Assessment of Coilia mystus and C. nasus in the Yangtze River Estuary, China, Using a Length-Based Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources
2.2. The LBB Method
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Longhurst, A.R.; Pauly, D. Ecology of Tropical Oceans; Academic Press: Cambridge, MA, USA, 1987. [Google Scholar]
- Martinho, F.; Leitão, R.; Neto, J.; Cabral, H.; Marques, J.C.; Pardal, M.A. The use of nursery areas by juvenile fish in a temperate estuary, Portugal. Hydrobiologia 2007, 587, 281–290. [Google Scholar] [CrossRef]
- Martinho, F.; Leitão, R.; Neto, J.M.; Cabral, H.; Lagardère, F.; Pardal, M.A. Estuarine colonization, population structure and nursery functioning for 0-group sea bass (Dicentrarchus labrax), flounder (Platichthys flesus) and sole (Solea solea) in a mesotidal temperate estuary. J. Appl. Ichthyol. 2008, 24, 229–237. [Google Scholar] [CrossRef] [Green Version]
- Elliott, M.; McLusky, D. The Need for Definitions in Understanding Estuaries. Estuar. Coast. Shelf Sci. 2002, 55, 815–827. [Google Scholar] [CrossRef] [Green Version]
- Houde, E.D.; Rutherford, E. Recent Trends in Estuarine Fisheries: Predictions of Fish Production and Yield. Estuaries 1993, 16, 161–176. [Google Scholar] [CrossRef]
- Roessig, J.M.; Woodley, C.M.; Cech, J.J.; Hansen, L.J. Effects of Global Climate Change on Marine and Estuarine Fishes and Fisheries. Rev. Fish Biol. Fish. 2004, 14, 251–275. [Google Scholar] [CrossRef]
- Gillanders, B.M.; Elsdon, T.S.; Halliday, I.A.; Jenkins, G.P.; Robins, J.B.; Valesini, F.J. Potential effects of climate change on Australian estuaries and fish utilising estuaries: A review. Mar. Freshw. Res. 2011, 62, 1115–1131. [Google Scholar] [CrossRef] [Green Version]
- Smith, K.A.; Lenanton, R.C. Almost forgotten: Historical abundance of eel-tail catfish populations in south-western Australian estuaries and their decline due to habitat loss and historical overfishing. Reg. Stud. Mar. Sci. 2021, 41, 101605. [Google Scholar] [CrossRef]
- Cai, W.-J.; Hu, X.; Huang, W.-J.; Murrell, M.C.; Lehrter, J.C.; Lohrenz, S.E.; Chou, W.-C.; Zhai, W.-D.; Hollibaugh, J.T.; Wang, Y.; et al. Acidification of subsurface coastal waters enhanced by eutrophication. Nat. Geosci. 2011, 4, 766–770. [Google Scholar] [CrossRef]
- Li, D.; Zhang, J.; Huang, D.; Wu, Y.; Liang, J. Oxygen depletion off the Changjiang (Yangtze River) Estuary. Sci. China Ser. D Earth Sci. 2002, 45, 1137–1146. [Google Scholar] [CrossRef]
- Zhuang, P. Fisheries of the Yangtze Estuary, 1st ed.; China Agriculture Press: Beijing, China, 2006; 497p. [Google Scholar]
- Luo, M.B. Communities’ Response of Macrobenthos to Huge Engineering and the Ecological Restoration in Yangtze Estuarine, China. Ph.D. Thesis, East China Normal University, Shanghai, China, 2008. [Google Scholar]
- Yu, H.; Xian, W. The environment effect on fish assemblage structure in waters adjacent to the Changjiang (Yangtze) River estuary (1998–2001). Chin. J. Oceanol. Limnol. 2009, 27, 443–456. [Google Scholar] [CrossRef]
- Zhang, Z.; Mammola, S.; Xian, W.; Zhang, H. Modelling the potential impacts of climate change on the distribution of ichthyoplankton in the Yangtze Estuary, China. Divers. Distrib. 2020, 26, 126–137. [Google Scholar] [CrossRef] [Green Version]
- Zhai, L.; Liang, C.; Pauly, D. Assessments of 16 Exploited Fish Stocks in Chinese Waters Using the CMSY and BSM Methods. Front. Mar. Sci. 2020, 7, 483993. [Google Scholar] [CrossRef]
- Gao, X.; Zhang, H.; Yang, G. Springtime spatial distributions of biogenic sulfur compounds in the Yangtze River Estuary and their responses to seawater acidification and dust. J. Geophys. Res. Biogeosci. 2021, 126, e2020JG006142. [Google Scholar] [CrossRef]
- Yu, X. Research on Biological Characteristics of Anadromous Spawning Coilia Mystus in Estuary of the Yangtze River. Master’s Thesis, Shanghai Ocean University, Shanghai, China, 2014. [Google Scholar]
- Froese, R.; Pauly, D. FishBase. World Wide Web Electronic Publication. Available online: www.fishbase.org (accessed on 23 January 2022).
