Ovarian Developmental Characteristics and Hypothalamic Transcriptomic Analysis of P. leopardus Under Different Aquaculture Modes
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Approval and Consent to Participate
2.2. Experimental Design and Sampling
2.3. Growth Trait Analysis
2.4. Histological Analysis
2.5. Reproductive Hormone Analysis
2.6. RNA Quantification and Quality Analysis
2.7. Construction of Transcriptome Sequencing Library
2.8. Identification of DEGs and Functional Enrichment Analysis
2.9. qRT-PCR
2.10. Statistical Analysis
3. Results
3.1. Correlation Analysis Between Growth and Ovarian Development of Broodstock in Cage Culture
3.2. Correlation Analysis Between Growth and Ovarian Development of Broodstock in Industrialized Concrete Pond Culture
3.3. Histological Observation of Ovary Development in Broodstock Under Cage Culture
3.4. Histological Observation of Ovarian Development in Broodstock Under Industrialized Concrete Pond Culture
3.5. Analysis of Serum Hormone Levels in Broodstock Under Cage Culture
3.6. Analysis of Serum Hormone Levels in Broodstock Under Industrialized Concrete Pond Culture
3.7. Data Quality Control of Transcriptome
3.8. Differential Gene Analysis of Hypothalamic Tissue in Cage-Cultured Broodstock
3.9. Differential Gene Analysis of Hypothalamus Under Industrialized Concrete Pond Culture
3.10. qRT-PCR Validation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Khasanah, M.; Kadir, N.N.; Jompa, J. Reproductive biology of three important threatened/near-threatened groupers (Plectropomus leopardus, Epinephelus polyphekadion and Plectropomus areolatus) in Eastern Indonesia and implications for management. Animals 2019, 9, 643. [Google Scholar] [CrossRef] [PubMed]
- Astari, B.; Budi, D.S.; Ismi, S.; Effendi, I.; Budiardi, T.; Diatin, I.; Vinasyiam, A.; Sugama, K. Culture performance and financial business of leopard coral (Plectropomus leopardus), humpback (Cromileptes altivelis), and brown-marbled (Epinephelus fuscoguttatus) grouper nursery. Aquac. Rep. 2025, 43. [Google Scholar] [CrossRef]
- Fontaine, R.; Ciani, E.; Haug, T.M.; Hodne, K.; Ager-Wick, E.; Baker, D.M.; Weltzien, F.-A. Gonadotrope plasticity at cellular, population and structural levels: A comparison between fishes and mammals. Gen. Comp. Endocrinol. 2020, 287, 113344. [Google Scholar] [CrossRef] [PubMed]
- Fenske, M.; Maack, G.; Schäfers, C.; Segner, H. An environmentally relevant concentration of estrogen induces arrest of male gonad development in zebrafish, Danio rerio. Environ. Toxicol. Chem. 2005, 24, 1088–1098. [Google Scholar] [CrossRef]
- Schäfers, C.; Teigeler, M.; Wenzel, A.; Maack, G.; Fenske, M.; Segner, H. Concentration-and time-dependent effects of the synthetic estrogen, 17α-ethinylestradiol, on reproductive capabilities of the zebrafish, Danio rerio. J. Toxicol. Environ. Health Part A 2007, 70, 768–779. [Google Scholar] [CrossRef]
- Scholz, S.; Klüver, N. Effects of endocrine disrupters on sexual, gonadal development in fish. Sex. Dev. 2009, 3, 136–151. [Google Scholar] [CrossRef]
- Hess, R.A. Estrogen in the adult male reproductive tract: A review. Reprod. Biol. Endocrinol. 2003, 1, 52. [Google Scholar] [CrossRef]
