Exploring the Spatial and Temporal Distribution of Frigate Tuna (Auxis thazard) Habitat in the South China Sea in Spring and Summer during 2015–2019 Using Fishery and Remote Sensing Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fisheries and Environmental Data
2.2. Model Construction
2.2.1. GAM
2.2.2. HSI
2.2.3. Cross Validation
2.3. Time Delay Analysis
3. Results
3.1. Catch Data Distribution
3.2. Environmental Factor Screening
3.3. Analysis of HSI Model
3.4. Habitat Variation
3.5. Relationship between Significant Environmental Factors and Habitat Quality
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, L.; Wang, X.; Van Damme, K.; Huang, D.; Li, Y.; Wang, L.; Ning, J.; Du, F. Assessment of fish diversity in the South China Sea using DNA taxonomy. Fish. Res. 2021, 233, 105771. [Google Scholar] [CrossRef]
- Pauly, D.; Zeller, D. Catch reconstructions reveal that global marine fisheries catches are higher than reported and declining. Nat. Commun. 2016, 7, 10244. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; Chen, Y.; Dong, S.; Hanson, A.; Huang, B.; Leadbitter, D.; Little, D.C.; Pikitch, E.K.; Qiu, Y.; de Mitcheson, Y.S.; et al. Opportunity for marine fisheries reform in China. Proc. Natl. Acad. Sci. USA 2017, 114, 435–442. [Google Scholar] [CrossRef]
- Uchida, R.N. Synopsis of Biological Data on Frigate Tuna, Auxis Thazard, and Bullet Tuna, A. rochei. In FAO Fisheries Synopsis; US Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service: Silver Spring, MD, USA, 1981; 124p. [Google Scholar]
- Zhang, J.; Qiu, Y.; Chen, Z.; Zhang, P.; Zhang, K.; Fan, J.; Chen, G.; Cai, Y.; Sun, M. Advances in pelagic fishery resources survey and assessment in open South China Sea. S. China Fish. Sci. 2018, 14, 118–127. [Google Scholar]
- Petitgas, P.; Doray, M.; Huret, M.; Massé, J.; Woillez, M. Modelling the variability in fish spatial distributions over time with empirical orthogonal functions: Anchovy in the Bay of Biscay. ICES J. Mar. Sci. 2014, 71, 2379–2389. [Google Scholar] [CrossRef]
- Valavanis, V.D.; Pierce, G.J.; Zuur, A.F.; Andreas, P.; Anatoly, S.; Isidora, K.; Wang, J. Modelling of essential fish habitat based on remote sensing, spatial analysis and GIS. Hydrobiologia 2008, 612, 5–20. [Google Scholar] [CrossRef]
- US Fish and Wildlife Service (USFWS) Standards for the Development of Habitat Suitability Index Models; US Fish and Wildlife Service, Division of Ecological Service: Washington, DC, USA, 1981.