- Cha, B.-Y.; Im, Y.-J.; Jo, H.-S.; Kwon, D.-H. A Fish Community Caught by a Stow Net in the Water off Hwaseong City, the West Sea, Korea. Korean J. Ichthyol. 2013, 25, 119–134. [Google Scholar]
- Choi, H.C.; Youn, S.H.; Huh, S.-H.; Park, J.M. Diet Composition and Feeding Habits of Two Engraulid Fish Larvae (Engraulis japonicus and Coilia nasus) in the Nakdong River Estuary, Korea. J. Coast. Res. 2018, 85, 346–350. [Google Scholar] [CrossRef]
- Zhang, G.X.; Hua, J.D. Changes in the resources of the Coilia mystus in the Yangtze River Estuary and estimation of its maximum sustainable yield. Fish. Sci. Technol. Inf. 1990, 5, 131–134. [Google Scholar] [CrossRef]
- Mao, C.Z.; Jiao, X.M.; Zhong, J.S.; Hua, W.H.; Zhang, X.Y.; Wu, J.X. Research progress on resource status and protection of Coilia nasus in Yangtze River Estuary. J. Huaihai Inst. Technol. 2015, 24, 78–83. [Google Scholar] [CrossRef]
- Zheng, Y. Evaluation of Coilia mystus of the Yangtze River Estuary. J. Anhui Agric. Sci. 2012, 40, 17140–17143. [Google Scholar]
- Itakura, H.; Yokouchi, K.; Kanazawa, T.; Matsumoto, M.; Matoba, T.; Wakiya, R.; Shirai, K.; Ishimatsu, A. Diverse downstream migration patterns of the anadromous Japanese grenadier anchovy Coilia nasus in the Chikugo River estuary and Ariake Sea, Japan. Reg. Stud. Mar. Sci. 2020, 39, 101436. [Google Scholar] [CrossRef]
- Hata, H. Coilia nasus (Corrected Version: 2019). The IUCN Red List of Threatened Species 2018, e.T98895427A143840780. 2018. Available online: https://doi.org/10.2305/IUCN.UK.2018-2.RLTS.T98895427A143840780.en (accessed on 1 September 2021).
- Wang, Y.H.; Ni, Y. On the fisheries resources and their exploitation of the Changjiang (Yangtze) River Estuary in Shanghai Region. J. Fish. China 1984, 8, 147–159. [Google Scholar]
- Shi, W.G.; Wang, B. Status quo of tapertail anchovy resource in the estuaries of the Yangtze River. Acta Hydrobiol. Sin. 2002, 26, 648–653. [Google Scholar]
- Liu, K.; Zhang, M.Y.; Xu, D.P.; Shi, W.G. Studies on resource change and MSY of Coilia mystus in the Yangtze River estuary. J. Shanghai Fish. Univ. 2004, 13, 298–303. [Google Scholar]
- Liu, Q.G.; Shen, J.Z.; Chen, M.K.; Tong, H.Y.; Li, J.L.; Chen, L.Q. Advances of the study on the miniaturization of natural economical fish resources. J. Shanghai Ocean. Univ. 2005, 14, 79–83. [Google Scholar]
- Liu, K.; Xu, D.P.; Duan, J.R.; Zhang, M.Y.; Fang, D.A.; Zhou, Y.F.; Shi, W.G. Fluctuation of biological characteristics and yield of Coilia mystus in fishing season after impoundment of the Three Gorges Dam in Yangtze Estuary. Resour. Environ. Yangtze Basin 2013, 22, 1282–1283. [Google Scholar]
- East China Sea Fisheries Research Institute. Fishes of Shanghai; Shanghai Science and Technology Press: Shanghai, China, 1992; 31p. [Google Scholar]
- Yuan, C.M.; Lin, J.B.; Qin, A.L.; Liu, R.H. On the classification of the anchovies, Coilia, from the lower Yangtze River and the Southeast Coast of China. J. Nanjing Univ. 1976, 2, 1–5. [Google Scholar]
