Boldness in Zebrafish Larvae—Development and Differences between a Domesticated Lab Strain and Offspring of Wild-Caught Fish
Abstract
:1. Introduction
2. Material and Methods
2.1. Animals and Housing
2.2. Experimental Procedure
2.3. Daniovision and EthoVision
2.4. Larvae Body Length
2.5. Brain Sampling and qPCR
2.6. Statistical Analysis
3. Results
3.1. Behavioural Development with Age
3.2. Differences in Total Body Length
3.3. Strain Differences in Behavioural Variables
3.4. Brain Gene Expression
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kalueff, A.V.; Stewart, A.M.; Gerlai, R. Zebrafish as an emerging model for studying complex brain disorders. Trends Pharmacol. Sci. 2014, 35, 63–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Graham, C.; von Keyserlingk, M.A.G.; Franks, B. Zebrafish welfare: Natural history, social motivation and behaviour. Appl. Anim. Behav. Sci. 2018, 200, 13–22. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, J.-B.; He, K.-J.; Wang, F.; Liu, C.-F. Advances of Zebrafish in Neurodegenerative Disease: From Models to Drug Discovery. Front. Pharmacol. 2021, 12, 1802. [Google Scholar] [CrossRef] [PubMed]
- Choi, T.-Y.; Choi, T.-I.; Lee, Y.-R.; Choe, S.-K.; Kim, C.-H. Zebrafish as an animal model for biomedical research. Exp. Mol. Med. 2021, 53, 310–317. [Google Scholar] [CrossRef] [PubMed]
- Hill, A.J.; Teraoka, H.; Heideman, W.; Peterson, R.E. Zebrafish as a Model Vertebrate for Investigating Chemical Toxicity. Toxicol. Sci. Off. J. Soc. Toxicol. 2005, 86, 6–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spence, R.; Gerlach, G.; Lawrence, C.; Smith, C. The behaviour and ecology of the zebrafish, Danio rerio. Biol. Rev. Camb. Philos. Soc. 2008, 83, 13–34. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.J.; Paull, G.C.; Tyler, C.R. Improving zebrafish laboratory welfare and scientific research through understanding their natural history. Biol. Rev. 2022, 97, 1038–1056. [Google Scholar] [CrossRef] [PubMed]
- Roy, T.; Bhat, A. Population, sex and body size: Determinants of behavioural variations and behavioural correlations among wild zebrafish Danio rerio. R. Soc. Open Sci. 2018, 5, 170978. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Séguret, A.; Collignon, B.; Halloy, J. Strain differences in the collective behaviour of zebrafish (Danio rerio) in heterogeneous environment. R. Soc. Open Sci. 2016, 3, 160451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mustafa, A.; Roman, E.; Winberg, S. Boldness in Male and Female Zebrafish (Danio rerio) Is Dependent on Strain and Test. Front. Behav. Neurosci. 2019, 13, 248. [Google Scholar] [CrossRef]
- Holden, L.A.; Brown, K.H. Baseline mRNA expression differs widely between common laboratory strains of zebrafish. Sci. Rep. 2018, 8, 4780. [Google Scholar] [CrossRef] [PubMed]
- Vossen, L.E.; Červenỳ, D.; Sarma, O.S.; Thörnqvist, P.-O.; Jutfelt, F.; Fick, J.; Brodin, T.; Winberg, S. Low Concentrations of the Benzodiazepine Drug Oxazepam Induce Anxiolytic Effects in Wild-Caught but Not in Laboratory Zebrafish. Sci. Total Environ. 2020, 703, 134701. [Google Scholar] [CrossRef] [PubMed]
- Coppens, C.M.; de Boer, S.F.; Koolhaas, J.M. Coping styles and behavioural flexibility: Towards underlying mechanisms. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 4021–4028. [Google Scholar] [CrossRef] [PubMed]