- Idler, D.R.; Bitners, I.I.; Schmidt, P.J. 11-Ketotestosterone: An androgen for sockeye salmon. Can. J. Biochem. Physiol. 1961, 39, 1737–1742. [Google Scholar] [CrossRef]
- Miura, T.; Yamauchi, K.; Takahashi, H.; Nagahama, Y. Hormonal induction of all stages of spermatogenesis in vitro in the male Japanese eel (Anguilla japonica). Proc. Natl. Acad. Sci. USA 1991, 88, 5774–5778. [Google Scholar] [CrossRef]
- Acharyya, A.; Das, J.; Hasan, K.N. Rhythmicity in testicular melatonin and its correlation with the dynamics of spermatogenic cells in an annual reproductive cycle of Clarias batrachus under natural photo-thermal conditions. Theriogenology 2023, 208, 15–27. [Google Scholar] [CrossRef]
- Lokman, P.M.; Harris, B.; Kusakabe, M.; E Kime, D.; Schulz, R.W.; Adachi, S.; Young, G. 11-Oxygenated androgens in female teleosts: Prevalence, abundance, and life history implications. Gen. Comp. Endocrinol. 2002, 129, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Pool, K.; Rickard, J.; de Graaf, S. Overcoming neuroendocrine and metabolic barriers to puberty: The role of melatonin in advancing puberty in ewe lambs. Domest. Anim. Endocrinol. 2020, 72, 106457. [Google Scholar] [CrossRef] [PubMed]
- Lin, G.; Gao, D.; Lu, J.; Sun, X. Transcriptome profiling reveals the sexual dimorphism of gene expression patterns during gonad differentiation in the half-smooth tongue sole (Cynoglossus semilaevis). Mar. Biotechnol. 2021, 23, 18–30. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Li, Z.; Wang, Y.; Yang, W.; Shi, H.; Li, S.; Zhu, C.; Li, G. Relationship between body weight and morphological traits in female and male spotted scat (Scatophagus argus). Pak. J. Zool. 2021, 54, 1–9. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Y.; Fan, C.; Wang, T.; Chen, C.; Li, Z.; Li, Q.; Chen, S. Study on the method of quick cultivation of female parental half-smooth tongue sole (Cynoglossus semilaevis) with nereid. J. Shanghai Ocean. Univ. 2013, 22, 552–558. [Google Scholar]
- Zohar, Y.; Muñoz-Cueto, J.A.; Elizur, A.; Kah, O. Neuroendocrinology of reproduction in teleost fish. Gen. Comp. Endocrinol. 2010, 165, 438–455. [Google Scholar] [CrossRef]
- Mandal, B.; Kailasam, M.; Bera, A.; Sukumaran, K.; Hussain, T.; Makesh, M.; Thiagarajan, G.; Vijayan, K. Gonadal recrudescence and annual reproductive hormone pattern of captive female spotted scats (Scatophagus argus). Anim. Reprod. Sci. 2020, 213, 106273. [Google Scholar] [CrossRef]
- Sisneros, J.A.; Forlano, P.M.; Knapp, R.; Bass, A.H. Seasonal variation of steroid hormone levels in an intertidal-nesting fish, the vocal plainfin midshipman. Gen. Comp. Endocrinol. 2004, 136, 101–116. [Google Scholar] [CrossRef]
- Zamri, A.S.; Zulperi, Z.; Esa, Y.; Syukri, F. Hormone Application for Artificial Breeding Towards Sustainable Aquaculture–A Review. Pertanika J. Trop. Agric. Sci. 2022, 45, 1035–1051. [Google Scholar] [CrossRef]
- Zhou, Q.-B.; Wu, H.-D.; Zhu, C.-S.; Yan, X.-H. Effects of dietary lipids on tissue fatty acids profile, growth and reproductive performance of female rice field eel (Monopterus albus). Fish Physiol. Biochem. 2011, 37, 433–445. [Google Scholar] [CrossRef]
