The Effect of Probiotics on Growth Performance, Haematological and Biochemical Profiles in Siberian Sturgeon (Acipenser baerii Brandt, 1869)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Fish Feeding Experiments
- 0.019% addition of Lactobacillus acidophilus coded with FLa, (6 × 109 CFU (187.0 mg)/kg feed) for tank T1;
- 0.030% addition of Saccharomyces boulardii coded with FSb, (6 × 109 CFU (300.00 mg)/kg feed) for tank T2;
- 0.009% addition of Lactobacillus acidophilus (3 × 109 CFU-93.75 mg) and 0.015% Saccharomyces boulardii (3 × 109 CFU–150.00 mg) in equal proportions, coded with FLa + Sb, (6 × 109 CFU/kg feed), for tank T3.
2.3. Physical and Chemical Parameters of the Water
2.4. Assessment of Growth Performance and Feed Efficiency
- K (%) = Weight (g)/Standard body length (cm) 3 × 100;
- WGi = Final weight-Initial weight (g/fish);
- WGt = Final lot weight-Initial lot weight (kg/total fish);
- FCR = feed fed (kg)/weight gain (kg);
- SGR = 100 × [(ln Final fish weight)-(ln Initial fish weight)]/experimental days;
2.5. Feed Composition
2.6. Haematological Analysis
2.7. Statistical Analysis
3. Results
3.1. Fish Growth Parameters
3.2. Chemical Analysis of Feed
3.3. Haematological and Biochemical Profile of the Blood
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Chandra, G.; Fopp-Bayat, D. Trends in aquaculture and conservation of sturgeons: A review of molecular and cytogenetic tools. Rev. Aquac. 2021, 13, 119–137. [Google Scholar] [CrossRef]
- Babaei, S.; Abedian-Kenari, A.; Hedayati, M.; Yazdani-Sadati, M.A. Growth response, body composition, plasma metabolites, digestive and antioxidant enzymes activities of Siberian sturgeon (Acipenser baerii, Brandt, 1869) fed different dietary protein and carbohydrate: Lipid ratio. Aquac. Res. 2017, 48, 2642–2654. [Google Scholar] [CrossRef]
- FAO. The State of World Fisheries and Aquaculture 2020. Sustainability in Action; FAO: Roma, Italy, 2020; pp. 2–36. [Google Scholar]
- Nikolova, L.; Bonev, S. Growth of Siberian sturgeon (Acipenser baerii), Russian sturgeon (Acipenser gueldenstaedtii) and hybrid (F1 A. baerii x A. gueldenstaedtii) reared in cages. Sci. Pap. Ser. D Anim. Sci. 2020, LXIII, 429–434. [Google Scholar]
- Rónyai, A.; Ruttkay, A.; Varadi, L.; András, P. Growth of Siberian Sturgeon (Acipenser baeri B.) and That of Its Both Hybrid (Acipenser ruthenus L.) in Recycling System; Williot, P., Ed.; Acipenser, Cemagref.: Bordeaux, France, 1990; pp. 1–5. [Google Scholar]
- Liu, H.; Wu, X.; Zhao, W.; Guo, L.; Zheng, Y.; Yu, Y. Nutrients apparent digestibility coefficients of selected protein sources for juvenile Siberian sturgeon (Acipenser baerii Brandt), compared by two chromic oxide analyses methods. Aquac. Nutr. 2009, 15, 650–656. [Google Scholar] [CrossRef]
- Bronzi, P.; Rosenthal, H.; Gessner, J. Global sturgeon aquaculture production: An overview. J. Appl. Ichthyol. 2011, 27, 169–175. [Google Scholar] [CrossRef]
