Fluctuating Asymmetry in Asteriscii Otoliths of Common Carp (Cyprinus carpio) Collected from Three Localities in Iraqi Rivers Linked to Environmental Factors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Study Areas
2.3. Morphometrical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Popper, A.N.; Lu, Z. Structure-function relationships in fish otolith organs. Fish. Res. 2000, 46, 15–25. [Google Scholar] [CrossRef]
- D’Iglio, C.; Natale, S.; Albano, M.; Savoca, S.; Famulari, S.; Gervasi, C.; Lanteri, G.; Panarello, G.; Spanò, N.; Capillo, G. Otolith Analyses Highlight Morpho-Functional Differences of Three Species of Mullet (Mugilidae) from Transitional Water. Sustainability 2022, 14, 398. [Google Scholar] [CrossRef]
- Casselman, J.M. Determination of age and growth. In The Biology of Fish Growth; Weatherley, A.H., Gill, H.S., Eds.; Academic Press: New York, NY, USA, 1987; pp. 209–242. [Google Scholar]
- Wright, P.J.; Panfili, J.; Morales-Nin, B.; Geffen, A.J. Types of calcified structures. A. Otoliths. In Manual of Fish Sclerochronology; Panfili, J., de Pontual, H., Troadec, H., Wright, P.J., Eds.; Ifremer-IRD Coédition: Brest, France, 2002; pp. 31–57. [Google Scholar]
- Panfili, J.; de Pontual, H.; Troadec, H.; Wright, P.J. Manual of Fish Sclerochronology; Coédition Ifremer-IRD: Brest, France, 2002. [Google Scholar]
- Phelps, Q.E.; Edwards, K.R.; Willis, D.W. Precision of five structures for estimating age of common carp. N. Am. J. Fish. Manag. 2007, 27, 103–105. [Google Scholar] [CrossRef]
- Vilizzi, L.; Walker, K.F. Age and growth of common carp, Cyprinus carpio, in the River Murray, Australia: Validation, consistency of age interpretation and growth models. Env. Biol. Fish. 1999, 54, 77–106. [Google Scholar] [CrossRef]
- Brown, P.; Green, C.; Sivakumaran, K.P.; Stoessel, D.; Giles, A. Validating otolith annuli for annual age determination of commoncarp. Trans. Am. Fish. Soc. 2004, 133, 190–196. [Google Scholar] [CrossRef]
- Winker, H.; Weyl, O.L.; Booth, A.J.; Ellender, B.R. Life history and population dynamics of invasive common carp, Cyprinus carpio, within a large turbid African impoundment. Mar. Freshw. Res. 2011, 62, 1270–1280. [Google Scholar] [CrossRef]
- Al-Hassan, L.A.J.; Al-Dubaikel, A.Y.; Wahab, N.K.; Al-Daham, N.K. Asymmetry analysis in the catfish, Heteropneustes fossilis collected from Shatt Al-Arab River, Basrah, Iraq. Riv. Idrobiol. 1990, 29, 775–780. [Google Scholar]
- Al-Hassan, L.A.J.; Hassan, S.S. Asymmetry study in Mystus pelusius collected from Shatt al-Arab River, Basrah, Iraq. Pak. J. Zool. 1994, 26, 276–278. [Google Scholar]
- Jawad, L.A. Asymmetry analysis in the mullet, Liza abu collected from Shatt al-Arab River, Basrah, Iraq. Bol. Mu. Reg. Sci. Nat. Torino 2004, 21, 145–150. [Google Scholar]
- Jawad, L.A.; Al-Janabi, M.I.; Rutkayová, J. Directional fluctuating asymmetry in certain morphological characters as a pollution indicator: Tigris catfish collected from the Euphrates, Tigris, and Shatt al-Arab Rivers in Iraq. Fish. Aquat. Life 2020, 28, 18–32. [Google Scholar] [CrossRef]