- Marino, G.; Azzurro, E.; Massari, A.; Finoia, M.G.; Mandich, A. Reproduction in the dusky grouper from the southern Mediterranean. J. Fish Biol. 2001, 58, 909–927. [Google Scholar] [CrossRef]
- Marino, G.; Panini, E.; Longobardi, A.; Mandich, A.; Finoia, M.; Zohar, Y.; Mylonas, C. Induction of ovulation in captive-reared dusky grouper, Epinephelus marginatus (Lowe, 1834), with a sustained-release GnRHa implant. Aquaculture 2003, 219, 841–858. [Google Scholar] [CrossRef]
- Hassin, S.; de Monbrison, D.; Hanin, Y.; Elizur, A.; Zohar, Y.; Popper, D. Domestication of the white grouper, Epinephelus aeneus 1. Growth and reproduction. Aquaculture 1997, 156, 305–316. [Google Scholar] [CrossRef]
- Lee, C.; Hur, S.; Kim, B.; Soyano, K.; Lee, Y. Induced maturation and fertilized egg production of the red-spotted grouper, Epinephelus akaara, using adaptive physiology of photoperiod and water temperature. Aquac. Res. 2020, 51, 2084–2090. [Google Scholar] [CrossRef]
- Peter, R.E. 3 The Brain and Neurohormones in Teleost Reproduction. Fish Physiol. 1983, 9, 97–135. [Google Scholar]
- Conn, P.M.; Crowley, W.F., Jr. Gonadotropin-releasing hormone and its analogs. Annu. Rev. Med. 1994, 45, 391–405. [Google Scholar] [CrossRef]
- Habibi, H.R.; Van der Kraak, G.; Bulanski, E.; Peter, R.E. Effect of teleost GnRH on reinitiation of oocyte meiosis in goldfish, in vitro. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 1988, 255, R268–R273. [Google Scholar] [CrossRef]
- Habibi, H.R.; Van Der Kraak, G.; Fraser, R.; Peter, R.E. Effect of a teleost GnRH analog on steroidogenesis by the follicle-enclosed goldfish oocytes, in vitro. Gen. Comp. Endocrinol. 1989, 76, 95–105. [Google Scholar] [CrossRef]
- Aroua, S.; Weltzien, F.-A.; Le Belle, N.; Dufour, S. Development of real-time RT-PCR assays for eel gonadotropins and their application to the comparison of in vivo and in vitro effects of sex steroids. Gen. Comp. Endocrinol. 2007, 153, 333–343. [Google Scholar] [CrossRef]
- Cui, M.; Li, W.; Liu, W.; Yang, K.; Pang, Y.; Haoran, L. Production of recombinant orange-spotted grouper (Epinephelus coioides) luteinizing hormone in insect cells by the baculovirus expression system and its biological effect. Biol. Reprod. 2007, 76, 74–84. [Google Scholar] [CrossRef]
- Lee, W.; Kang, C.-W.; Su, C.-K.; Okubo, K.; Nagahama, Y. Screening estrogenic activity of environmental contaminants and water samples using a transgenic medaka embryo bioassay. Chemosphere 2012, 88, 945–952. [Google Scholar] [CrossRef]
- Breton, B.; Sambroni, E. Steroid Activation of the Brain–Pituitary Complex Gonadotropic Function in the Triploid Rainbow Trout Oncorhynchus mykiss. Gen. Comp. Endocrinol. 1996, 101, 155–164. [Google Scholar] [CrossRef] [PubMed]
- Inserra, P.I.F.; Charif, S.E.; Di Giorgio, N.P.; Saucedo, L.; Schmidt, A.R.; Fraunhoffer, N.; Halperin, J.; Gariboldi, M.C.; Leopardo, N.P.; Lux-Lantos, V.; et al. ERα and GnRH co-localize in the hypothalamic neurons of the South American plains vizcacha, Lagostomus maximus (Rodentia, Caviomorpha). J. Mol. Histol. 2017, 48, 259–273. [Google Scholar] [CrossRef] [PubMed]