- Yen, K.W.; Lu, H.J.; Chang, Y.; Lee, M.A. Using remote-sensing data to detect habitat suitability for yellowfin tuna in the Western and Central Pacific Ocean. Int. J. Remote Sens. 2012, 33, 7507–7522. [Google Scholar] [CrossRef]
- Chen, X.; Li, G.; Feng, B.; Tian, S.Q. Habitat suitability index of Chub mackerel (Scomber japonicus) from July to September in the East China Sea. J. Oceanogr. 2009, 65, 93–102. [Google Scholar] [CrossRef]
- Jones, M.C.; Dye, S.R.; Pinnegar, J.K.; Warren, R.; Cheung, W.W.L. Modelling commercial fish distributions: Prediction and assessment using different approaches. Ecol. Model. 2012, 225, 133–145. [Google Scholar] [CrossRef]
- Li, G.; Chen, X.; Lei, L.; Guang, W.J. Distribution of hotspots of chub mackerel based on remote-sensing data in coastal waters of China. Int. J. Remote Sens. 2014, 35, 4399–4421. [Google Scholar] [CrossRef]
- Li, G.; Cao, J.; Zou, X.; Chen, X.J.; Runnebaum, J. Modeling habitat suitability index for Chilean jack mackerel (Trachurus murphyi) in the South East Pacific. Fish. Res. 2016, 178, 47–60. [Google Scholar] [CrossRef]
- Engel, D.W.; Thayer, G.W.; Evans, D.W. Linkages between fishery habitat quality, stressors, and fishery populations. Environ. Sci. Policy 1999, 2, 465–475. [Google Scholar] [CrossRef]
- Agenbag, J.J.; Richardson, A.J.; Demarcq, H.; Fréon, P.; Weeks, S.; Shillington, F.A. Estimating environmental preferences of South African pelagic fish species using catch size-and remote sensing data. Prog. Oceanogr. 2003, 59, 275–300. [Google Scholar] [CrossRef]
- Bacha, M.; Jeyid, M.A.; Vantrepotte, V.; Dessailly, D.; Amara, R. Environmental effects on the spatio-temporal patterns of abundance and distribution of Sardina pilchardus and sardinella off the Mauritanian coast (North-West Africa). Fish. Oceanogr. 2017, 26, 282–298. [Google Scholar] [CrossRef]
- Hastie, T.J.; Tibshirani, R.J. Generalized Additive Models. Stat. Sci. 1986, 1, 297–318. [Google Scholar] [CrossRef]
- Jegatheesan, J.; Zakaria, Z. Stress analysis on pressure vessel. Environ. Ecosyst. Sci. 2018, 2, 53–57. [Google Scholar] [CrossRef]
- Stoner, A.W.; Manderson, J.P.; Pessutti, J.P. Spatially explicit analysis of estuarine habitat for juvenile winter flounder: Combining generalized additive models and geographic information systems. Mar. Ecol. Prog. Ser. 2001, 213, 253–271. [Google Scholar] [CrossRef]
- Venables, W.N.; Dichmont, C.M. GLMs, GAMs and GLMMs: An overview of theory for applications in fisheries research. Fish. Res. 2004, 70, 319–337. [Google Scholar] [CrossRef]
- Syamsuddin, M.L.; Saitoh, S.I.; Hirawake, T.; Bachri, S.H.; Agung, B. Effects of El Niño–Southern Oscillation events on catches of bigeye tuna (Thunnus obesus) in the eastern Indian Ocean off Java. Fish. Bull. 2013, 111, 175–188. [Google Scholar] [CrossRef]
- Cornic, M.; Rooker, J.R. Influence of oceanographic conditions on the distribution and abundance of blackfin tuna (Thunnus atlanticus) larvae in the Gulf of Mexico. Fish. Res. 2018, 201, 1–10. [Google Scholar] [CrossRef]
- Li, M.; Zhang, P.; Li, Y.; Chen, S.; Zhang, K.; Kong, X.; Chen, Z. Population genetic structure and genetic diversity of frigate tuna ( Auxis thazard) in the South China Sea. S. China Fish. Sci. 2015, 11, 82–89. [Google Scholar]
