Water on the Culture of Pacific White Shrimp, Litopenaeus Vannamei, in BFT System. J. World Aquac. Soc. 2014, 45, 3–14. [Google Scholar] [CrossRef]
- Roselet, F.; Maicá, P.; Martins, T.; Abreu, P.C. Comparison of Open-Air and Semi-Enclosed Cultivation System for Massive Microalgae Production in Sub-Tropical and Temperate Latitudes. Biomass Bioenergy 2013, 59, 418–424. [Google Scholar] [CrossRef]
- Jory, D.E.; Cabrera, T.R.; Dugger, D.M.; Fegan, D.; Lee, P.G.; Lawrence, L.; Jackson, C.J.; Mcintosh, R.P.; Castañeda, J.; International, B.; et al. A Global Review of Shrimp Feed Management: Status and Perspectives. Aquaculture 2001, 2001, 104–152. [Google Scholar]
- Strickland, J.D.H.; Parsons, T.R. A Practical Handbook of Seawater Analysis, 2nd ed.; Fisheries Research Board of Canada: Ottawwa, Canada, 1972. [Google Scholar]
- UNESCO. Chemical Methods for Use in Marine Environmental Monitoring; Intergovernmental Oceanographic Commission, Ed.; UNESCO: Paris, France, 1983. [Google Scholar]
- Furtado, P.S.; Poersch, L.H.; Wasielesky, W. The Effect of Different Alkalinity Levels on Litopenaeus Vannamei Reared with Biofloc Technology (BFT). Aquac. Int. 2014, 23, 345–358. [Google Scholar] [CrossRef]
- Zar, J.H. Biostatistical Analysis, 5th ed.; Zar, J.H., Ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2010; ISBN 0131008463, 9780131008465. [Google Scholar]
- Xu, J.; Liu, Y.; Cui, S.; Miao, X. Behavioral Responses of Tilapia (Oreochromis Niloticus) to Acute Fluctuations in Dissolved Oxygen Levels as Monitored by Computer Vision. Aquac. Eng. 2006, 35, 207–217. [Google Scholar] [CrossRef]
- da Silveira, L.; Krummenauer, D.; Poersch, L.H.; Fóes, G.K.; Rosas, V.T.; Wasielesky, W. The Effect of Partial Harvest on Production and Growth Performance of Litopenaeus Vannamei Reared in Biofloc Technologic System. Aquaculture 2022, 546. [Google Scholar] [CrossRef]
- Mcginty, A.S.; Rakocy, J.E. Cage Culture Of Tilapia; Outhern Regional Aquaculture Center: Stoneville, MS, USA, 2003. [Google Scholar]
- Atwood, H.L.; Fontenot, Q.C.; Tomasso, J.R.; Isely, J.J. Toxicity of Nitrite to Nile Tilapia: Effect of Fish Size and Environmental Chloride. N. Am. J. Aquac. 2001, 63, 49–51. [Google Scholar] [CrossRef]
- El-Shafai, S.A.; El-Gohary, F.A.; Nasr, F.A.; Van Der Steen, N.P.; Gijzen, H.J. Chronic Ammonia Toxicity to Duckweed-Fed Tilapia (Oreochromis Niloticus). Aquaculture 2004, 232, 117–127. [Google Scholar] [CrossRef]
- Han, S.; Wang, B.; Wang, M.; Liu, Q.; Zhao, W.; Wang, L. Effects of Ammonia and Nitrite Accumulation on the Survival and Growth Performance of White Shrimp Litopenaeus Vannamei. ISJ 2017, 14, 221–232. [Google Scholar]