- Yang, Q.; Zhao, F.; Song, C.; Zhang, T.; Miao, Z.B.; Zhuang, P. Analysis of morphological variations among four different geographic populations of Coilia mystus in the Yangtze River Estuary and its adjacent waters. Mar. Fish. 2019, 41, 294–303. [Google Scholar]
- Li, Y.; Xie, S.; Li, Z.; Gong, W.; He, W. Gonad development of an anadromous fish Coilia ectenes (Engraulidae) in lower reach of Yangtze River, China. Fish. Sci. 2007, 73, 1224–1230. [Google Scholar] [CrossRef]
- Ma, C.Y.; Cheng, Q.Q.; Zhang, Q.Y. Development of 12 polymorphic microsatellite markers in Coilia ectenes Jordan and Seale, 1905 (Clupeiformes: Engraulidae) and cross-species amplification in Coilia mystus (Linnaeus, 1758). Environ. Biol. Fishes 2011, 91, 243–249. [Google Scholar] [CrossRef]
- MSA. Magnuson-Stevens Fishery Conservation and Management Act, Public Law 94–265. As Amended by the Magnuson-Stevens Fishery Conservation and Management Reauthorization Act (P.L. 109-479). 2007. Available online: http://www.nmfs.noaa.gov/msa2005/docs/MSA_amended_msa%20_20070112_FINAL.pdf (accessed on 1 September 2021).
- CFP. Regulation (EU) No 1380/2013 of the European Parliament and of the Council of 11 December 2013 on the Common Fisheries Policy, amending Council Regulations (EC) No 1954/2003 and (EC) No 1224/2009 and repealing Council Regulations (EC) No 2371/2002 and (EC) No 639/2004 and Council Decision 2004/585/EC. Off. J. Eur. Union 2013, L354, 22–61. [Google Scholar]
- Froese, R.; Demirel, N.; Coro, G.; Kleisner, K.M.; Winker, H. Estimating fisheries reference points from catch and resilience. Fish Fish. 2017, 18, 506–526. [Google Scholar] [CrossRef] [Green Version]
- Froese, R.; Winker, H.; Coro, G.; Demirel, N.; Tsikliras, A.C.; Dimarchopoulou, D.; Scarcella, G.; Probst, W.N.; Dureuil, M.; Pauly, D. A new approach for estimating stock status from length frequency data. ICES J. Mar. Sci. 2018, 75, 2004–2015. [Google Scholar] [CrossRef]
- Liang, C.; Xian, W.; Liu, S.; Pauly, D. Assessments of 14 Exploited Fish and Invertebrate Stocks in Chinese Waters Using the LBB Method. Front. Mar. Sci. 2020, 7, 314. [Google Scholar] [CrossRef]
- Wang, L.; Lin, L.; Li, Y.; Xing, Y.; Kang, B. Sustainable Exploitation of Dominant Fishes in the Largest Estuary in Southeastern China. Water 2020, 12, 3390. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Liu, S.; Liang, C.; Zhang, H.; Xian, W. Stock Assessment Using LBB Method for Eight Fish Species from the Bohai and Yellow Seas. Front. Mar. Sci. 2020, 7, 164. [Google Scholar] [CrossRef]
- Zhang, L.-L.; Ren, Q.-Q.; Liu, M.; Xu, Q.; Kang, B.; Jiang, X.-B. Fishery Stock Assessments in the Min River Estuary and Its Adjacent Waters in Southern China Using the Length-Based Bayesian Estimation (LBB) Method. Front. Mar. Sci. 2020, 7, 507. [Google Scholar] [CrossRef]
- Wang, X.; He, Y.; Du, F.; Liu, M.; Bei, W.; Cai, Y.; Qiu, Y. Using LBB Tools to Assess Miter Squid Stock in the Northeastern South China Sea. Front. Mar. Sci. 2021, 7, 1192. [Google Scholar] [CrossRef]