- Kong, X.; Jiang, Y.; Gong, Y.; Chen, Z.; Zhang, J.; Fang, J. A preliminary study on fishery biology of Ceratoscopelus warmingii in the central and northern South China Sea. S. China Fish. Sci. 2016, 12, 117–124. [Google Scholar]
- Lu, Z.; Yan, Y.; Dai, Q. Biology of Resource of Auxis thazard in the Minzhong and Mindong Fishing Ground. J. Oceanogr. Taiwan Strait 1992, 11, 251–256. [Google Scholar]
- Zhou, X.; Fan, J.; Yu, J.; Xu, S.; Cai, Y.; Chen, Z. Geostatistics-based study on spatial-temporal distribution of Auxis thazard in South China Sea. S. China Fish. Sci. 2022, 18, 1–8. [Google Scholar] [CrossRef]
- Jing, Z.; Qi, Y.; Du, Y.; Zhang, S.; Xie, L. Summer upwelling and thermal fronts in the northwestern South China Sea: Observational analysis of two mesoscale mapping surveys. J. Geophys. Res. Ocean. 2015, 120, 1993–2006. [Google Scholar] [CrossRef]
- Potts, S.E.; Rose, K.A. Evaluation of GLM and GAM for estimating population indices from fishery independent surveys. Fish. Res. 2018, 208, 167–178. [Google Scholar] [CrossRef]
- Sudhakaran, M.; Ramamoorthy, D.; Savitha, V.; Balamurugan, S. Assessment of trace elements and its influence on physico-chemical and biological properties in coastal agroecosystem soil, Puducherry region. Geol. Ecol. Landsc. 2018, 2, 169–176. [Google Scholar] [CrossRef]
- Heiberger, R.M.; Holland, B. Statistical Analysis and Data Display an Intermediate Course with Examples in R; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Kutner, M.H.; Christopher, J.N.; John, N.; William, L. Applied Linear Statistical Models; McGraw-Hill Irwin: New York, NY, USA, 2005. [Google Scholar]
- Wood, S.N. Stable and efficient multiple smoothing parameter estimation for generalized additive models. J. Am. Stat. Assoc. 2004, 99, 673–686. [Google Scholar] [CrossRef]
- Wood, S.N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. Ser. B 2011, 73, 3–36. [Google Scholar] [CrossRef]
- Wakeley, J.S. A method to create simplified versions of existing habitat suitability index (HSI) models. Environ. Manag. 1988, 12, 79–83. [Google Scholar] [CrossRef]
- Mohri, M.; Nishida, T. Seasonal change in bigeye tuna fishing areas in relation to the oceanographic parameters in the Indian Ocean. J. Natl. Fish. Univ. 1999, 47, 43–54. [Google Scholar]
- Yu, W.; Yi, Q.; Chen, X.; Chen, Y. Modelling the effects of climate variability on habitat suitability of jumbo flying squid, Dosidicus gigas, in the Southeast Pacific Ocean off Peru. ICES J. Mar. Sci. 2016, 73, 239–249. [Google Scholar] [CrossRef]
- Gao, F.; Chen, X.; Fan, J.; Lin, L.; Guang, W. Implementation and verification of intelligent fishing ground forecasting of Illex argentinus in the Southwest Atlantic. J. Shanghai Ocean. Univ. 2011, 20, 754–758. [Google Scholar]
- Yu, J.; Liu, Z.; Chen, P.; Yao, L. Environmental factors affecting the spatiotemporal distribution of Decapterus maruadsi in the western Guangdong waters, China. Appl. Ecol. Environ. Res. 2019, 17, 8485–8499. [Google Scholar] [CrossRef]
- Ghosh, S.; Sivadas, M.; Abdussamad, E.M.; Rohit, P.; Koya, K.P.S.; Joshi, K.K.; Chellappan, A.; Margaret Muthu Rathinam, A.; Prakasan, D.; Sebastine, M. Fishery, population dynamics and stock structure of frigate tuna Auxis thazard (Lacepede, 1800) exploited from Indian waters. Indian J. Fish. 2012, 59, 95–100. [Google Scholar]