- Chimento, A.; Sirianni, R.; Casaburi, I.; Pezzi, V. Role of estrogen receptors and G protein-coupled estrogen receptor in regulation of hypothalamus–pituitary–testis axis and spermatogenesis. Front. Endocrinol. 2014, 5, 1. [Google Scholar] [CrossRef]
- Gao, Y.; Jing, Q.; Huang, B.; Jia, Y. Molecular cloning, characterization, and mRNA expression of gonadotropins during larval development in turbot (Scophthalmus maximus). Fish Physiol. Biochem. 2019, 45, 1697–1707. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Qin, Z.; Lu, Z.; Liang, R.; Zhao, L.; Pan, G.; Lin, L.; Zhang, K. Comparative transcriptomics of gonads reveals the molecular mechanisms underlying gonadal development in giant freshwater prawns (Macrobrachium rosenbergii). J. Mar. Sci. Eng. 2022, 10, 737. [Google Scholar] [CrossRef]
- Heidari, B.; Roozati, S.; Yavari, L. Changes in plasma levels of steroid hormones during oocyte development of Caspian Kutum (Rutilus frisii kutum, Kamensky, 1901). Anim. Reprod. (AR) 2018, 7, 373–381. [Google Scholar]
- Tsutsui, K.; Ubuka, T.; Son, Y.L.; Bentley, G.E.; Kriegsfeld, L.J. Contribution of GnIH research to the progress of reproductive neuroendocrinology. Front. Endocrinol. 2015, 6, 179. [Google Scholar] [CrossRef]
- Shahjahan, M.; Doi, H.; Ando, H. LPXRFamide peptide stimulates growth hormone and prolactin gene expression during the spawning period in the grass puffer, a semi-lunar synchronized spawner. Gen. Comp. Endocrinol. 2016, 227, 77–83. [Google Scholar] [CrossRef]
- Moussavi, M.; Wlasichuk, M.; Chang, J.P.; Habibi, H.R. Seasonal effect of GnIH on gonadotrope functions in the pituitary of goldfish. Mol. Cell. Endocrinol. 2012, 350, 53–60. [Google Scholar] [CrossRef]
- Wang, Q.; Qi, X.; Guo, Y.; Li, S.; Zhang, Y.; Liu, X.; Lin, H. Molecular identification of GnIH/GnIHR signal and its reproductive function in protogynous hermaphroditic orange-spotted grouper (Epinephelus coioides). Gen. Comp. Endocrinol. 2015, 216, 9–23. [Google Scholar] [CrossRef] [PubMed]
- Moussavi, M.; Wlasichuk, M.; Chang, J.P.; Habibi, H.R. Seasonal effect of gonadotrophin inhibitory hormone on gonadotrophin-releasing hormone-induced gonadotroph functions in the goldfish pituitary. J. Neuroendocrinol. 2013, 25, 506–516. [Google Scholar] [CrossRef] [PubMed]
- Cuisset, B.; Fostier, A.; Williot, P.; Bennetau-Pelissero, C.; Le Menn, F. Occurrence and in vitro biosynthesis of 11-ketotestosterone in Siberian sturgeon, Acipenser baeri Brandt maturing females. Fish Physiol. Biochem. 1995, 14, 313–322. [Google Scholar] [CrossRef] [PubMed]
- Davail-Cuisset, B.; Rouault, T.; Williot, P. Estradiol, testosterone, 11-ketotestosterone, 17, 20β-dihydroxy-4-pregnen-3-one and vitellogenin plasma levels in females of captive European sturgeon, Acipenser sturio. J. Appl. Ichthyol. 2011, 27, 666–672. [Google Scholar] [CrossRef]
- Matsubara, M.; Lokman, P.; Senaha, A.; Kazeto, Y.; Ijiri, S.; Kambegawa, A.; Hirai, T.; Young, G.; Todo, T.; Adachi, S.; et al. Synthesis and possible function of 11-ketotestosterone during oogenesis in eel (Anguilla spp.). Fish Physiol. Biochem. 2003, 28, 353–354. [Google Scholar] [CrossRef]