- Jawad, L.A.; Abed, J.M. Morphological asymmetry in the greater lizardfish Saurida tumbil (Bloch, 1795) collected from the marine waters of Iraq. Mar. Pollut. Bull. 2020, 159, 111523. [Google Scholar] [CrossRef] [PubMed]
- Mahé, K.; Ider, D.; Massaro, A.; Hamed, O.; Jurado-Ruzafa, A.; Goncalves, P.; Anastasopoulou, A.; Jadaud, A.; Mytilineou, C.; Elleboode, R.; et al. Directional bilateral asymmetry in otolith morphology may affect fish stock discrimination based on otolith shape analysis. ICES J. Mar. Sci. 2019, 76, 232–243. [Google Scholar] [CrossRef]
- Abdullah, A.D. Modelling Approaches to Understand Salinity Variations in a Highly Dynamic Tidal River, the Case of the Shatt Al-Arab River; dissertation of Delft University of Technology and of the Academic Board of the UNESCO-IHE; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- IME. Iraqi Ministries of Environment, Water Resources and Municipalities and Public Works, Volume I: Overview of Present Conditions and Current Use of the Water in the Marshlands Area/Book 1: Water Resources, New Eden Master Plan for Integrated Water Resources Management in the Marshlands Areas; New Eden Group: Brescia, Italy, 2006. [Google Scholar]
- Daoudy, M. Le Partage des Eaux Entre la Syrie, l’Irak et la Turquie. Négociation, Sécurité et Asymétrie des Pouvoirs, Moyen-Orient (in French), Paris. 2005. Available online: http://books.openedition.org/editionscnrs/2449 (accessed on 28 March 2022).
- Zarins, J. Euphrates. In The Oxford Encyclopedia of Archaeology in the Ancient Near East; Meyers, E.M., Ed.; Oxford University Press: New York, NY, USA, 2005. [Google Scholar]
- Isaev, V.A.; Mikhailova, M.V. The hydrology, evolution, and hydrological regime of the mouth area of the Shatt al-Arab River. Wat. Res. 2009, 36, 380–395. [Google Scholar]
- Lazem, I.I.; Al-Naqeeb, N.A. Measuring pollution based on total petroleum hydrocarbons and total organic carbon in Tigris River, Maysan Province, Southern Iraq. Casp. J. Environ. Sci. 2021, 19, 535–545. [Google Scholar]
- Al-Asadi, S.A.; Abdullah, S.S.; Al-Mahmood, H.K. Estimation of minimum amount of the net discharge in the Shatt Al-Arab River (south of Iraq). J. Adab Al-Basrah 2015, 2, 285–314. [Google Scholar]
- Al-Asadi, S.A. The future of freshwater in Shatt Al-Arab River (Southern Iraq). J. Geogr. Geol. 2017, 9, 24–38. [Google Scholar] [CrossRef] [Green Version]
- Al-Tememi, M.K.; Hussein, M.A.; Khaleefa, U.Q.; Ghalib, H.B.; AL-Mayah, A.M.; Ruhmah, A.J. The salts diffusion between East Hammar marsh area and Shatt Al-Arab River Northern Basra City. Marsh. Bull. 2015, 10, 36–45. [Google Scholar]
- Al-Ramadhan, B.; Pastour, M. Tidal characteristics of Shatt Al-Arab River. Mesopotamian J. Mar. Sci. 1987, 2, 15–28. [Google Scholar]
- Abdullah, A.H.J. Evaluation of fish assemblages’ composition in the Euphrates River, southern Thiqar province, Iraq. Mesopot. J. Mar. Sci. 2020, 35, 83–96. [Google Scholar]
- Al-Asadi, S.A.; Al Hawash, A.B.; Alkhlifa, N.H.A.; Ghalib, H.B. Factors affecting the levels of toxic metals in the Shatt Al-Arab River, Southern Iraq. Earth Syst. Environ. 2019, 3, 313–325. [Google Scholar] [CrossRef]