- Vindas, M.A.; Gorissen, M.; Höglund, E.; Flik, G.; Tronci, V.; Damsgård, B.; Thörnqvist, P.-O.; Nilsen, T.O.; Winberg, S.; Øverli, Ø.; et al. How do individuals cope with stress? Behavioural, physiological and neuronal differences between proactive and reactive coping styles in fish. J. Exp. Biol. 2017, 220, 1524–1532. [Google Scholar] [CrossRef] [Green Version]
- Øverli, Ø.; Pottinger, T.G.; Carrick, T.R.; Øverli, E.; Winberg, S. Differences in behaviour between rainbow trout selected for high- and low-stress responsiveness. J. Exp. Biol. 2002, 205, 391–395. [Google Scholar] [CrossRef]
- Huntingford, F.A. Implications of domestication and rearing conditions for the behaviour of cultivated fishes. J. Fish Biol. 2004, 65, 122–142. [Google Scholar] [CrossRef]
- Huntingford, F.; Adams, C. Behavioural syndromes in farmed fish: Implications for production and welfare. Behaviour 2005, 142, 1207–1221. [Google Scholar] [CrossRef]
- Agnvall, B.; Katajamaa, R.; Altimiras, J.; Jensen, P. Is domestication driven by reduced fear of humans? Boldness, metabolism and serotonin levels in divergently selected red junglefowl (Gallus gallus). Biol. Lett. 2015, 11, 20150509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Backström, T.; Winberg, S. Serotonin Coordinates Responses to Social Stress—What We Can Learn from Fish. Front. Neurosci. 2017, 11, 595. [Google Scholar] [CrossRef]
- Larson, E.T.; O’Malley, D.M.; Melloni, R.H. Aggression and vasotocin are associated with dominant–subordinate relationships in zebrafish. Behav. Brain Res. 2006, 167, 94–102. [Google Scholar] [CrossRef]
- Dahlbom, S.J.; Backström, T.; Lundstedt-Enkel, K.; Winberg, S. Aggression and monoamines: Effects of sex and social rank in zebrafish (Danio rerio). Behav. Brain Res. 2012, 228, 333–338. [Google Scholar] [CrossRef] [PubMed]
- Ricci, L.; Summers, C.H.; Larson, E.T.; O’Malley, D.; Melloni, R.H. Development of aggressive phenotypes in zebrafish: Interactions of age, experience and social status. Anim. Behav. 2013, 86, 245–252. [Google Scholar] [CrossRef]
- Schnörr, S.; Steenbergen, P.; Richardson, M.; Champagne, D. Measuring thigmotaxis in larval zebrafish. Behav. Brain Res. 2012, 228, 367–374. [Google Scholar] [CrossRef] [PubMed]
- Winberg, S.; Nilsson, G.E. Induction of social dominance by L-dopa treatment in Arctic charr. NeuroReport 1992, 3, 243–246. [Google Scholar] [CrossRef] [PubMed]
- Thörnqvist, P.-O.; McCarrick, S.; Ericsson, M.; Roman, E.; Winberg, S. Bold zebrafish (Danio rerio) express higher levels of delta opioid and dopamine D2 receptors in the brain compared to shy fish. Behav. Brain Res. 2019, 359, 927–934. [Google Scholar] [CrossRef]
- Winberg, S.; Nilsson, G.E.; Olsén, K.H. Social rank and brain levels of monoamines and monoamine metabolites in Arctic charr, Salvelinus alpinus (L.). J. Comp. Physiol. A Sensory Neural Behav. Physiol. 1991, 168, 241–246. [Google Scholar] [CrossRef]
- Øverli, Ø.; Harris, C.A.; Winberg, S. Short-Term Effects of Fights for Social Dominance and the Establishment of Dominant-Subordinate Relationships on Brain Monoamines and Cortisol in Rainbow Trout. Brain, Behav. Evol. 1999, 54, 263–275. [Google Scholar] [CrossRef] [PubMed]