- Kindong, R.; Gao, C.; Pandong, N.A.; Ma, Q.; Tian, S.; Wu, F.; Sarr, O. Stock Status Assessments of Five Small Pelagic Species in the Atlantic and Pacific Oceans Using the Length-Based Bayesian Estimation (LBB) Method. Front. Mar. Sci. 2020, 7, 592082. [Google Scholar] [CrossRef]
- Al-Mamun, M.A.; Liu, Q.; Chowdhury, S.R.; Uddin, M.S.; Nazrul, K.M.S.; Sultana, R. Stock Assessment for Seven Fish Species Using the LBB Method from the Northeastern Tip of the Bay of Bengal, Bangladesh. Sustainability 2021, 13, 1561. [Google Scholar] [CrossRef]
- Dimarchopoulou, D.; Mous, P.J.; Firmana, E.; Wibisono, E.; Coro, G.; Humphries, A.T. Exploring the status of the Indonesian deep demersal fishery using length-based stock assessments. Fish. Res. 2021, 243, 106089. [Google Scholar] [CrossRef]
- CNSMC (China National Standardization Management Committee). GB/T 12763.6-2007; Specifications for Oceanographic Survey—Part 6: MARINE Biological Survey. China National Standardization Management Committee: Beijing, China, 2007.
- Froese, R.; Winker, H.; Coro, G.; Demirel, N.; Tsikliras, A.C.; Dimarchopoulou, D.; Scarcella, G.; Probst, W.N.; Dureuil, M.; Pauly, D. A Simple User Guide for LBB (LBB_33a.R). 2019. Available online: http://oceanrep.geomar.de/44832/ (accessed on 1 September 2021).
- Von Bertalanffy, L. A quantitative theory of organic growth (inquiries on growth laws. II). Hum. Biol. 1938, 10, 181–213. [Google Scholar] [CrossRef]
- Pauly, D. Beyond our original horizons: The tropicalization of Beverton and Holt. Rev. Fish Biol. Fish. 1998, 8, 307–334. [Google Scholar] [CrossRef]
- Holt, S.J. The Evaluation of Fisheries Resources by the Dynamic Analysis Stocks, and Notes on the Time Factors Involved. In Proceedings of the Some Problems for Biological Fishery Surveys and Techniques for Their Solutions—A Symposium, Biarritz, France, 1–10 March 1956; International Commission for the Northwest Atlantic Fisheries: Halifax, NS, Canada Special Publication No.1. , 1958; pp. 77–95. [Google Scholar]
- Beverton, R.J.H.; Holt, S.J. Manual of Methods for Fish Stock Assessment, Part II. Tables Yield Funct. Fish. Tech. Pap. 1966, 38, 7–29. [Google Scholar]
- Pauly, D. Anecdotes and the shifting baseline syndrome of fisheries. Trends Ecol. Evol. 1995, 10, 430. [Google Scholar] [CrossRef]
- Schijns, R.; Pauly, D. Management implications of shifting baselines in fish stock assessments. Fish. Manag. Ecol. 2021, 29, 183–195. [Google Scholar] [CrossRef]
- Zhai, L.; Pauly, D. Yield-per-Recruit, Utility-per-Recruit, and Relative Biomass of 21 Exploited Fish Species in China’s Coastal Seas. Front. Mar. Sci. 2019, 6, 724. [Google Scholar] [CrossRef]
- Xie, Y.; Huang, L.M.; Li, J.; Li, W.W.; Zhang, Y.Z. Resource assessment of Clupeiformes fishes in Fujian coastal waters. Mar. Fish. 2012, 34, 285–294. [Google Scholar]
- Fisheries Supervision and Administration Office of Yangtze River Basin. Announcement of the Ministry of Agriculture and Rural Affairs on Adjusting the Special Fishing Management System in the Yangtze River Basin. 2018. Available online: http://www.cjyzbgs.moa.gov.cn/tzgg/201904/t20190428_6220295.htm (accessed on 1 September 2021).
