Length-Weight Relationships and Other Morphological Traits of Fishes in the Mangrove of Hainan, China
Abstract
:1. Introduction
2. Material and Methods
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- zu Ermgassen, P.S.; Mukherjee, N.; Worthington, T.A.; Acosta, A.; Araujo, A.R.D.R.; Beitl, C.M.; Castellanos-Galindo, G.A.; Cunha-Lignon, M.; Dahdouh-Guebas, F.; Diele, K.; et al. Fishers who rely on mangroves: Modelling and mapping the global intensity of mangrove-associated fisheries. Estuar. Coast. Shelf Sci. 2020, 247, 106975. [Google Scholar] [CrossRef]
- Duke, N.C.; Meynecke, J.O.; Dittmann, S.; Ellison, A.M.; Anger, K.; Berger, U.; Cannicci, S.; Diele, K.; Ewel, K.C.; Field, C.D.; et al. A world without mangroves? Science 2007, 317, 41–42. [Google Scholar] [CrossRef] [PubMed]
- Pauly, D.; Ingles, J. The relationship between shrimp yields and intertidal vegetation (mangrove) areas: A reassessment’. In Mangrove Ecosystems in Tropical America; Yañez-Arancibia, A., Lara-Dominguez, A.L., Eds.; Instituto de Ecologia, A.C. Mexico, IUCN/ORMA, Costa Rica and NOAA/NMFS: Silver Spring, MD, USA, 1999; Chapter 21; pp. 311–316. [Google Scholar]
- Wang, W.; Fu, H.; Lee, S.Y.; Fan, H.; Wang, M. Can Strict Protection Stop the Decline of Mangrove Ecosystems in China? From Rapid Destruction to Rampant Degradation. Forests 2020, 11, 55. [Google Scholar] [CrossRef]
- Jiang, C.; Wang, W.; Yan, S.; Ding, Y.; Mi, X.; Wang, M.; Pauly, D. Assessment of Tropical Fish Stocks Using the LBB Method in Dongzhaigang Bay, Hainan Island, China. Sustainability 2022, 14, 9933. [Google Scholar] [CrossRef]
- Reis-Filho, J.A.; Harvey, E.S.; Giarrizzo, T. Impacts of small-scale fisheries on mangrove fish assemblages. ICES J. Mar. Sci. 2018, 76, 153–164. [Google Scholar] [CrossRef]
- Hay, A.; Xian, W.; Bailly, N.; Liang, C.; Pauly, D. The why and how of determining length-weight relationships of fish from preserved museum specimens. J. Appl. Ichthyol. 2020, 36, 373–379. [Google Scholar] [CrossRef]
- Binohlan, C.; Pauly, D. The Length-Weight Table. In FishBase 2000: Concepts, Design and Data Sources; Froese, R., Pauly, D., Eds.; ICLARM: Los Baños, Philippines, 2000; pp. 131–134. [Google Scholar]
- Froese, R. Cube law, condition factor and weight–length relationships: History, meta-analysis and recommendations. J. Appl. Ichthyol. 2006, 22, 241–253. [Google Scholar] [CrossRef]
- Froese, R.; Pauly, D. FishBase. World Wide Web Electronic Publication. 2022. Available online: www.fishbase.org (accessed on 2 May 2022).
- Froese, R.; Thorson, J.T.; Reyes, R.B. A Bayesian approach for estimating length-weight relationships in fishes. J. Appl. Ichthyol. 2013, 30, 78–85. [Google Scholar] [CrossRef]
- Schwartz, F.J. Natural salinity tolerances of some freshwater fishes. Underw. Nat. 1964, 2, 13–15. [Google Scholar]
- Villéger, S.; Miranda, J.R.; Hernández, D.F.; Mouillot, D. Contrasting changes in taxonomic vs. functional diversity of tropical fish communities after habitat degradation. Ecol. Appl. 2010, 20, 1512–1522. [Google Scholar] [CrossRef] [PubMed]
- Violle, C.; Navas, M.L.; Vile, D.; Kazakou, E.; Fortunel, C.; Hummel, I.; Garnier, E. Let the concept of trait be functional! Oikos 2007, 116, 882–892. [Google Scholar] [CrossRef]
- Cadotte, M.W.; Carscadden, K.; Mirotchnick, N. Beyond species: Functional diversity and the maintenance of ecological processes and services. J. Appl. Ecol. 2011, 48, 1079–1087. [Google Scholar] [CrossRef]
Scientific Name | n | Minimum | Maximum | FishBase Max. a | LWR | ||
---|---|---|---|---|---|---|---|
Standard Length/Total Length | a | b | r2 | ||||
Acentrogobius caninus | 178 | 2.6/3.3 | 10.5/12.6 | -/18.3 | 0.0185 | 3.007 | 0.962 |