- Ashouri, G.; Mahboobi-Soofiani, N.; Hoseinifar, S.H.; Torfi-Mozanzadeh, M.; Mani, A.; Khosravi, A.; Carnevali, O. Compensatory growth, plasma hormones and metabolites in juvenile Siberian sturgeon (Acipenser baerii, Brandt 1869) subjected to fasting and re-feeding. Aquac. Nutr. 2020, 26, 400–409. [Google Scholar] [CrossRef]
- Turnbull, J. Stress and Resistance to Infectious Diseases in Fish; Woodhead Publishing: Sawston, UK, 2012; pp. 111–125. [Google Scholar]
- Estruch, G.; Collado, M.C.; Monge-Ortiz, R.; Tomás-Vidal, A.; Jover-Cerdá, M.; Peñaranda, D.S.; Martínez, G.P.; Martínez-Llorens, S. Long-term feeding with high plant protein based diets in gilthead seabream (Sparus aurata, L.) leads to changes in the inflammatory and immune related gene expression at intestinal level. BMC Veter-Res. 2018, 14, 302. [Google Scholar] [CrossRef] [PubMed]
- Kwasek, K.; Thorne-Lyman, A.L.; Phillips, M. Can human nutrition be improved through better fish feeding practices? A review paper. Crit. Rev. Food Sci. Nutr. 2020, 60, 3822–3835. [Google Scholar] [CrossRef] [PubMed]
- Nasr, M.; Reda, R.; Ismail, T.; Moustafa, A. Growth, hemato-biochemical parameters, body composition, and myostatin gene expression of Clarias gariepinus fed by replacing fishmeal with plant protein. Animals 2021, 11, 889. [Google Scholar] [CrossRef]
- Piazzon, M.C.; Calduch-Giner, J.A.; Fouz, B.; Estensoro, I.; Simó-Mirabet, P.; Puyalto, M.; Karalazos, V.; Palenzuela, O.; Sitjà-Bobadilla, A.; Pérez-Sánchez, J. Under control: How a dietary additive can restore the gut microbiome and proteomic profile, and improve disease resilience in a marine teleostean fish fed vegetable diets. Microbiome 2017, 5, 1–23. [Google Scholar] [CrossRef]
- Bates, J.M.; Mittge, E.; Kuhlman, J.; Baden, K.N.; Cheesman, S.E.; Guillemin, K. Distinct signals from the microbiota promote different aspects of zebrafish gut differentiation. Dev. Biol. 2006, 297, 374–386. [Google Scholar] [CrossRef]
- Order no. 161/2006 for the approval of the Norm on the classification of surface water quality in order to establish the ecological status of water bodies. Available online: https://legislatie.just.ro/Public/DetaliiDocumentAfis/72574 (accessed on 15 July 2022).
- Médale, F.; Blanc, D.; Kaushik, S.J. Studies on the nutrition of Siberian sturgeon, Acipenser baeri. II. Utilization of dietary nonprotein energy by sturgeon. Aquaculture 1991, 93, 143–154. [Google Scholar] [CrossRef]
- Hasan, M.T.; Jang, W.J.; Lee, B.-J.; Kim, K.W.; Hur, S.W.; Lim, S.G.; Bai, S.C.; Kong, I.-S. Heat-killed Bacillus sp. SJ-10 probiotic acts as a growth and humoral innate immunity response enhancer in olive flounder (Paralichthys olivaceus). Fish Shellfish Immunol. 2019, 88, 424–431. [Google Scholar] [CrossRef] [PubMed]