- Cabib, S.; Puglisi-Allegra, S. The mesoaccumbens dopamine in coping with stress. Neurosci. Biobehav. Rev. 2012, 36, 79–89. [Google Scholar] [CrossRef]
- Spanagel, R.; Herz, A.; Shippenberg, T.S. Opposing tonically active endogenous opioid systems modulate the mesolimbic dopaminergic pathway. Proc. Natl. Acad. Sci. USA 1992, 89, 2046–2050. [Google Scholar] [CrossRef] [Green Version]
- Trigo, J.M.; Martin-García, E.; Berrendero, F.; Robledo, P.; Maldonado, R. The endogenous opioid system: A common substrate in drug addiction. Drug Alcohol Depend. 2010, 108, 183–194. [Google Scholar] [CrossRef]
- Kim, D.-K.; Yun, S.; Son, G.H.; Hwang, J.-I.; Park, C.R.; Kim, J.I.; Kim, K.; Vaudry, H.; Seong, J.Y. Coevolution of the Spexin/Galanin/Kisspeptin Family: Spexin Activates Galanin Receptor Type II and III. Endocrinology 2014, 155, 1864–1873. [Google Scholar] [CrossRef] [Green Version]
- Lim, C.H.; Soga, T.; Levavi-Sivan, B.; Parhar, I.S. Chronic Social Defeat Stress Up-Regulates Spexin in the Brain of Nile Tilapia (Oreochromis niloticus). Sci. Rep. 2020, 10, 7666. [Google Scholar] [CrossRef]
- Eyster, K.M.; Brannian, J.D. Gene Expression Profiling in the Aging Ovary. Methods Mol. Biol. 2009, 590, 71–89. [Google Scholar] [CrossRef] [Green Version]
- Vandesompele, J.; De Preter, K.; Pattyn, F.; Poppe, B.; Van Roy, N.; De Paepe, A.; Speleman, F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002, 3, research0034.1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colwill, R.M.; Creton, R. Imaging escape and avoidance behavior in zebrafish larvae. Rev. Neurosci. 2011, 22, 63–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mustafa, A.; Thörnqvist, P.-O.; Roman, E.; Winberg, S. The aggressive spiegeldanio, carrying a mutation in the fgfr1a gene, has no advantage in dyadic fights with zebrafish of the AB strain. Behav. Brain Res. 2019, 370, 111942. [Google Scholar] [CrossRef]
- Norton, W.; Mangoli, M.; Lele, Z.; Pogoda, H.-M.; Diamond, B.; Mercurio, S.; Russell, C.; Teraoka, H.; Stickney, H.L.; Rauch, G.-J.; et al. Monorail/Foxa2 regulates floorplate differentiation and specification of oligodendrocytes, serotonergic raphé; neurones and cranial motoneurones. Development 2005, 132, 645–658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koolhaas, J.M.; Korte, S.M.; De Boer, S.F.; Van Der Vegt, B.J.; Van Reenen, C.G.; Hopster, H.; De Jong, I.C.; Ruis, M.A.W.; Blokhuis, H.J. Coping styles in animals: Current status in behavior and stress-physiology. Neurosci. Biobehav. Rev. 1999, 23, 925–935. [Google Scholar] [CrossRef]
- Ward, A.J.W.; Thomas, P.; Hart, P.J.B.; Krause, J. Correlates of boldness in three-spined sticklebacks (Gasterosteus aculeatus). Behav. Ecol. Sociobiol. 2004, 55, 561–568. [Google Scholar] [CrossRef]
- Brown, C.; Jones, F.; Braithwaite, V.A. Correlation between boldness and body mass in natural populations of the poeciliid Brachyrhaphis episcopi. J. Fish Biol. 2007, 71, 1590–1601. [Google Scholar] [CrossRef] [Green Version]
- Mas-Muñoz, J.; Komen, H.; Schneider, O.; Visch, S.W.; Schrama, J.W. Feeding Behaviour, Swimming Activity and Boldness Explain Variation in Feed Intake and Growth of Sole (Solea solea) Reared in Captivity. PLoS ONE 2011, 6, e21393. [Google Scholar] [CrossRef] [PubMed]