- Idler, D.R.; Hwang, S.J.; Crim, L.W.; Reddin, D. Determination of sexual maturation stages of Atlantic salmon (Salmo salar) captured at sea. Can. J. Fish. Aquat. Sci. 1981, 38, 405–413. [Google Scholar] [CrossRef]
- Martyniuk, C.J.; Prucha, M.S.; Doperalski, N.J.; Antczak, P.; Kroll, K.J.; Falciani, F.; Barber, D.S.; Denslow, N.D. Gene expression networks underlying ovarian development in wild largemouth bass (Micropterus salmoides). PLoS ONE 2013, 8, e59093. [Google Scholar] [CrossRef]
- Heenan, P.; Zondag, L.; Wilson, M.J. Evolution of the Sox gene family within the chordate phylum. Gene 2016, 575, 385–392. [Google Scholar] [CrossRef]
- Huo, W.; Wan, R.; Wang, P.; Zhang, L.; Xia, X. Molecular cloning, characterization of dax1 gene and its response to progesterone in Misgurnus anguillicaudatus. Drug Chem. Toxicol. 2019, 42, 624–633. [Google Scholar] [CrossRef]
- Xia, X.; Wan, R.; Huo, W.; Zhang, L.; Xia, X.; Chang, Z. Molecular cloning and mRNA expression pattern of Sox 4 in Misgurnus anguillicaudatus. J. Genet. 2018, 97, 869–877. [Google Scholar] [CrossRef]
- Hu, Y.; Wang, B.; Du, H. A review on sox genes in fish. Rev. Aquac. 2021, 13, 1986–2003. [Google Scholar] [CrossRef]
- Kanai-Azuma, M.; Kanai, Y.; Gad, J.M.; Tajima, Y.; Taya, C.; Kurohmaru, M.; Sanai, Y.; Yonekawa, H.; Yazaki, K.; Tam, P.P.L.; et al. Depletion of definitive gut endoderm in Sox17-null mutant mice. Development 2002, 129, 2367–2379. [Google Scholar] [CrossRef]
- Hu, M.-C.; Hsu, N.-C.; Ben El Hadj, N.; Pai, C.-I.; Chu, H.-P.; Wang, C.-K.L.; Chung, B.-C. Steroid deficiency syndromes in mice with targeted disruption of Cyp11a1. Mol. Endocrinol. 2002, 16, 1943–1950. [Google Scholar] [CrossRef]
- Kusakabe, M.; Nakamura, I.; Evans, J.; Swanson, P.; Young, G. Changes in mRNAs encoding steroidogenic acute regulatory protein, steroidogenic enzymes and receptors for gonadotropins during spermatogenesis in rainbow trout testes. J. Endocrinol. 2006, 189, 541–554. [Google Scholar] [CrossRef]
- Zarein, M.; Zarban, A.; Shoorei, H.; Gharekhani, M.; Hassanzadeh-Taheri, M. The amelioration of ovarian dysfunction by hesperidin in malathion-treated mice through the overexpression of PCNA and FSHR proteins. Heliyon 2023, 9, e22484. [Google Scholar] [CrossRef]






| Final Body Weight (kg) | Final Body Length (cm) | |
|---|---|---|
| LN | 0.27 ± 0.14 a | 26.61 ± 1.22 a |
| MN | 0.19 ± 0.16 a | 23.74 ± 1.50 a |
| SN | 0.12 ± 0.18 a | 21.43 ± 1.59 a |
| Final Body Weight (kg) | Final Body Length (cm) | Weight Gain Rate (%) WGR | Body Length Growth Rate (%) LRGR | Gonadosomatic Index (%) GSI | Specific Growth Rate (%/d) SGR | Developmental Stage | ||
|---|---|---|---|---|---|---|---|---|
| 14 Month age | LN | 0.45 ± 0.08 a | 30.21 ± 1.05 a | 0.67 ± 0.07 a | 0.14 ± 0.06 a | 0.26 ± 0.07 a | 3.00 ± 0.26 | II |
| MN | 0.36 ± 0.07 a | 28.08 ± 2.02 a | 0.89 ± 0.12 a | 0.18 ± 0.11 a | 0.26 ± 0.02 a | 2.83 ± 0.30 | II | |
| SN | 0.24 ± 0.09 a | 25.43 ± 1.35 a | 1.00 ± 0.23 a | 0.19 ± 0.10 a | 0.25 ± 0.08 a | 2.00 ± 0.34 | II | |
| 16 Month age | LN | 0.50 ± 0.10 a | 31.53 ± 1.79 a | 0.11 ± 0.03 a | 0.04 ± 0.07 a | 0.36 ± 0.02 a | 0.83 ± 0.22 | III |
| MN | 0.38 ± 0.09 a | 28.50 ± 1.44 a | 0.06 ± 0.03 a | 0.02 ± 0.09 a | 0.37 ± 0.04 a | 0.33 ± 0.19 | III | |