- Nguafack, T.T.; Jang, W.J.; Hasan, M.T.; Choi, Y.H.; Bai, S.C.; Lee, E.-W.; Lee, B.-J.; Hur, S.W.; Lee, S.H.; Kong, I.-S. Effects of dietary non-viable Bacillus sp. SJ-10, Lactobacillus plantarum, and their combination on growth, humoral and cellular immunity, and streptococcosis resistance in olive flounder (Paralichthys olivaceus). Res. Veter-Sci. 2020, 131, 177–185. [Google Scholar] [CrossRef]
- Hasan, T.; Jang, W.J.; Lee, B.-J.; Hur, S.W.; Lim, S.G.; Kim, K.W.; Han, H.-S.; Lee, E.-W.; Bai, S.C.; Kong, I.-S. Dietary Supplementation of Bacillus sp. SJ-10 and Lactobacillus plantarum KCCM 11322 Combinations Enhance Growth and Cellular and Humoral Immunity in Olive Flounder (Paralichthys olivaceus). Probiotics Antimicrob. Proteins 2021, 13, 1277–1291. [Google Scholar] [CrossRef]
- Won, S.; Hamidoghli, A.; Choi, W.; Park, Y.; Jang, W.J.; Kong, I.-S.; Bai, S.C. Effects of Bacillus subtilis WB60 and Lactococcus lactis on Growth, Immune Responses, Histology and Gene Expression in Nile Tilapia, Oreochromis niloticus. Microorganisms 2020, 8, 67. [Google Scholar] [CrossRef] [PubMed]
- Ghaziani, S.D.; Jourdehi, A.Y.; Kazemi, R.; Pourasadi, M. The Comparison of Growth Performance and Survival Rate of Sterlett (Acipenser ruthenus) and Siberian Sturgeon (Acipenser baerii) From Larvae to Fingerling. J. Fish. 2014, 67, 39–47. [Google Scholar]
- Faramarzi, M.; Kiaalvandi, S.; Iranshahi, F. The effect of probiotics on growth performance and body composition of common carp (Cyprinus carpio). J. Anim. Vet. Adv. 2011, 10, 2408–2413. [Google Scholar]
- Savin, V.; Cristea, V.; Mocanu, E.E.; Dima, F.; Popa, M.D.; Patriche, N. Efficiency of probiotics in carp (Cyprinus carpio) growth in the aquaculture recirculation system. Anim. Food Sci. J. Iasi 2022, 77, 269–273, Article licensed under a Creative Commons Attribution–NonCommercial–ShareAlike 4.0 International License. Available online: http://creativecommons.org/licenses/by-nc-sa/4.0/ (accessed on 20 June 2022).
- Lara-Flores, M.A.; Novoa, O.B.E.; López-Madrid, G.W. Use of the bacteria Streptococcus faecium and Lactobacillus acidophilus, and the yeast Saccharomyces cerevisiae as growth promoters in Nile tilapia (Oreochromis niloticus). Aquaculture 2003, 216, 93–201. Available online: https://www.sciencedirect.com/journal/aquaculture/vol/216/issue/1 (accessed on 29 June 2022). [CrossRef]
- Pourgholam, M.A.; Khara, H.; Safari, R.; Sadati, M.A.Y.; Aramli, M.S. Influence of Lactobacillus plantarum Inclusion in the Diet of Siberian Sturgeon (Acipenser baerii) on Performance and Hematological Parameters. Turk. J. Fish. Aquat. Sci. 2017, 17, 1–5. [Google Scholar] [CrossRef]