- Lu, Z.; Dai, Q.; Yan, Y. Growth and Mortality of Auxis thazard in the Taiwan Strait and its Adjacent Sea. J. Fish. China 1991, 15, 228–235. [Google Scholar]
- Zhang, R. The distribution and spawning period of juveniles and juveniles of three tuna species (bonito, yellowfin tuna, and tuna) in the South China Sea. ACTA Oceanol. Sin. 1983, 5, 368–375. [Google Scholar]
- Chen, X.J.; Liu, B.L. Biology of Fishery Resources; Science Press: China, Beijing, 2017. [Google Scholar]
- King, M. Fisheries Biology, Assessment and Management; Blackwell Publishing: Oxford, UK, 2013. [Google Scholar]
- Liu, K.; Chao, S.; Shaw, P.; Gong, G.; Chen, C.; Tang, T. Monsoon-forced chlorophyll distribution and primary production in the South China Sea: Observations and a numerical study. Deep Sea Res. Part I Oceanogr. Res. Pap. 2002, 49, 1387–1412. [Google Scholar] [CrossRef]
- Wang, B.; Huang, F.; Wu, Z.; Yang, J.; Fu, X.; Kikuchi, K. Multi-scale climate variability of the South China Sea monsoon: A review. Dyn. Atmos. Ocean. 2009, 47, 15–37. [Google Scholar] [CrossRef]
- Liu, Z.; Gan, J. Three-dimensional pathways of water masses in the South China Sea: A modeling study. J. Geophys. Res. Ocean. 2017, 122, 6039–6054. [Google Scholar] [CrossRef]
- Fang, W.; Guo, Z.; Huang, Y. A study of circulation observations in the southern South China Sea marine area. Chin. Sci. Bull. 1997, 42, 2264–2271. [Google Scholar]
- Chen, X.J. Fisheries Resources and Fishery Science; China Ocean Press: China, Beijing, 2004. [Google Scholar]
- Francis, R.I.C.C. Data weighting in statistical fisheries stock assessment models. Can. J. Fish. Aquat. Sci. 2011, 68, 1124–1138. [Google Scholar] [CrossRef]
- Methot, R.D., Jr.; Tromble, G.R.; Lambert, D.M.; Greene, K.E. Implementing a science-based system for preventing overfishing and guiding sustainable fisheries in the United States. ICES J. Mar. Sci. 2014, 71, 183–194. [Google Scholar] [CrossRef]
- Stelzenmüller, V.; Ehrich, S.; Zauke, G.P. Impact of additional small-scale survey data on the geostatistical analyses of demersal fish species in the North Sea. Sci. Mar. 2005, 69, 587–602. [Google Scholar]
- Wang, J.; Boenish, R.; Chen, X.; Tian, S.; Zhu, Z. The effects of spatiotemporal scale on commercial fishery abundance index suitability. ICES J. Mar. Sci. 2021, 78, 2506–2517. [Google Scholar] [CrossRef]
- Doligez, B.; Boulinier, T. Habitat Selection and Habitat Suitability Preferences. J. Wildl. Manag. 2008, 5, 1810–1830. [Google Scholar]
- Jennrich, R.I.; Sampson, P.F. Application of stepwise regression to non-linear estimation. Technometrics 1968, 10, 63–72. [Google Scholar] [CrossRef]
- Zhang, Z. Variable selection with stepwise and best subset approaches. Ann. Transl. Med. 2016, 4, 136. [Google Scholar] [CrossRef] [PubMed]
- Setiawati, M.D.; Sambah, A.B.; Miura, F.; Tanaka, T.; As-Syakur, A.R. Characterization of bigeye tuna habitat in the Southern Waters off Java–Bali using remote sensing data. Adv. Space Res. 2015, 55, 732–746. [Google Scholar] [CrossRef]
- Arrizabalaga, H.; Dufour, F.; Kell, L.; Merino, G.; Ibaibarriaga, L.; Chust, G.; Irigoien, X.; Santiago, J.; Murua, H.; Fraile, I.; et al. Global habitat preferences of commercially valuable tuna. Deep Sea Res. Part II Top. Stud. Oceanogr. 2015, 113, 102–112. [Google Scholar] [CrossRef]