- Gatea, M.H. Study of water quality changes of Shatt Al-Arab River, south of Iraq. J. Univ. Babylon Eng. Sci. 2018, 26, 228–241. [Google Scholar]
- Russ, J. Computer-Assisted Microscopy: The Measurement and Analysis of Image; Plenum Press Corporation: New York, NY, USA, 1990. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Fox, J.; Weisberg, S. Multivariate Linear Models in R: An R Companion to Applied Regression; SAGE Publications: Thousand Oaks, LA, USA, 2011. [Google Scholar]
- Bivand, R.S.; Pebesma, E.; Gomez-Rubio, V. Applied Spatial Data Analysis with R, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Heiberger, R.M.; Holland, B. Statistical Analysis and Data Display: An Intermediate Course with Examples in R, 2nd ed.; Springer: New York, NY, USA, 2015. [Google Scholar]
- Dixon, P. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 2003, 14, 927–930. [Google Scholar] [CrossRef]
- Wickham, H. Ggplot2: Elegant Graphics for Data Analysis, 2nd ed.; Springer International Publishing: Cham, Switzerland, 2016. [Google Scholar]
- Mille, T. Sources de Variation Intra-Populationelle de la Morphologie des Otolithes: Asymétrie Directionnelle et Régime Alimentaire. Ph.D. Thesis, Université de Lille 1—Sciences et Technologies, Lille, France, 2015. [Google Scholar]
- Vignon, M. Disentangling and quantifying sources of otolith shape variation across multiple scales using a new hierarchical partitioning approach. Mar. Ecol. Prog. Ser. 2015, 534, 163–177. [Google Scholar] [CrossRef] [Green Version]
- Mahé, K.; Gourtay, C.; Bled Defruit, G.; Chantre, C.; de Pontual, H.; Amara, R.; Claireaux, G.; Audet, C.; Zambonino-Infante, J.L.; Ernande, B. Do environmental conditions (temperature and food composition) affect otolith shape during fish early-juvenile phase? An experimental approach applied to European Seabass (Dicentrarchus labrax). J. Exp. Mar. Biol. Ecol. 2019, 521, e151239. [Google Scholar] [CrossRef]
- Bolles, K.L.; Begg, G.A. Distinction between silver hake (Merluccius bilineariz) stocks in U.S. waters of the northwest Atlantic using whole otolith morphometric. Fish. Bull. 2000, 98, 451–462. [Google Scholar]
- Holmberg, R.J.; Wilcox-Freeburg, E.; Rhyne, A.L.; Tlusty, M.F.; Stebbins, A.; Nye, S.W., Jr.; Honig, A.; Johnston, A.E.; San Antonio, C.M.; Bourque, B.; et al. Ocean acidification alters morphology of all otolith types in Clark’s anemonefish (Amphiprion clarkii). PeerJ 2019, 7, e6152. [Google Scholar] [CrossRef] [Green Version]
- Lombarte, A.; Lleonart, J. Otolith size changes related with body growth, habitat depth and temperature. Environ. Biol. Fish. 1993, 37, 297–306. [Google Scholar] [CrossRef]
- Mille, T.; Mahé, K.; Villanueva, M.C.; De Pontual, H.; Ernande, B. Sagittal otolith morphogenesis asymmetry in marine fishes. J. Fish Biol. 2015, 87, 646–663. [Google Scholar] [CrossRef]