Acentrogobius chlorostigmatoides | 100 | 5.0/6.4 | 10.1/12.4 | -/11.0 | 0.0362 | 2.771 | 0.885 |
Acentrogobius viridipunctatus | 1017 | 3.4/4.6 | 11.2/13.9 | -/16.5 | 0.0316 | 2.783 | 0.870 |
Ambassis gymnocephalus | 920 | 1.7/2.3 | 7.1/8.8 | -/16.0 | 0.0173 | 3.083 | 0.855 |
Boleophthalmus pectinirostris | 111 | 5.8/7.3 | 12.2/14.8 | -/20.0 | 0.0260 | 2.665 | 0.817 |
Bostrychus sinensis | 138 | 6.9/8.5 | 18.0/20.8 | -/22.0 | 0.0109 | 3.204 | 0.950 |
Butis butis | 9 | 7.1/11.2 | 10.2/12.4 | -/15.0 | 0.0142 | 3.123 | 0.967 |
Butis koilomatodon | 18 | 3.8/4.8 | 6.9/8.6 | -/10.7 | 0.0173 | 3.199 | 0.958 |
Escualosa thoracata | 166 | 4.6/5.9 | 8.0/10.2 | 10.0/- | 0.00737 | 3.361 | 0.946 |
Gerres japonica | 21 | 4.1/5.4 | 12.2/15.4 | 20.0/- | 0.0166 | 3.222 | 0.996 |
Gerres lucidus | 235 | 2.8/3.5 | 11.9/15.1 | -/15.0 | 0.0214 | 3.129 | 0.993 |
Glossogobius olivaceus | 37 | 6.2/7.4 | 11.2/13.6 | 17.0/- | 0.00964 | 3.266 | 0.971 |
Konosirus punctatus | 10 | 4.8/5.7 | 14.1/18.0 | -/32.0 | 0.0197 | 2.870 | 0.988 |
Leiognathus brevirostris | 315 | 2.1/3.0 | 8.3/10.1 | - | 0.0170 | 3.071 | 0.940 |
Liza carinata | 52 | 4.6/5.9 | 16.0/18.8 | -/18.0 | 0.0297 | 2.700 | 0.965 |
Liza subviridis | 491 | 3.3/4.1 | 21.1/25.7 | 40.0/- | 0.0316 | 2.762 | 0.964 |
Oxyurichthys ophthalmonemus | 403 | 3.9/5.4 | 11.3/16.4 | -/18.0 | 0.00955 | 3.190 | 0.926 |
Siganus guttatus | 72 | 4.0/6.1 | 21.5/26.2 | -/42.0 | 0.0309 | 3.002 | 0.996 |
Takifugu niphobles | 29 | 3.4/4.4 | 11.5/13.8 | -/15.9 | 0.0799 | 2.611 | 0.909 |
Tridentiger trigonocephalus | 16 | 4.6/5.8 | 8.3/10.2 | -/11.0 | 0.0198 | 3.139 | 0.994 |
Vespicula trachinoides | 21 | 2.7/36.8 | 5.9/7.3 | 5.8/- | 0.0232 | 3.321 | 0.966 |
Zenarchopterus buffonis | 33 | 5.6/7.0 | 13.1/15.3 | -/23.0 | 0.00601 | 3.094 | 0.941 |
Scientific Name | n | Minimum | Maximum | FishBase Max. a | a |
---|---|---|---|---|---|
Standard Length/Total Length (SL/TL) | |||||
Amoya chusanensis | 18 | 5.7/7.0 | 7.3/9.1 | -/7.2 | 0.0145 |
Hypoatherina valenciennei | 1 | 6.1/7.6 | - | -/12.0 | 0.0140 |
Leiognathus ruconius | 1 | 4.6/5.8 | - | -/8.0 | 0.0271 |
Mugilogobius abei | 1 | 2.8/3.4 | - | 4.1/- | 0.0214 |
Muraenichthys macropterus | 2 | 22.7/23.0 | 27.5/27.8 | -/25.0 | 0.00113 |
Periophthalmus modestus | 9 | 5.7/6.9 | 6.7/8.5 | -/10.0 | 0.0149 |
Pisodonophis boro | 2 | 52.0/52.0 | 57.0/57.0 | -/100.0 | 0.000817 |
Plotosus lineatus | 1 | 17.6/19.5 | - | -/32.0 | 0.00834 |
Pterygoplichthys multiradiatus | 1 | 30.3/37.7 | - | -/50.0 | 0.0142 |
Sardinella zunasi | 2 | 7.6/10.2 | 8.4/10.6 | -/18.0 | 0.0164 |
Scartelaos histophorus | 6 | 10.3/12.9 | 12.9/14.9 | 14.0/- | 0.00526 |
Strongylura strongylura | 1 | 20.1/22.2 | - | 40.0/- | 0.00289 |
Taenioides cirratus | 2 | 22.6/24.4 | 23.2/25.2 | -/30.0 | 0.00163 |
Trypauchen vagina | 1 | 12.7/14.6 | - | -/22.0 | 0.00499 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, C.; Wang, W.; Wang, M.; Pauly, D. Length-Weight Relationships and Other Morphological Traits of Fishes in the Mangrove of Hainan, China. Fishes 2022, 7, 238. https://doi.org/10.3390/fishes7050238
Jiang C, Wang W, Wang M, Pauly D. Length-Weight Relationships and Other Morphological Traits of Fishes in the Mangrove of Hainan, China. Fishes. 2022; 7(5):238. https://doi.org/10.3390/fishes7050238
Chicago/Turabian StyleJiang, Chengpu, Wenqing Wang, Mao Wang, and Daniel Pauly. 2022. "Length-Weight Relationships and Other Morphological Traits of Fishes in the Mangrove of Hainan, China" Fishes 7, no. 5: 238. https://doi.org/10.3390/fishes7050238
APA StyleJiang, C., Wang, W., Wang, M., & Pauly, D. (2022). Length-Weight Relationships and Other Morphological Traits of Fishes in the Mangrove of Hainan, China. Fishes, 7(5), 238. https://doi.org/10.3390/fishes7050238