Histological, Immunohistochemical, and Ultrastructural Characterization of Cartilage in Molly Fish (Poecilia sphenops): Insights into Skeletal Adaptations in Teleosts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Histological and Histochemical Analyses
2.3. Histomorphometric Analysis
2.4. Semithin Sections and TEM
2.5. Immunohistochemical Analysis
2.6. Antibody Specificity
3. Results
3.1. Histological Analysis
3.2. Immunohistochemistry
3.3. Electron Microscopy
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fox, S.A.J.; Bedi, A.; Rodeo, S.A. The basic science of articular cartilage: Structure, composition, and function. Sports Health 2009, 1, 461–468. [Google Scholar] [CrossRef]
- Witten, P.E.; Huysseune, A.; Hall, B.K. A practical approach for the identification of the many cartilaginous tissues in teleost fish. J. Appl. Ichth. 2010, 26, 257–262. [Google Scholar] [CrossRef]
- Dewit, J.; Witten, P.E.; Huysseune, A. The mechanism of cartilage subdivision in the reorganization of the zebrafish pectoral fin endoskeleton. J. Exp. Zool. 2011, 316B, 584–597. [Google Scholar] [CrossRef]
- Estêvão, M.D.; Silva, N.; Redruello, B.; Costa, R.; Gregório, S.; Canário, A.V.; Power, D.M. Cellular morphology and markers of cartilage and bone in the marine teleost Sparus auratus. Cell Tissue Res. 2011, 343, 619–635. [Google Scholar] [CrossRef]
- Huysseune, A.; Sire, J.Y. Development of cartilage and bone tissues of the anterior part of the mandible in cichlid fish: A light and TEM study. Anat. Rec. 1992, 233, 357–375. [Google Scholar] [CrossRef] [PubMed]
- Mokhtar, D.M. The skeleton of fish. In Fish Histology: From Cells to Organs, 2nd ed.; Mokhtar, D.M., Ed.; Apple Academic Press: New York, NY, USA, 2007; Volume 3, pp. 154–196. [Google Scholar] [CrossRef]
- Alda, F.; Reina, R.G.; Doadrio, I.; Bermingham, E. Phylogeny and biogeography of the Poecilia sphenops species complex (Actinopterygii, Poeciliidae) in Central America. Mol. Phyl. Evol. 2013, 66, 1011–1026. [Google Scholar] [CrossRef] [PubMed]
- Benjamin, M. Hyaline-cell cartilage (chondroid) in the heads of teleosts. Anat. Embryol. 1989, 179, 285–303. [Google Scholar] [CrossRef]
- Benjamin, M.; Ralphs, J.R.; Eberewariye, O.S. Cartilage and related tissues in the trunk and fins of teleosts. J. Anat. 1992, 181, 113–118. [Google Scholar] [PubMed Central]
- Zamani, A.; Khajavi, M.; Nazarpak, M.H.; Solouk, A.; Atef, M. Preliminary evaluation of fish cartilage as a promising biomaterial in cartilage tissue engineering. Ann. Anat. 2024, 253, 152232. [Google Scholar] [CrossRef]
- Chaumel, J.; Schotte, M.; Bizzarro, J.J.; Zaslansky, P.; Fratzl, P.; Baum, D.; Dean, M.N. Co-aligned chondrocytes: Zonal morphological variation and structured arrangement of cell lacunae in tessellated cartilage. Bone 2020, 134, 115264. [Google Scholar] [CrossRef]
- Zylberberg, L.; Meunier, F.J. New data on the structure and the chondrocyte populations of the haemal cartilage of abdominal vertebrae in the adult carp Cyprinus carpio (Ostariophysii, Cyprinidae). Cybium 2008, 32, 225–239. [Google Scholar] [CrossRef]
- Witten, P.E.; Huysseune, A. Mechanisms of chondrogenesis and osteogenesis in fins. In Fins and Limbs: Evolution, Development, and Transformation; Witten, P.E., Huysseune, A., Eds.; The University of Chicago Press: Chicago, IL, USA, 2006; pp. 79–92. Available online: https://biblio.ugent.be/publication/8646018 (accessed on 20 March 2024).