- Capoccioni, F.; Costa, C.; Aguzzi, J.; Menesatti, P.; Lombarte, A.; Ciccotti, E. Ontogenetic and environmental effects on otolith shape variability in three Mediterranean European eel (Anguilla anguilla, L.) populations. J. Exp. Mar. Biol. Ecol. 2011, 397, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Checkley, D.M.; Dickson, A.G.; Takahashi, M.; Radich, J.A.; Eisenkolb, N.; Asch, R. Elevated CO2 Enhances Otolith Growth in Young Fish. Science 2009, 324, 1683. [Google Scholar] [CrossRef]
- Munday, P.L.; Gagliano, M.; Donelson, J.M.; Dixson, D.L.; Thorrold, S.R. Ocean acidification does not affect the early life history development of a tropical marine fish. Mar. Ecol. Prog. Ser. 2011, 423, 211–221. [Google Scholar] [CrossRef] [Green Version]
- Réveillac, E.; Lacoue-Labarthe, T.; Oberhänsli, F.; Teyssié, J.L.; Jeffree, R.; Gattuso, J.P.; Martin, S. Ocean acidification reshapes the otolith-body allometry of growth in juvenile sea bream. J. Exp. Mar. Bio. Ecol. 2015, 463, 87–94. [Google Scholar] [CrossRef] [Green Version]
- Coll-Lladó, C.; Giebichenstein, J.; Webb, P.B.; Bridges, C.R.; Garcia de la Serrana, D. Ocean acidification promotes otolith growth and calcite deposition in gilthead sea bream (Sparus aurata) larvae. Sci. Rep. 2018, 8, 8384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hüssy, K. Otolith shape in juvenile cod (Gadus morhua): Ontogenetic and environmental effects. J. Exp. Mar. Biol. Ecol. 2008, 364, 35–41. [Google Scholar] [CrossRef]
- Mérigot, B.; Letourneur, Y.; Lecomte-Finiger, R. Characterization of local populations of the common sole Solea solea (Pisces, Soleidae) in the NW Mediterranean through otolith morphometrics and shape analysis. Mar. Biol. 2007, 151, 997–1008. [Google Scholar] [CrossRef]
- Cardinale, M.; Doerin-Arjes, P.; Kastowsky, M.; Mosegaard, H. Effects of sex, stock, and environment on the shape of known-age Atlantic cod (Gadus morhua) otoliths. Can. J. Fish. Aquat. Sci. 2004, 61, 158–167. [Google Scholar] [CrossRef]
- Cadrin, S.X.; Friedland, K.D. The utility of image processing techniques for morphometric analysis and stock identification. Fish. Res. 1999, 43, 129–139. [Google Scholar] [CrossRef]
- Castonguay, M.; Simard, P.; Gagnon, P. Usefulness of Fourier analysis of otolith shape for Atlantic mackerel (Scomber scombrus) stock discrimination. Can. J. Fish. Aquat. Sci. 1999, 48, 296–302. [Google Scholar] [CrossRef]
- Lleonart, J.; Salat, J.; Torres, G.J. Removing allometric effects of body size in morphological analysis. J. Theor. Biol. 2000, 205, 85–93. [Google Scholar] [CrossRef]
- Mahé, K. Sources de Variation de la Forme des Otolithes: Implications Pour la Discrimination des Stocks de Poissons. Ph.D. Thesis, Université du Littoral Côte d’Opale, Boulogne-sur-mer, France, 2019. [Google Scholar]
- Dowhower, J.F.; Blumer, L.S.; Lejeune, P.; Gaudin, P.; Marconato, A.; Bisazza, A. Otolith asymmetry in Cottus bairdi and Cottus gobio. Pol. Arch. Hydrobiol. 1990, 37, 209–220. [Google Scholar]
- Lemberget, T.; Mccormick, M.I. Replenishment success linked to fluctuating asymmetry in larval fish. Oecologia 2009, 159, 83–93. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Gil, C.; Palmer, M.; Catalán, I.A.; Alós, J.; Fuiman, L.A.; García, E.; del Mar Gil, M.; Grau, A.; Kang, A.; Maneja, R.H.; et al. Otolith fluctuating asymmetry: A misconception of its biological relevance? ICES J. Mar. Sci. 2015, 72, 2079–2089. [Google Scholar] [CrossRef]