- Guan, W.B.; Chen, H.H.; He, W.H. Reproductive characteristics and condition status of Coilia mystus (Linnaeus) in the Changjiang River estuary. Prog. Fish. Sci. 2011, 32, 1–9. [Google Scholar]
- Yuan, C.F. The changes and causes in resources and population composition of Coilia nasus in the middle and lower reaches of the Yangtze River. Chin. J. Zool. 1988, 23, 12–14. [Google Scholar]
- Zhang, Y.M.; Xu, D.P.; Liu, K.; Shi, W.G. Studies on biological characteristics and change of resource of Coilia nasus Schlegel in the lower reaches of the Yangtze River. Resour. Environ. Yangtze Basin 2005, 14, 694–698. [Google Scholar]
- Esin, E.V.; Markevich, G.N.; Shkil, F.N. Rapid miniaturization of Salvelinus fish as an adaptation to the volcanic impact. Hydrobiologia 2020, 847, 2947–2962. [Google Scholar] [CrossRef]
- Ge, C.G.; Zhong, J.S.; Ge, K.K.; Li, A.D.; Liu, P.T.; Wang, M.X.; Yan, X. Analysis on the composition of by-catch in elver nets and the suggestions on the management of elver nets in Yangtze River estuary. J. Shanghai Ocean. Univ. 2013, 22, 391–397. [Google Scholar]
- Pan, B.Z.; Liu, X.Y. A review of water ecology problems and restoration in the Yangtze River Basin. J. Yangtze River Sci. Res. Inst. 2021, 38, 1–8. [Google Scholar] [CrossRef]
- Liu, H.B.; Jiang, T.; Yang, J. Current status and problems of estuarine tapertail anchovy (Coilia nasus) resource in the Ariake Sea of Japan. Fish. Inf. Strategy 2019, 34, 48–52. [Google Scholar] [CrossRef]
- Hutchings, J.A. Renaissance of a caveat: Allee effects in marine fish. ICES J. Mar. Sci. 2014, 71, 2152–2157. [Google Scholar] [CrossRef] [Green Version]
- Duan, J.R.; Zhang, H.Y.; Liu, K.; Xu, D.P.; Zhang, M.Y.; Shi, W.G. An Overview of Coilia ectenes in Jiangsu Section of the Yangtze River. Agric. Sci. Technol. 2012, 13, 1950–1954. [Google Scholar] [CrossRef]
- Xu, G.C.; Tang, X.; Zhang, C.X.; Gu, R.B.; Zheng, J.L.; Xu, P.; Le, G.W. First studies of embryonic and larval development of Coilia nasus (Engraulidae) under controlled conditions. Aquac. Res. 2011, 42, 593–601. [Google Scholar] [CrossRef]
- Smith, P.J.; Francis, R.; McVeagh, M. Loss of genetic diversity due to fishing pressure. Fish. Res. 1991, 10, 309–316. [Google Scholar] [CrossRef]
- Beardmore, J.A.; Mair, G.C.; Lewis, R.I. Biodiversity in aquatic systems in relation to aquaculture. Aquac. Res. 1997, 28, 829–839. [Google Scholar] [CrossRef]
- Diana, J.S. Aquaculture production and biodiversity conservation. Bioscience 2009, 59, 27–38. [Google Scholar] [CrossRef]
- Del Mar Ortega-Villaizan, M.; Noguchi, D.; Taniguchi, N. Minimization of genetic diversity loss of endangered fish species captive broodstocks by means of minimal kinship selective crossbreeding. Aquaculture 2011, 318, 239–243. [Google Scholar] [CrossRef]
Species | Year | Lmax (cm) | Linf (cm) | Lc_opt (cm) | F/K | Z/K | F/M |
---|---|---|---|---|---|---|---|
Osbeck’s grenadier anchovy (Coilia mystus) | 1982 | 22.0 | 22.8 (22.6–23.0) | 11.0 | 0.72 (0.43–1.10) | 2.37 (2.03–2.79) | 0.44 (0.25–0.72) |