- Witten, P.E.; Huysseune, A.A. comparative view on mechanisms and functions of skeletal remodelling in teleost fish, with special emphasis on osteoclasts and their function. Biol. Rev. Camb. Philos. Soc. 2009, 84, 315–346. [Google Scholar] [CrossRef] [PubMed]
- Ríos-Flores, A.J.; López-Flores, S.; Martínez-Moreno, J.A.; Falcon-Romero, K.Y.; Asencio-Alcudia, G.G.; Sepúlveda-Quiroz, C.A.; Martínez-García, R.; Rodríguez-Salazar, E.; González, C.A.A.; Maldonado, E. Regeneration of the caudal fin of the evolutionary ancient tropical gar Atractosteus tropicus. BMC Zool. 2024, 9, 26. [Google Scholar] [CrossRef]
- Posner, L.P.; Scott, G.N.; Law, J.M. Repeated exposure of goldfish (Carassius auratus) to tricaine methanesulfonate (MS-222). Zo. Wild. Med. 2013, 44, 340–347. [Google Scholar] [CrossRef] [PubMed]
- Bancroft, F.J.; Gamble, M. Theory and Practice of Histological Techniques, 6th ed.; Bancroft, J.D., Gamble, M., Eds.; Churchill Livingstone Elsevier: Philadelphia, PA, USA, 2008; Volume 172, pp. 593–620. [Google Scholar] [CrossRef]
- Ackerman, K.M.; Boyd, R.T. Analysis of nicotinic acetylcholine receptor (nAChR) gene expression in zebrafish (Danio rerio) by in situ hybridization and PCR. In Nicotinic Acetylcholine Receptor Technologies Neuromethods; Ackerman, K.M., Boydvol, R.T., Eds.; Springer: New York, NY, USA, 2016; pp. 1–31. [Google Scholar] [CrossRef]
- Capillo, G.; Zaccone, G.; Cupello, C.; Fernandes, J.M.O.; Viswanath, K.; Kuciel, M.; Zuwala, K.; Guerrera, M.C.; Aragona, M.; Icardo, J.M. Expression of acetylcholine, its contribution to regulation of immune function and O2 sensing and phylogenetic interpretations of the African Butterfly Fish Pantodon buchholzi (Osteoglossiformes, Pantodontidae). Fish Shellfish Immunol. 2021, 111, 189–200. [Google Scholar] [CrossRef] [PubMed]
- Zaccone, G.; Alesci, A.; Mokhtar, D.M.; Aragona, M.; Guerrera, M.C.; Capillo, G.; Albano, M.; de Oliveira Fernandes, J.; Kiron, V.; Sayed, R.K.A.; et al. Localization of acetylcholine, alpha 7-nachr and the antimicrobial peptide piscidin 1 in the macrophages of fish gut: Evidence for a cholinergic system, diverse macrophage populations and polarization of immune responses. Fishes 2023, 8, 43. [Google Scholar] [CrossRef]
- Benjamin, M. The cranial cartilages of teleosts and their classification. J. Anat. 1990, 169, 153–172. [Google Scholar] [PubMed] [PubMed Central]
- Grande, L.; Bemis, W.E. Osteology and phylogenetic relationships of fossil and recent Paddlefishes (Polyodontidae) with comments on the interrelationships of Acipenseriformes. J. Vert. Paleon. 1991, 11, 1–121. [Google Scholar] [CrossRef]
- Bemis, W.E.; Findeis, E.K.; Grande, L. An overview of Acipenseriformes. Env. Biol. Fish. 1997, 48, 25–71. [Google Scholar] [CrossRef]
- Faustino, M.; Power, D.M. Osteologic development of the viscerocranial skeleton in sea bream: Alternative ossification strategies in teleost fish. J. Fish. Biol. 2005, 58, 537–572. [Google Scholar] [CrossRef]
- Franz-Odendaal, T.A. The elusive scleral cartilages: Comparative anatomy and development in teleosts and avians. Anat. Rec. 2023, 9, 1–13. [Google Scholar] [CrossRef]
- Witten, P.E.; Hall, B.K. Differentiation and growth of kype skeletal tissues in anadromous male Atlantic salmon (Salmo salar). Int. J. Dev. Biol. 2002, 46, 719–730. Available online: https://oceanrep.geomar.de/id/eprint/7095/ (accessed on 20 March 2024). [PubMed]