- Lin, Y.C.; Chen, J.C. Acute Toxicity of Nitrite on Litopenaeus Vannamei (Boone) Juveniles at Different Salinity Levels. Aquaculture 2003, 224, 193–201. [Google Scholar] [CrossRef]
- Lin, Y.C.; Chen, J.C. Acute Toxicity of Ammonia on Litopenaeus Vannamei Boone Juveniles at Different Salinity Levels. J. Exp. Mar. Biol. Ecol. 2001, 259, 109–119. [Google Scholar] [CrossRef]
- Gaona, C.A.P.; de Almeida, M.S.; Viau, V.; Poersch, L.H.; Wasielesky, W. Effect of Different Total Suspended Solids Levels on a Litopenaeus Vannamei (Boone, 1931) BFT Culture System during Biofloc Formation. Aquac. Res. 2017, 48, 1070–1079. [Google Scholar] [CrossRef]
- Henry-Silva, G.G.; Camargo, A.F.M. Efficiency of Aquatic Macrophytes to Treat Nile Tilapia Pond Effluents. Sci. Agric. 2006, 63, 433–438. [Google Scholar] [CrossRef] [Green Version]
- da Silveira, L.; Krummenauer, D.; Poersch, L.H.; Rosas, V.T.; Wasielesky, W. Hyperintensive Stocking Densities for Litopenaeus Vannamei Grow-out in Biofloc Technology Culture System. J. World Aquac. Soc. 2020, 51, 1290–1300. [Google Scholar] [CrossRef]
- Poli, M.A.; Legarda, E.C.; de Lorenzo, M.A.; Martins, M.A.; do Nascimento Vieira, F. Pacific White Shrimp and Nile Tilapia Integrated in a Biofloc System under Different Fish-Stocking Densities. Aquaculture 2019, 498, 83–89. [Google Scholar] [CrossRef]
- Del Monroy-Dosta, M.C.; de Lara, R.A.; Castro-Mejía, J.; Castro-Mejía, G.; Coelho-Emerenciano, M.G. Composición y Abundancia de Comunidades Microbianas Asociados Al Biofloc En Un Cultivo de Tilapia. Rev. Biol. Mar. Oceanogr. 2013, 48, 511–520. [Google Scholar] [CrossRef] [Green Version]
- Ekasari, J.; Angela, D.; Waluyo, S.H.; Bachtiar, T.; Surawidjaja, E.H.; Bossier, P.; De Schryver, P. The Size of Biofloc Determines the Nutritional Composition and the Nitrogen Recovery by Aquaculture Animals. Aquaculture 2014, 426–427, 105–111. [Google Scholar] [CrossRef]
- Bossier, P.; Ekasari, J. Biofloc Technology Application in Aquaculture to Support Sustainable Development Goals. Microb. Biotechnol. 2017, 10, 1012–1016. [Google Scholar] [CrossRef] [PubMed]
MONO | IMTA DT | IMTA ST | |
---|---|---|---|
Temperature °C | 29 ± 2 | 29 ± 2 | 28 ± 2 |
(25.7–31.2) | (25.7–31.3) | (25–31.1) | |
DO (mg L−1) | 6 ± 0 | 7 ± 0 | 6 ± 0 |
(5.2–7.3) | (5.5–7.3) | (5.2–7.3) | |
pH | 8 ± 0 | 8 ± 0 | 8 ± 0 |
(7.5–8.0) | (7.7–8.2) | (7.5–8.1) | |
Alkalinity (mg CaCO3 L−1) | 125 ± 45 ab | 150 ± 49 a | 115 ± 43 b |
(70–255) | (60–270) | (50–250) | |
TSS (mg L −1) | 294 ± 146 a | 211 ± 79 b | 247 ± 106 ab |
(115–540) | (95–340) | (140–455) | |
Turbity (NTU) | 127 ± 70 | 110 ± 57 | 101 ± 50 |
(44–244) | (29–188) | (34–217) | |