- Vignet, C.; Begout, M.-L.; Péan, S.; Lyphout, L.; Leguay, D.; Cousin, X. Systematic Screening of Behavioral Responses in Two Zebrafish Strains. Zebrafish 2013, 10, 365–375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lange, M.; Neuzeret, F.; Fabreges, B.; Froc, C.; Bedu, S.; Bally-Cuif, L.; Norton, W.H.J. Inter-Individual and Inter-Strain Variations in Zebrafish Locomotor Ontogeny. PLoS ONE 2013, 8, e70172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, X.; Zhao, Y.; Liu, W.; Li, Z.; Souders, C.L.; Martyniuk, C.J. Butylated hydroxytoluene induces hyperactivity and alters dopamine-related gene expression in larval zebrafish (Danio rerio). Environ. Pollut. Barking Essex 1987 2020, 257, 113624. [Google Scholar] [CrossRef]
- Schweitzer, J.; Löhr, H.; Filippi, A.; Driever, W. Dopaminergic and noradrenergic circuit development in zebrafish. Dev. Neurobiol. 2012, 72, 256–268. [Google Scholar] [CrossRef]
Variable (y) | Strain | Equation (y=) | Prob (Slope) | t-Value for Slope Difference | p (adj) |
---|---|---|---|---|---|
Distance moved (cm), dark period | AB | 134.0 + 842.1 × length | <0.001 | 8.36 | <0.001 |
Wild | –861.1 + 2348.0 × length | <0.001 | |||
Distance moved (cm), light period | AB | –386.5+1392.0× length | <0.001 | 3.73 | <0.001 |
Wild | −816.4+2168.0× length | <0.001 | |||
Angular velocity, dark period | AB | 18.9 − 15.4 × length | 0.444 | 0.94 | 1.000 |
Wild | 17.6 − 17.0 × length | 0.159 | |||
Angular velocity, light period | AB | 2.24 − 1.10 × length | 0.923 | 0.21 | 0.998 |
Wild | −4.27 − 6.21 × length | 0.780 | |||
Time in zone, dark period | AB | 4.02 − 0.049 × length | 0.264 | 1.85 | 0.236 |
Wild | 3.93 − 0.183 × length | 0.002 | |||
Time in zone, light period | AB | 2.87 + 0.340 × length | <0.001 | 0.94 | 0.819 |
Wild | 2.36 + 0.215 × length | 0.037 |
Distance Moved | |||||
Dpf | Strain | Light | Prob (Light) | Dark | Prob (Dark) |
5 | AB | 497.6 ± 36.81 | 1.000 | 652.4 ± 77.83 | 1.000 |
Wild | 514.5 ± 36.45 | 682.6 ± 35.45 | |||
7 | AB | 594.4 ± 35.32 | 0.421 | 700.9 ± 35.32 | 0.928 |
Wild | 729.6 ± 35.36 | 810.2 ± 35.35 | |||
12 | AB | 764.6 ± 34.23 | <0.001 | 869.9 ± 34.23 | 0.448 |
Wild | 984.2 ± 34.55 | 1004.0 ± 34.55 | |||
30 | AB | 1199.9 ± 53.05 | <0.001 | 1100.8 ± 53.05 | <0.001 |
Wild | 1480.1 ± 42.82 | 1612.4 ± 42.82 | |||
Time in Zone | |||||
Dpf | Strain | Light | Prob (Light) | Dark | Prob (Dark) |
5 | AB | 6.270 ± 0.464 | 1.000 | 5.183 ± 0.464 | 1.000 |
Wild | 5.475 ± 0.454 | 4.475 ± 0.454 | |||
7 | AB | 4.836 ± 0.427 | 1.000 | 4.740 ± 0.410 | 0.999 |
Wild | 4.515 ± 0.429 | 3.696 ± 0.429 | |||
12 | AB | 5.064 ± 0.407 | 0.039 | 4.050 ± 0.407 | 1.000 |
Wild | 2.776 ± 0.412 | 3.528 ± 0.412 | |||
30 | AB | 3.344 ± 0.664 | 0.002 | 0.463 ± 0.454 | <0.001 |
Wild | 1.920 ± 0.555 | −0.053 ± 0.556 | |||
Angular Velocity | |||||
Dpf | Strain | Light | Prob (Light) | Dark | Prob (Dark) |
5 | AB | 0.31 ± 5.17 | 1.000 | 7.57 ± 5.18 | 1.000 |
Wild | 2.26 ± 5.12 | 15.26 ± 5.13 | |||
7 | AB | −0.70 ± 4.97 | 1.000 | −0.59 ± 4.97 | 1.000 |
Wild | −2.50 ± 4.96 | 3.81 ± 4.98 | |||
12 | AB | 8.22 ± 4.82 | 0.999 | 5.71 ± 4.82 | 1.000 |
Wild | −3.63 ± 4.86 | −2.07 ± 4.86 | |||
30 | AB | 5.45 ± 7.46 | 1.000 | 2.52 ± 7.46 | 1.000 |
Wild | 6.19 ± 6.03 | 8.56 ± 6.02 |
Distance Moved | |||||||
Dark | Light | ||||||
Dpf | Strain | Mean ± S.D. | F (For Variance) | p-Value | Mean ± S.D. | F (For Variance) | p-Value |