- Gatesoupe, F.J. Lactic acid bacteria increase the resistance of turbot larvae, Scophthalmus maximus, against pathogenic Vibrio. Aquat. Living Resour. 1994, 7, 277–282. Available online: https://www.cambridge.org/core/journals/aquatic-living-resources/article/abs/lactic-acid-bacteria-increase-the-resistance-of-turbot-larvae-scophthalmus-maximus-against-pathogenic-vibrio/02181C756B014A66BA7AD39DA6B66946 (accessed on 15 July 2022). [CrossRef]
- Pyka, J.; Kolman, R. Feeding intensity and growth of Siberian sturgeon Acipenser baeri Brandt in pond cultivation. Arch. Pol. Fish. 2003, 11, 287–294. [Google Scholar]
- Carnevali, O.; Zamponi, M.C.; Sulpizio, R.; Rollo, A.; Nardi, M.; Orpianesi, C.; Silvi, S.; Caggiano, M.; Polzonetti, A.M.; Cresci, A. Administration of Probiotic Strain to Improve Sea Bream Wellness during Development. Aquac. Int. 2004, 12, 377–386. [Google Scholar] [CrossRef]
- Gram, L.; Melchiorsen, J.; Spanggaard, B.; Huber, I.; Nielsen, T.F. Inhibition of vibrio anguillarum by Pseudomonas fluorescens AH2, a possible probiotic treatment of fish. Appl. Environ. Microbiol. 1999, 65, 969–973. [Google Scholar] [CrossRef] [Green Version]
- Ramezani, S.; Eshaghzadeh, H.; Saeimee, H.; Darvishi, S. Subyearling Siberian Sturgeon Acipenser baeri Fed a Diet Supplemented with ImmunoGen: Effects on Growth Performance, Body Composition, and Hematological and Serum Biochemical Parameters. J. Aquat. Anim. Health 2018, 30, 155–163. [Google Scholar] [CrossRef]
- Hassani, M.H.S.; Jourdehi, A.Y.; Zelti, A.H.; Masouleh, A.S.; Lakani, F.B. Effects of commercial superzist probiotic on growth performance and hematological and immune indices in fingerlings Acipenser baerii. Aquac. Int. 2019, 28, 377–387. [Google Scholar] [CrossRef]
- Veisi, R.S.; Taghdir, M.; Abbaszadeh, S.; Hedayati, A. Dietary Effects of Probiotic Lactobacillus casei on Some Immunity Indices of Common Carp (Cyprinus carpio) Exposed to Cadmium. Biol. Trace Element Res. 2022. [Google Scholar] [CrossRef] [PubMed]
- Salkova, E.; Gela, D.; Pecherkova, P.; Flajshans, M. Examination of white blood cell indicators for three different ploidy level sturgeon species reared in an indoor recirculation aquaculture system for one year. Veterinární Med. 2022, 67, 138–149. [Google Scholar] [CrossRef]
- Dima, F.M.; Sîrbu, E.; Patriche, N.; Cristea, V.; Coadă, M.T.; Plăcintă, S. Effects Of Multi-Strain Probiotics on the Growth and Hematological Profile in Juvenile Carp (Cyprinus carpio, Linnaeus 1758). Carpathian J. Food Sci. Technol. 2022, 14, 5–20. [Google Scholar] [CrossRef]
- Van der Vaart, M.; Spaink, H.P.; Meijer, A.H. Pathogen Recognition and Activation of the Innate Immune Response in Zebrafish. Adv. Hematol. 2012, 2012, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Jácome, Y.; Quezada, C.; Sánchez, O.; Pérez, J.E.; Nirchio, M. Tilapia en Ecuador: Paradoja entre la producción acuícola y la protección de la biodi-versidad ecuatoriana. Rev. Peru. Biol. 2019, 26, 543–550. [Google Scholar] [CrossRef]