- Qin, H.; Chen, G.; Wang, W.; Wang, D.; Zeng, L. Validation and application of MODIS-derived SST in the South China Sea. Int. J. Remote Sens. 2014, 35, 4315–4328. [Google Scholar] [CrossRef]
Voyage | Time | Season |
---|---|---|
1 | 2015 April | Spring |
2 | 2016 April | Spring |
3 | 2017 April to May | Spring |
4 | 2017 August to September | Summer |
5 | 2018 May | Spring |
6 | 2018 August to September | Summer |
7 | 2019 May | Spring |
8 | 2019 August to September | Summer |
Season | Month | SST | SSTG | Chl-a | MLD | SSS | SSH | Year |
---|---|---|---|---|---|---|---|---|
Spring | 2.856 | 2.789 | 3.134 | 1.270 | 1.694 | 1.476 | 1.767 | 2.274 |
Summer | 3.476 | 1.552 | 3.034 | 1.096 | 1.926 | 1.489 | 3.936 | 3.260 |
Season | GAM Expression | R-sq.(adj) | Deviance Explained | Scale Est | GCV | AIC | RMSE |
---|---|---|---|---|---|---|---|
Spring | (lg (Catch)) ~ factor(year)+s(SSTG)+s(Chl-a)+s(SSS) | 0.347 | 46.90% | 0.469 | 0.589 | 108.246 | 0.684 |
Summer | (lg (Catch)) ~ factor(month)+s(SST)+s(SSH) | 0.267 | 33.60% | 0.729 | 0.813 | 263.927 | 0.967 |
Season | Significance Environmental Variables | Edf | Ref.df | F | p-Value |
---|---|---|---|---|---|
Spring | SSTG | 1.002 | 1.003 | 1.779 | 0.190 |
Chl-a | 1.056 | 1.109 | 6.754 | 0.010 * | |
Summer | SSS | 2.537 | 3.166 | 0.948 | 0.428 |
SST | 3.227 | 4.05 | 4.868 | 0.001 ** | |
SSH | 5.114 | 6.208 | 2.272 | 0.042 * |
Season | Significance Environmental Factors | HSI Expression | F Value | p Value | R2 |
---|---|---|---|---|---|
Spring | Chl-a | X2 = EXP(−587.708648 × (X1 − 0.154604)2) | 12.927 | 0.007 | 0.618 |
Summer | SST | X2 = EXP(−1.345476 × (X1 − 30.405269)2) | 41.905 | 0.000 | 0.840 |
SSH | X2 = EXP(−33.704041 × (X1 − 0.741042)2) | 11.467 | 0.020 | 0.696 |
HSI | Spring (Km2) | Summer (Km2) |
---|---|---|
0–0.2 | 394,776.800 | 653.551 |
0.2–0.4 | 361,754.100 | 11,669.310 |
0.4–0.6 | 170,262.900 | 604,546.100 |
0.6–0.8 | 74,041.410 | 217,699.200 |
0.8–1 | 10,061.910 | 179,244.800 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, X.; Chen, Z.; Xiong, P.; Cai, Y.; Li, J.; Zhang, P.; Zhang, J.; Li, M.; Fan, J. Exploring the Spatial and Temporal Distribution of Frigate Tuna (Auxis thazard) Habitat in the South China Sea in Spring and Summer during 2015–2019 Using Fishery and Remote Sensing Data. Fishes 2022, 7, 218. https://doi.org/10.3390/fishes7050218
Zhou X, Chen Z, Xiong P, Cai Y, Li J, Zhang P, Zhang J, Li M, Fan J. Exploring the Spatial and Temporal Distribution of Frigate Tuna (Auxis thazard) Habitat in the South China Sea in Spring and Summer during 2015–2019 Using Fishery and Remote Sensing Data. Fishes. 2022; 7(5):218. https://doi.org/10.3390/fishes7050218
Chicago/Turabian StyleZhou, Xingxing, Zuozhi Chen, Pengli Xiong, Yancong Cai, Jie Li, Peng Zhang, Jun Zhang, Miao Li, and Jiangtao Fan. 2022. "Exploring the Spatial and Temporal Distribution of Frigate Tuna (Auxis thazard) Habitat in the South China Sea in Spring and Summer during 2015–2019 Using Fishery and Remote Sensing Data" Fishes 7, no. 5: 218. https://doi.org/10.3390/fishes7050218
APA StyleZhou, X., Chen, Z., Xiong, P., Cai, Y., Li, J., Zhang, P., Zhang, J., Li, M., & Fan, J. (2022). Exploring the Spatial and Temporal Distribution of Frigate Tuna (Auxis thazard) Habitat in the South China Sea in Spring and Summer during 2015–2019 Using Fishery and Remote Sensing Data. Fishes, 7(5), 218. https://doi.org/10.3390/fishes7050218