5 | AB | 839.5 ± 90.2 | 1.45 | 1.45 | 715.3 ± 121.6 | 1.16 | 0.669 |
Wild | 854.2 ± 176.7 | 713.9 ± 130.8 | |||||
7 | AB | 819.3 ± 82.07 | 2.03 | 2.03 | 731.8 ± 127.2 | 1.22 | 0.564 |
Wild | 931.6 ± 116.9 | 870.7 ± 115.3 | |||||
12 | AB | 925.2 ± 134.7 | 1.48 | 1.48 | 828.4 ± 136.3 | 2.18 | 0.024 |
Wild | 1081 ± 163.8 | 1073 ± 201.1 | |||||
30 | AB | 669.6 ± 219.1 | 3.77 | 3.77 | 699.6 ± 331.2 | 1.84 | 0.085 |
Wild | 1301 ± 425.5 | 1118 ± 446.2 | |||||
Time in Zone | |||||||
Dark | Light | ||||||
Dpf | Strain | Mean ± S.D. | F (For Variance) | p-Value | Mean ± S.D. | F (For Variance) | p-Value |
5 | AB | 3.82 ± 1.50 | 1.45 | 0.277 | 5.69 ± 3.57 | 1.22 | 0.561 |
Wild | 3.50 ± 18.1 | 4.97 ± 3.24 | |||||
7 | AB | 3.88 ± 1.16 | 1.04 | 0.901 | 4.54 ± 2.39 | 1.90 | 0.062 |
Wild | 2.81 ± 1.19 | 4.20 ± 1.73 | |||||
12 | AB | 3.64 ± 1.54 | 1.37 | 0.351 | 5.00 ± 2.81 | 4.63 | <0.001 |
Wild | 2.97 ± 1.31 | 2.63 ± 1.31 | |||||
30 | AB | 3.61 ± 2.20 | 1.10 | 0.777 | 4.38 ± 3.73 | 1.07 | 0.854 |
Wild | 2.21 ± 2.10 | 2.81 ± 3.85 | |||||
Angular Velocity | |||||||
Dark | Light | ||||||
Dpf | Strain | Mean ± S.D. | F (For Variance) | p-Value | Mean ± S.D. | F (For Variance) | p-Value |
5 | AB | 3.82 ± 1.50 | 1.45 | 0.277 | 6.86 ± 31.84 | 2.01 | 0.043 |
Wild | 3.50 ± 1.81 | 14.65 ± 45.13 | |||||
7 | AB | 3.88 ± 1.16 | 1.04 | 0.901 | −0.90 ± 16.90 | 2.06 | 0.036 |
Wild | 2.81 ± 1.19 | 3.48 ± 24.27 | |||||
12 | AB | 3.64 ± 1.54 | 1.37 | 0.351 | 5.72 ± 17.40 | 1.60 | 0.171 |
Wild | 2.97 ± 1.31 | −2.16 ± 21.99 | |||||
30 | AB | 3.61 ± 2.20 | 1.10 | 0.777 | 3.54 ± 21.00 | 1.75 | 0.104 |
Wild | 2.21 ± 2.10 | 9.59 ± 28.61 |
Genes | Wild | AB | p | P Bonferroni |
---|---|---|---|---|
drd2a | 0.528 ± 0.059 | 0.411 ± 0.046 | 0.141 | 0.987 |
drd2b | 0.471 ± 0.085 | 0.165 ± 0.030 | 0.005 | 0.042 |
galr2a | 0.305 ± 0.067 | 0.256 ± 0,056 | 0.589 | 1.000 |
galr2b | 0.594 ± 0.082 | 0.578 ± 0.131 | 0.914 | 1.000 |
htr1aa | 0.591 ± 0.089 | 0.678 ± 0.154 | 0.616 | 1.000 |
oprd1b | 0.416 ± 0.061 | 0.295 ± 0.058 | 0.169 | 1.000 |
spx1 | 0.301 ± 0.050 | 0.258 ± 0.064 | 0.604 | 1.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Axling, J.; Jakobsson, H.; Frymus, N.; Thörnqvist, P.-O.; Petersson, E.; Winberg, S. Boldness in Zebrafish Larvae—Development and Differences between a Domesticated Lab Strain and Offspring of Wild-Caught Fish. Fishes 2022, 7, 197. https://doi.org/10.3390/fishes7040197
Axling J, Jakobsson H, Frymus N, Thörnqvist P-O, Petersson E, Winberg S. Boldness in Zebrafish Larvae—Development and Differences between a Domesticated Lab Strain and Offspring of Wild-Caught Fish. Fishes. 2022; 7(4):197. https://doi.org/10.3390/fishes7040197
Chicago/Turabian StyleAxling, Johanna, Hampus Jakobsson, Natalia Frymus, Per-Ove Thörnqvist, Erik Petersson, and Svante Winberg. 2022. "Boldness in Zebrafish Larvae—Development and Differences between a Domesticated Lab Strain and Offspring of Wild-Caught Fish" Fishes 7, no. 4: 197. https://doi.org/10.3390/fishes7040197
APA StyleAxling, J., Jakobsson, H., Frymus, N., Thörnqvist, P. -O., Petersson, E., & Winberg, S. (2022). Boldness in Zebrafish Larvae—Development and Differences between a Domesticated Lab Strain and Offspring of Wild-Caught Fish. Fishes, 7(4), 197. https://doi.org/10.3390/fishes7040197