| SN | 0.27 ± 0.07 a | 27.48 ± 2.06 a | 0.13 ± 0.05 a | 0.08 ± 0.10 a | 0.36 ± 0.05 a | 0.53 ± 0.19 | III | |
| 18 Month age | LN | 0.62 ± 0.05 a | 34.60 ± 1.11 a | 0.24 ± 0.10 a | 0.10 ± 0.07 a | 0.76 ± 0.02 a | 2.00 ± 0.19 | IV |
| MN | 0.58 ± 0.08 a | 32.78 ± 1.53 a | 0.53 ± 0.07 a | 0.15 ± 0.08 a | 0.71 ± 0.03 a | 3.33 ± 0.22 | IV | |
| SN | 0.42 ± 0.06 a | 29.22 ± 0.92 a | 0.56 ± 0.08 a | 0.16 ± 0.08 a | 0.82 ± 0.04 a | 2.53 ± 0.16 | IV | |
| Ttem | Final Body Weight (kg) | Final Body Length (cm) |
|---|---|---|
| LC | 0.29 ± 0.03 a | 27.66 ± 1.21 a |
| MC | 0.20 ± 0.01 a | 23.97 ± 1.13 a |
| SC | 0.14 ± 0.01 a | 20.59 ± 1.01 a |
| Final Body Weight (kg) | Final Body Length (cm) | Weight Gain Rate (%) WGR | Body Length Growth Rate (%) LRGR | Gonadosomatic Index (%) GSI | Specific Growth Rate (%/d) SGR | Developmental Stage | ||
|---|---|---|---|---|---|---|---|---|
| 14 Month age | LC | 0.49 ± 0.05 a | 32.10 ± 1.80 a | 0.66 ± 0.02 a | 0.16 ± 0.08 a | 0.24 ± 0.01 a | 3.25 ± 0.10 | III |
| MC | 0.33 ± 0.03 a | 26.90 ± 2.20 a | 0.63 ± 0.02 a | 0.12 ± 0.10 a | 0.18 ± 0.04 a | 2.08 ± 0.06 | III | |
| SC | 0.27 ± 0.04 a | 25.10 ± 1.90 a | 0.89 ± 0.03 a | 0.22 ± 0.11 a | 0.21 ± 0.05 a | 2.08 ± 0.08 | III | |
| 16 Month age | LC | 0.64 ± 0.12 a | 34.96 ± 0.74 a | 0.30 ± 0.03 a | 0.09 ± 0.06 a | 0.16 ± 0.03 a | 2.42 ± 0.21 | III |
| MC | 0.48 ± 0.09 a | 30.85 ± 1.31 a | 0.46 ± 0.03 a | 0.15 ± 0.10 a | 0.18 ± 0.01 a | 2.50 ± 0.15 | III | |
| SC | 0.45 ± 0.05 a | 29.85 ± 2.17 a | 0.68 ± 0.03 a | 0.19 ± 0.12 a | 0.18 ± 0.02 a | 3.00 ± 0.11 | III | |
| 18 Month age | LC | 0.81 ± 0.11 a | 35.63 ± 0.59 a | 0.28 ± 0.03 a | 0.02 ± 0.03 a | 0.13 ± 0.01 a | 2.92 ± 0.27 | III |
| MC | 0.67 ± 0.07 a | 32.62 ± 0.78 a | 0.41 ± 0.02 a | 0.06 ± 0.05 a | 0.13 ± 0.03 a | 3.25 ± 0.18 | III | |
| SC | 0.59 ± 0.11 a | 30.47 ± 1.06 a | 0.33 ± 0.03 a | 0.02 ± 0.08 a | 0.14 ± 0.01 a | 2.42 ± 0.20 | III | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Ding, J.; Zhang, X.; Jiang, T.; Tang, F.; Zheng, L.; Tan, Y.; Zhang, M.; Luo, J.; Wen, X. Ovarian Developmental Characteristics and Hypothalamic Transcriptomic Analysis of P. leopardus Under Different Aquaculture Modes. Fishes 2026, 11, 30. https://doi.org/10.3390/fishes11010030
Ding J, Zhang X, Jiang T, Tang F, Zheng L, Tan Y, Zhang M, Luo J, Wen X. Ovarian Developmental Characteristics and Hypothalamic Transcriptomic Analysis of P. leopardus Under Different Aquaculture Modes. Fishes. 2026; 11(1):30. https://doi.org/10.3390/fishes11010030
Chicago/Turabian StyleDing, Jingjing, Xin Zhang, Tianyu Jiang, Feng Tang, Liangtao Zheng, Yafeng Tan, Mengmeng Zhang, Jian Luo, and Xin Wen. 2026. "Ovarian Developmental Characteristics and Hypothalamic Transcriptomic Analysis of P. leopardus Under Different Aquaculture Modes" Fishes 11, no. 1: 30. https://doi.org/10.3390/fishes11010030
APA StyleDing, J., Zhang, X., Jiang, T., Tang, F., Zheng, L., Tan, Y., Zhang, M., Luo, J., & Wen, X. (2026). Ovarian Developmental Characteristics and Hypothalamic Transcriptomic Analysis of P. leopardus Under Different Aquaculture Modes. Fishes, 11(1), 30. https://doi.org/10.3390/fishes11010030