- Hilbig, R.; Anken, R.; Rahmann, H. On the origin of susceptibility to kinetotic swimming behaviour in fish: A parabolic aircraft flight study. J. Vest. Res. 2003, 12, 185–189. [Google Scholar] [CrossRef]
- Lychakov, D.V. Behavioural lateralization and otolith asymmetry. J. Evol. Biochem. Physiol. 2003, 49, 441–456. [Google Scholar] [CrossRef]
- Lychakov, D.V.; Rebane, Y.T.; Lombarte, A.; Demestre, M.; Fuiman, L.A. Saccular otolith mass asymmetry in adult flatfishes. J. Fish Biol. 2008, 72, 2579–2594. [Google Scholar] [CrossRef] [Green Version]
- Jawad, L.A.; Al-Mamry, J.; Al-Busaidi, H. Relationship between fish length and otolith length and width in the lutjanid fish, Lutjanus bengalensis (Lutjanidae) collected from muscat city coast on the sea of oman. J. Black Sea/Mediterr. Environ. 2011, 17, 116–126. [Google Scholar]
- Jawad, L.A.; Sadighzadeh, Z. Otolith mass asymmetry in the mugilid fish, Liza klunzingeri (Day, 1888) collected from Persian Gulf near Bandar Abbas. Anal. Biol. 2013, 35, 105–107. [Google Scholar] [CrossRef]
- Jawad, L.A. Otolith Mass Asymmetry in Carangoides caerulepinnatus (Rüppell, 1830) (Family: Carangidae) Collected from the Sea of Oman. Croat. J. Fish. 2013, 71, 37–41. [Google Scholar] [CrossRef] [Green Version]
- Jawad, L.A.; Park, J.M.; Kwak, S.N.; Ligas, A. Study of the relationship between fish size and otolith size in four demersal species from the south-eastern yellow sea. Cah. Biol. Mar. 2017, 58, 9–15. [Google Scholar]
- Jawad, L.A.; Qasim, A.M.; Al-Faiz, N.A. Bilateral asymmetry in size of otolith of Otolithes ruber (Bloch & Schneider, 1801) collected from the marine waters of Iraq. Mar. Poll. Bull. 2021, 165, 112110. [Google Scholar]
- Yedier, S.; Bostanci, D.; Kontaş, S.; Kurucu, G.; Polat, N. Comparison of Otolith Mass Asymmetry in Two Different Solea solea Populations in Mediterranean Sea. J. Sci. Tech. 2018, 8, 125–133. [Google Scholar]
- Osman, Y.A.A.; Mahé, K.; El-Mahdy, S.M.; Mohammad, A.S.; Mehanna, S.F. Relationship between Body and Otolith Morphological Characteristics of Sabre Squirrelfish (Sargocentron spiniferum) from the Southern Red Sea: Difference between Right and Left Otoliths. Oceans 2021, 2, 624–633. [Google Scholar] [CrossRef]
- Emre, N. Biometric Relation between Asteriscus Otolith Size and Fish Total Length of Seven Cyprinid Fish Species from Inland Waters of Turkey. Turk. J. Fish. Aquat. Sci. 2019, 20, 171–175. [Google Scholar]
- Takabayashi, A.; Ohmura-Iwasaki, T. Functional asymmetry estimated by measurements of otolith in fish. Biol. Sci. Space. 2003, 17, 293–297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gronkjaer, P.; Sand, M.K. Fluctuating asymmetry and nutritional condition of Baltic cod (Gadus morhua) larvae. Mar. Biol. 2003, 143, 191–197. [Google Scholar] [CrossRef]
- Palmer, A.R. What determines direction of asymmetry: Genes, environment or chance? Philos. Trans. R. Soc. B Biol. Sci. 2016, 371, 20150417. [Google Scholar] [CrossRef] [Green Version]