TAN (mg L −1) | 0.2 ± 0.3 | 0.1 ± 0.2 | 0.3 ± 0.8 |
(0–1.0) | (0–0.84) | (0–3.57) | |
NO2-N (mg L−1) | 0.9 ± 0.5 | 1.2 ± 0.7 | 1.5 ± 1.6 |
(0.21–1.89) | (0.24–2.73) | (0.15–5.25) | |
NO3-N (mg L−1) | 31.3 ± 27.6 | 32.3 ± 33.9 | 31.5 ± 29.7 |
(6–66) | (6–66) | (6–75) | |
PO43 (mg L−1) | 2.2 ± 2.1 | 2 ± 1.9 | 2.1 ± 2.1 |
(0.2–4.2) | (0.2–4.2) | (0.2–4.6) |
MONO | IMTA DT | IMTA ST | |
---|---|---|---|
Shrimp | |||
Survival (%) | 98 ± 2 a | 96 ± 7 a | 79 ± 16 b |
Final mean weight (g) | 8.1 ± 0.5 a | 8.0 ± 0.3 a | 5.1 ± 0.8 b |
FCR | 1.4 ± 0.1 a | 1.4 ± 0.1 a | 3.1 ± 1.3 b |
WWG (g week −1) | 1.3 ± 0.1 a | 1.3 ± 0.1 a | 0.6 ± 0.2 b |
Final biomass (g) | 356 ± 23 a | 353 ± 15 a | 226 ± 38 b |
Yield (kg m−3) | 1.1 ± 0.2 a | 1.1 ± 0.0 a | 0.5 ± 0.2 b |
Tilapia | |||
Survival (%) | - | 92 ± 7 | 88 ± 0 |
Final mean weight (g) | - | 15.2 ± 1.2 b | 27.2 ± 2.4 a |
FCR | - | 0.6 ± 0.0 b | 0.3 ± 0.0 a |
WWG (g week −1) | - | 2.1 ± 0.3 b | 4.7 ± 0.5 a |
Final biomass (g) | - | 274 ± 22 b | 490 ± 44 a |
Yield (kg m−3) | - | 0.7 ± 0.1 b | 1.6 ± 0.2 a |
Shrimp + Tilapia | |||
Total feed use (g) | 174.4 ± 12.6 b | 214.3 ± 7.7 a | 200.6 ± 11.5 ab |
Total nitrogen input (g) | 10.6 ± 0.7 b | 12.9 ± 0.4 a | 12 ± 0.7 ab |
Total nitrogen input (g m −3) | 48.2 ± 3.5 b | 29.27 ± 1.0 a | 54.7 ± 3.1 b |
Total final biomass (g) | 356.4 ± 22.6 b | 627.1 ± 37.9 a | 716.1 ± 46.6 a |
Total Yield (kg m−3) | 1.1 ± 0.2 b | 1.0 ± 0.0 b | 2.0 ± 0.0 a |
FCR | 1.4 ± 0.1 a | 1.0 ± 0.1 b | 0.8 ± 0.01 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Holanda, M.; Wasielesky, W., Jr.; de Lara, G.R.; Poersch, L.H. Production of Marine Shrimp Integrated with Tilapia at High Densities and in a Biofloc System: Choosing the Best Spatial Configuration. Fishes 2022, 7, 283. https://doi.org/10.3390/fishes7050283
Holanda M, Wasielesky W Jr., de Lara GR, Poersch LH. Production of Marine Shrimp Integrated with Tilapia at High Densities and in a Biofloc System: Choosing the Best Spatial Configuration. Fishes. 2022; 7(5):283. https://doi.org/10.3390/fishes7050283
Chicago/Turabian StyleHolanda, Mariana, Wilson Wasielesky, Jr., Gabriele Rodrigues de Lara, and Luís H. Poersch. 2022. "Production of Marine Shrimp Integrated with Tilapia at High Densities and in a Biofloc System: Choosing the Best Spatial Configuration" Fishes 7, no. 5: 283. https://doi.org/10.3390/fishes7050283
APA StyleHolanda, M., Wasielesky, W., Jr., de Lara, G. R., & Poersch, L. H. (2022). Production of Marine Shrimp Integrated with Tilapia at High Densities and in a Biofloc System: Choosing the Best Spatial Configuration. Fishes, 7(5), 283. https://doi.org/10.3390/fishes7050283