- Ahmed, I.; Sheikh, Z.A.; Wani, G.B.; Shah, B.A. Sex variation in hematological and serum biochemical parameters of cultured Chinese silver carp, Hypophthalmichthys molitrix. Comp. Clin. Pathol. 2019, 28, 1761–1767. [Google Scholar] [CrossRef]
- Dutta, D.; Ghosh, K. Improvement of growth, nutrient utilization and haemato-immunological parameters in rohu, Labeo rohita (Hamilton) using Bacillus tequilensis (KF623287) through diets or as water additive. Aquac. Nutr. 2021, 27, 29–47. [Google Scholar] [CrossRef]
- Smith, N.C.; Rise, M.L.; Christian, S.L. A Comparison of the Innate and Adaptive Immune Systems in Cartilaginous Fish, Ray-Finned Fish, and Lobe-Finned Fish. Front. Immunol. 2019, 10, 2292. [Google Scholar] [CrossRef] [Green Version]
- Clem, L.W.; Small, P.A. Phylogeny of immunoglobulin structure and function. J. Exp. Med. 1967, 125, 893–920. [Google Scholar] [CrossRef]
- Alireza, H.; Soheil, E.; Hadi, P.; Mahmoud, B. Effects of Stocking Density on Blood Cortisol, Glucose and Cholesterol Levels of Immature Siberian Sturgeon (Acipenser baerii Brandt, 1869). Turk. J. Fish. Aquat. Sci. 2013, 13, 1–6. [Google Scholar] [CrossRef]
Variable | Tank C | Tank T1 | Tank T2 | Tank T3 |
---|---|---|---|---|
Statistical Indices | FC | (Fla *) | (FSb **) | (FLa + Sb ***) |
Initial Parameters | ||||
Individual weight (g) | ||||
Min. | 6.1 | 7.1 | 6.8 | 6.4 |
Max. | 11.95 | 10.9 | 10.9 | 10.6 |
Mean ± Standard Deviation | 8.52 ± 1.32 | 8.95 ± 1.13 | 9.15 ± 1.26 | 8.65 ± 1.15 |
Variability coefficient, CV | 0.16 | 0.13 | 0.14 | 0.13 |
Individual standard length (cm) | ||||
Min. | 7.8 | 9.4 | 7.2 | 7.9 |
Max. | 12.5 | 13.5 | 10.9 | 12.6 |
Mean ± Standard Deviation | 10.50 ± 0.96 | 11.20 ± 0.92 | 9.80 ± 0.83 | 10.11 ± 1.07 |
Variability coefficient, CV | 0.14 | 0.10 | 0.20 | 0.17 |
Fulton coefficient, K (%) | 0.73 | 0.64 | 0.97 | 0.84 |
Final Parameters | ||||
Individual weight (g) | ||||
Min. | 26.3 | 30.4 | 28.5 | 23 |
Max. | 43.71 | 48.5 | 59.8 | 53.6 |
Mean ± Standard Deviation | 34.47 ± 4.78 c | 39.29 ± 3.87 b | 43.23 ± 8.84 a | 44.21 ± 7.35 a |
Variability coefficient, CV | 0.09 | 0.08 | 0.08 | 0.11 |
Individual standard length (cm) | ||||
Min. | 16.7 | 17.6 | 18.2 | 18.2 |
Max. | 21.1 | 23.6 | 25.6 | 25.3 |
Mean ± Standard Deviation | 17.80 ± 1.08 d | 20.20 ± 1.38 c | 21.50 ± 2.13 b | 22.40 ± 2.07 a |
Variability coefficient, CV | 0.06 | 0.07 | 0.10 | 0.09 |
Fulton coefficient, K (%) | 0.61 | 0.48 | 0.44 | 0.39 |
Growth Parameters | UM | Tank C | Tank 1 | Tank 2 | Tank 3 |
---|---|---|---|---|---|
FC | (Fla *) | (FSb **) | (FLa + Sb ***) | ||
Initial Parameters | |||||
Number of Specimens | - | 500 | 500 | 500 | 500 |
Mean individual weight | (g/specimen) Mean ± St. Dev. | 8.52 ± 1.32 | 8.95 ± 1.13 | 9.15 ± 1.26 | 8.65 ± 1.15 |
Initial Biomass | Kg | 4.26 | 4.48 | 4.58 | 4.33 |
Density of the initial population | kg/m3 | 12.17 | 12.79 | 13.07 | 12.36 |