- Trojette, M.; Ben Faleh, A.; Fatnassi, M.; Marsaoui, B.; Mahouachi, N.H.; Chalh, A.; Quignard, J.-P.; Trabelsi, M. Stock discrimination of two insular populations of Diplodus annularis (Actinopterygii: Perciformes: Sparidae) along the coast of Tunisia by analysis of otolith shape. Acta Ichthyol. Piscat. 2015, 45, 363–372. [Google Scholar] [CrossRef] [Green Version]
- Bostanci, D.; Yilmaz, M.; Yedier, S.; Kurucu, G.; Kontas, S.; Darçin, M.; Polat, N. Sagittal otolith morphology of sharpsnout seabream Diplodus puntazzo (Walbaum, 1792) in the Aegean sea. Int. J. Morphol. 2016, 34, 484–488. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Ye, Z.; Li, Z.; Wan, R.; Ren, Y.; Dou, S. Population structure of Japanese Spanish mackerel Scomberomorus niphonius in the Bohai Sea, the Yellow Sea and the East China Sea: Evidence from retom forests based on otolith features. Fish. Sci. 2016, 82, 251–256. [Google Scholar] [CrossRef]
- Rebaya, M.; Ben Faleh, A.R.; Allaya, H.; Khedher, M.; Trojette, M.; Marsaoui, B.; Fatnassi, M.; Chalh, A.; Quignard, J.P.; Trabelsi, M. Otolith shape discrimination of Liza ramada (Actinopterygii: Mugiliformes: Mugilidae) from marine et estuarine populations in Tunisia. Acta Ichthyol. Piscat. 2017, 47, 13–21. [Google Scholar] [CrossRef] [Green Version]
Otolith Descriptor | TL | Geographical Effect | Side Effect | Geographical Effect/Side Effect | T°C Effect/Side Effect | pH Effect/Side Effect | ||||
---|---|---|---|---|---|---|---|---|---|---|
mean | min | max | mean | min | max | |||||
OLENGTH | 0.004 | 0.213 | 0.005 | 0.331 | 0.011 | 0.053 | 0.434 | 0.004 | 0.005 | 0.222 |
OWEIGHT | 0.051 | 0.278 | <0.001 | 0.187 | 0.059 | 0.212 | 0.529 | 0.029 | 0.048 | 0.307 |
OWIDTH | 0.005 | 0.064 | 0.027 | 0.058 | 0.007 | 0.042 | 0.416 | 0.003 | 0.010 | 0.283 |
Ellipticity | 0.326 | 0.008 | 0.014 | 0.029 | <0.001 | 0.009 | 0.265 | <0.001 | 0.003 | 0.151 |
AR | 0.912 | 0.002 | 0.032 | 0.043 | <0.001 | 0.005 | 0.236 | <0.001 | 0.006 | 0.154 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jawad, L.; Mahé, K. Fluctuating Asymmetry in Asteriscii Otoliths of Common Carp (Cyprinus carpio) Collected from Three Localities in Iraqi Rivers Linked to Environmental Factors. Fishes 2022, 7, 91. https://doi.org/10.3390/fishes7020091
Jawad L, Mahé K. Fluctuating Asymmetry in Asteriscii Otoliths of Common Carp (Cyprinus carpio) Collected from Three Localities in Iraqi Rivers Linked to Environmental Factors. Fishes. 2022; 7(2):91. https://doi.org/10.3390/fishes7020091
Chicago/Turabian StyleJawad, Laith, and Kélig Mahé. 2022. "Fluctuating Asymmetry in Asteriscii Otoliths of Common Carp (Cyprinus carpio) Collected from Three Localities in Iraqi Rivers Linked to Environmental Factors" Fishes 7, no. 2: 91. https://doi.org/10.3390/fishes7020091
APA StyleJawad, L., & Mahé, K. (2022). Fluctuating Asymmetry in Asteriscii Otoliths of Common Carp (Cyprinus carpio) Collected from Three Localities in Iraqi Rivers Linked to Environmental Factors. Fishes, 7(2), 91. https://doi.org/10.3390/fishes7020091