1997–2003 | 19.4 | 21.3 (20.9–21.5) | 12.0 | 2.37 (1.96–2.85) | 3.98 (3.61–4.41) | 1.48 (1.15–1.98) | |
2005 | 20.5 | 21.0 (20.6–21.4) | 12.0 | 7.11 (5.33–9.02) | 9.08 (7.28–10.9) | 3.62 (2.77–4.83) | |
2009 | 20.0 | 21.5 (21.2–21.8) | 16.0 | 1.22 (0.876–1.45) | 1.84 (1.70–1.97) | 1.95 (0.989–3.25) | |
2012 | 22.0 | 21.7 (21.3–22.0) | 16.0 | 3.40 (3.03–3.82) | 4.43 (4.18–4.76) | 3.3 (2.31–4.80) | |
2018–2020 | 20.5 | 24.5 (24.0–25.0) | 14.0 | 3.06 (2.66–3.45) | 4.56 (4.24–4.87) | 1.98 (1.54–2.83) | |
Japanese grenadier anchovy (Coilia nasus) | 2006 | 35.0 | 38.2 (37.8–38.6) | 20.0 | 0.44 (0.23–0.72) | 1.67 (1.53–1.79) | 0.36 (0.17–0.76) |
2011 | 33.4 | 38.7 (38.2–39.3) | 23.0 | 2.28 (1.76–2.64) | 3.68 (3.43–3.95) | 1.62 (0.93–2.11) | |
2019–2020 | 16.2 | 17.1 (16.7–17.2) | 12.0 | 1.5 (1.16–2.19) | 2.21 (2.00–2.53) | 0.55 (0.35–0.90) |
Species | Year | Y’/R | B/B0 | B/BMSY | Stock Status |
---|---|---|---|---|---|
Osbeck’s grenadier anchovy (Coilia mystus) | 1982 | 0.022 (0.009–0.041) | 0.64 (0.25–1.20) | 1.70 (0.70–3.20) | Healthy |
1997–2003 | 0.042 (0.029–0.059) | 0.31 (0.21–0.44) | 0.85 (0.58–1.20) | Fully/overfished | |
2005 | 0.021 (0.014–0.031) | 0.20 (0.13–0.30) | 0.55 (0.35–0.79) | Fully/overfished | |
2009 | 0.120 (0.043–0.227) | 0.21 (0.07–0.38) | 0.50 (0.18–0.92) | Fully/overfished | |
2012 | 0.029 (0.017–0.046) | 0.10 (0.06–0.15) | 0.25 (0.15–0.4) | Stocks outside of safe biological limits | |
2018–2020 | 0.032 (0.021–0.047) | 0.17 (0.11–0.25) | 0.47 (0.31–0.69) | Outside of safe biological limits | |
Japanese grenadier anchovy (Coilia nasus) | 2006 | 0.040 (0.010–0.090) | 0.63 (0.16–1.40) | 1.7 (0.42–3.80) | Healthy |
2011 | 0.057 (0.028–0.084) | 0.26 (0.13–0.39) | 0.71 (0.35–1.10) | Fully/overfished | |
2019–2020 | 0.110 (−0.460–1.200) | 0.08 (−0.33–0.86) | 0.17 (−0.72–1.90) | Stocks outside of safe biological limits |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhai, L.; Li, Z.; Hu, Y.; Huang, C.; Tian, S.; Wan, R.; Pauly, D. Assessment of Coilia mystus and C. nasus in the Yangtze River Estuary, China, Using a Length-Based Approach. Fishes 2022, 7, 95. https://doi.org/10.3390/fishes7030095
Zhai L, Li Z, Hu Y, Huang C, Tian S, Wan R, Pauly D. Assessment of Coilia mystus and C. nasus in the Yangtze River Estuary, China, Using a Length-Based Approach. Fishes. 2022; 7(3):95. https://doi.org/10.3390/fishes7030095
Chicago/Turabian StyleZhai, Lu, Zengguang Li, Yongbin Hu, Chengwei Huang, Siquan Tian, Rong Wan, and Daniel Pauly. 2022. "Assessment of Coilia mystus and C. nasus in the Yangtze River Estuary, China, Using a Length-Based Approach" Fishes 7, no. 3: 95. https://doi.org/10.3390/fishes7030095
APA StyleZhai, L., Li, Z., Hu, Y., Huang, C., Tian, S., Wan, R., & Pauly, D. (2022). Assessment of Coilia mystus and C. nasus in the Yangtze River Estuary, China, Using a Length-Based Approach. Fishes, 7(3), 95. https://doi.org/10.3390/fishes7030095