Density of the initial population | kg/m2 | 2.84 | 2.98 | 3.05 | 2.88 |
Final Parameters | |||||
Number of Specimens | - | 335 | 406 | 417 | 444 |
Mean individual weight | (g/specimen) Mean ± St. Dev | 34.47 ± 4.78 c | 39.29 ± 3.87 b | 43.23 ± 8.84 a | 44.21 ± 7.35 a |
Final Biomass | kg | 11.55 | 15.95 | 18.03 | 19.63 |
Density of the final population | kg/m3 | 32.99 | 45.57 | 51.51 | 56.08 |
Density of the initial population | kg/m2 | 7.70 | 10.63 | 12.02 | 13.09 |
Growth Parameters | |||||
Number of days | days | 56 | 56 | 56 | 56 |
Weight growth individual (WGi) | g | 25.95 | 30.34 | 34.08 | 35.56 |
Weight growth total (WGt) | kg | 7.29 | 11.48 | 13.45 | 15.30 |
Total Shared Food | kg | 22.00 | 25.50 | 25.70 | 24.20 |
Feed Conversion Rate (FCR) | kg/kg | 3.02 | 2.22 | 1.91 | 1.58 |
Daily growth rate (DGR) | g/day | 0.46 | 0.54 | 0.61 | 0.63 |
Specific growth rate (SGR) | %/day | 1.78 | 2.27 | 2.45 | 2.70 |
Survival | % | 77.00 d | 83.20 c | 85.40 b | 88.80 a |
Feed Sample | Moisture g% | Proteins g% | Fats g% | Carbohydrates g% | Fibre g% | Ash, g% | Energy Value **** kcal/100 g |
---|---|---|---|---|---|---|---|
FC | 6.78 ± 0.03 | 54.85 ± 0.04 | 17.84 ± 0.06 | 8.18 ± 0.03 | 1.25 ± 0.01 | 10.85 ± 0.01 | 424.98 ± 0.85 |
Fla * | 6.78 ± 0.08 | 54.71 ± 0.08 | 17.80 ± 0.13 | 8.13 ± 0.08 | 1.29 ± 0.01 | 10.96 ± 0.01 | 423.17 ± 1.86 |
FSb ** | 6.79 ± 0.06 | 54.82 ± 0.03 | 17.82 ± 0.09 | 8.21 ± 0.14 | 1.31 ± 0.05 | 10.81 ± 0.01 | 424.15 ± 1.53 |
FLa + Sb *** | 6.97 ± 0.03 | 54.67 ± 0.06 | 17.78 ± 0.07 | 8.26 ± 0.02 | 1.35 ± 0.01 | 10.79 ± 0.06 | 423.39 ± 0.98 |
p-Value | 0.06 | 0.16 | 0.76 | 0.04 | 0.04 | 0.0002 | 0.15 |
Haematological Indices/UM Mean ± St. Dev. | After 56 Days of Experiment. | |||
---|---|---|---|---|
Tank C | Tank 1 | Tank 2 | Tank 3 | |
FC | (Fla *) | (FSb **) | (FLa + Sb ***) | |
Haematocrit (Ht), % | 17.56 ± 2.60 a | 19.85 ± 2.32 a | 20.95 ± 1.46 a | 21.11 ± 1.59 a |
CV **** | 0.15 | 0.12 | 0.07 | 0.08 |
Haemoglobin (Hb) (g/dL), | 3.05 ± 0.28 c | 3.55 ± 0.15 b | 4.85 ± 0.65 a | 5.06 ± 0.61 a |
Variability coefficient, CV | 0.09 | 0.04 | 0.13 | 0.12 |
Erythrocyte (RBC), (105/µL) | 6.12 ± 1.08 a | 7.88 ± 1.60 a | 8.22 ± 1.40 a | 8.28 ± 1.34 a |
CV **** | 0.18 | 0.20 | 0.17 | 0.16 |
Mean Corpuscular Volume (MCV), (fl) | 29.40 ± 6.97 | 25.74 ± 3.95 | 26.28 ± 5.95 | 25.96 ± 3.78 |
CV **** | 0.24 | 0.15 | 0.23 | 0.15 |
Mean Corpuscular Haemoglobin (MCH), (pg) | 5.15 ± 1.23 | 4.69 ± 1.17 | 6.01 ± 1.09 | 6.22 ± 1.04 |
CV **** | 0.24 | 0.25 | 0.18 | 0.17 |
Mean Corpuscular Haemoglobin Concentration (MCHC), (g/dL) | 17.75 ± 3.49 | 18.17 ± 2.85 | 23.29 ± 3.86 | 24.18 ± 4.01 |
CV **** | 0.20 | 0.16 | 0.17 | 0.17 |
Parameters | UM | After 56 Days of Experiment. | |||
---|---|---|---|---|---|
Tank C | Tank 1 | Tank 2 | Tank 3 | ||
FC | (Fla *) | (FSb **) | (FLa + Sb ***) | ||
WBC | (103/μL) | 21.62 ± 1.61 a | 21.73 ± 1.94 a | 22.75 ± 2.17 a | 22.33 ± 2.56 a |
Lymphocytes | (%) | 74.29 ± 9.85 a | 74.63 ± 3.16 a | 75.02 ± 3.34 a | 75.01 ± 5.68 a |
Monocytes | (%) | 5.41 ± 0.40 a | 5.53 ± 1.06 a | 5.76 ± 1.32 a | 5.85 ± 0.98 a |
Neutrophils | (%) | 16.76 ± 1.80 a | 18.43 ± 1.87 a | 17.66 ± 2.23 a | 17.78 ± 1.95 a |
Eosinophils | (%) | 3.14 ± 0.78 a | 1.11 ± 0.26 bd | 1.22 ± 0.24 bc | 1.01 ± 0.19 cd |
Basophils | (%) | 0.40 ± 0.12 a | 0.30 ± 0.07 a | 0.34 ± 0.14 a | 0.35 ± 0.09 a |
Parameters | UM | After 56 Days of Experiment | p-Value | |||
---|---|---|---|---|---|---|
Tank C | Tank T1 | Tank T2 | Tank T3 | |||
FC | (Fla *) | (FSb **) | (FLa + Sb ***) | |||
Total serum protein (TP) | g/dL | 3.55 ± 1.26 a | 4.80 ± 1.63 a | 5.16 ± 1.15 a | 5.25 ± 1.00 a | 0.458171 |
Serum albumin (ALB) | g/dL | 0.95 ± 0.44 a | 1.05 ± 0.43 a | 1.25 ± 0.37 a | 1.2 ± 0.33 a | 0.591325 |
Globulin (GLO) | g/dL | 2.05 ± 0.74 a | 1.65 ± 0.70 a | 1.45 ± 0.76 a | 1.4 ± 0.45 a | 0.417054 |
Albumin/globulin ratio (A/G) | - | 0.46 | 0.64 | 0.86 | 0.86 | - |
Glucose (GLU) | mg/dL | 45.00 ± 7.87 a | 35.20 ± 5.45 a | 33.55 ± 5.59 a | 33.30 ± 8.14 a | 0.202443 |
Cholesterol (CHOL) | mg/dL | 179.50 ± 28.84 a | 155.50 ± 16.44 a | 135.15 ± 9.94 a | 136.22 ± 21.15 a | 0.095441 |
Aspartate aminotransferase (AST) | U/L | 151.22 ± 18.14 a | 155.85 ± 10.68 a | 155.12 ± 11.15 a | 156.25 ± 21.23 a | 0.839124 |
Alanine aminotransferase (ALT) | U/L | 3.72 ± 1.07 a | 4.15 ± 1.35 a | 4.25 ± 1.15 a | 4.2 ± 1.18 a | 0.510627 |
Creatine kinase (CK) | U/L | 33.00 ± 3.77 a | 31.90 ± 2.07 a | 32.50 ± 3.22 a | 30.14 ± 6.88 a | 0.911305 |
Immunoglobulin (IgM) | mg/dL | 38.50 ± 4.32 ab | 43.60 ± 4.94 acd | 44.80 ± 6.57 bc | 55.25 ± 8.28 d | 0.023794 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mocanu, E.E.; Savin, V.; Popa, M.D.; Dima, F.M. The Effect of Probiotics on Growth Performance, Haematological and Biochemical Profiles in Siberian Sturgeon (Acipenser baerii Brandt, 1869). Fishes 2022, 7, 239. https://doi.org/10.3390/fishes7050239
Mocanu EE, Savin V, Popa MD, Dima FM. The Effect of Probiotics on Growth Performance, Haematological and Biochemical Profiles in Siberian Sturgeon (Acipenser baerii Brandt, 1869). Fishes. 2022; 7(5):239. https://doi.org/10.3390/fishes7050239
Chicago/Turabian StyleMocanu, Elena Eugenia, Viorica Savin, Marcel Daniel Popa, and Floricel Maricel Dima. 2022. "The Effect of Probiotics on Growth Performance, Haematological and Biochemical Profiles in Siberian Sturgeon (Acipenser baerii Brandt, 1869)" Fishes 7, no. 5: 239. https://doi.org/10.3390/fishes7050239
APA StyleMocanu, E. E., Savin, V., Popa, M. D., & Dima, F. M. (2022). The Effect of Probiotics on Growth Performance, Haematological and Biochemical Profiles in Siberian Sturgeon (Acipenser baerii Brandt, 1869). Fishes, 7(5), 239. https://doi.org/10.3390/fishes7050239