- Fonseca, V.G.; Joana Rosa, J.; Laizé, V.; Gavaia, P.J.; Cancela, M.L. Identification of a new cartilage-specific S100-like protein up-regulated during endo/perichondral mineralization in gilthead seabream. Gen. Exp. Patt. 2011, 11, 448–455. [Google Scholar] [CrossRef] [PubMed]
- Weigele, J.; Franz-Odendaal, T.A. Functional bone histology of zebrafish reveals two types of endochondral ossification, different types of osteoblast clusters and a new bone type. J. Anat. 2016, 229, 92–103. [Google Scholar] [CrossRef] [PubMed]
- Masiero, C.; Aresi, C.; Forlino, A.; Tonelli, F. Zebrafish models for skeletal and extraskeletal osteogenesis imperfecta features: Unveiling pathophysiology and paving the way for drug discovery. Cal. Tiss. Int. 2024, 115, 931–959. [Google Scholar] [CrossRef]
- Witten, P.E.; Hall, B.K. Seasonal changes in the lower jaw skeleton in male Atlantic salmon (Salmo salar L.): Remodeling and regression of the kype after spawning. J. Anat. 2003, 203, 435–450. [Google Scholar] [CrossRef]
- Dean, M.N.; Ekstrom, L.; Monsonego-Ornan, E.; Ballantyne, J.; Witten, P.E.; Riley, C.; Habraken, W.; Omelon, S. Mineral homeostasis and regulation of mineralization processes in the skeletons of sharks, rays and relatives (Elasmobranchii). Semin. Cell Dev. Biol. 2015, 46, 51–67. [Google Scholar] [CrossRef]
- Mhalhel, K.; Levanti, M.; Abbate, F.; Laurà, R.; Guerrera, M.C.; Aragona, M.; Porcino, C.; Pansera, L.; Sicari, M.; Cometa, M.; et al. Skeletal morphogenesis and anomalies in Gilthead Seabream: A comprehensive review. Int. J. Mol. Sci. 2023, 24, 16030. [Google Scholar] [CrossRef]
- Le Pabic, P.; Dranow, D.B.; Hoyle, D.J.; Schilling, T.F. Zebrafish endochondral growth zones as they relate to human bone size, shape and disease. Front. Endocrinol. 2022, 13, 1060187. [Google Scholar] [CrossRef]
- Gai, Z.; Zhu, M. The origin of the vertebrate jaw: Intersection between developmental biology-based model and fossil evidence. Chin. Sci. Bull. 2012, 57, 3819–3828. [Google Scholar] [CrossRef]
- Zhao, Q.; Eberspaecher, H.; Lefebvre, V.; De Crombrugghe, B. Parallel expression of Sox9 and Col2a1 in cells undergoing chondrogenesis. Dev. Dyn. 1997, 209, 377–386. [Google Scholar] [CrossRef]
- Ng, L.J.; Wheatley, S.; Muscat, G.E.; Conway-Campbell, J.; Bowles, J.; Wright, E.; Bell, D.M.; Tam, P.P.; Cheah, K.S.; Koopman, P. SOX9 binds DNA, activates transcription, and coexpresses with type II collagen during chondrogenesis in the mouse. Dev. Biol. 1997, 183, 108–121. [Google Scholar] [CrossRef]
- Marconi, A.; Hancock-Ronemus, A.; Gillis, J.A. Adult chondrogenesis and spontaneous cartilage repair in the skate, Leucoraja erinacea. Elife 2020, 12, e53414. [Google Scholar] [CrossRef]
- Dale, R.M.; Topczewski, J. Identification of an evolutionarily conserved regulatory element of the zebrafish col2a1a gene. Dev. Biol. 2011, 357, 518–531. [Google Scholar] [CrossRef] [PubMed]
- Enault, S.; Muñoz, D.N.; Silva, W.T.A.F.; Borday-Birraux, V.; Bonade, M.; Oulion, S.; Ventéo, S.; Marcellini, S.; Debiais-Thibaud, M. Molecular footprinting of skeletal tissues in the catshark Scyliorhinus canicula and the clawed frog Xenopus tropicalis identifies conserved and derived features of vertebrate calcification. Front. Genet. 2015, 6, 283. [Google Scholar] [CrossRef]
- Donato, R. Intracellular and extracellular roles of S100 proteins. Microsc. Res. Technol. 2003, 60, 540–551. [Google Scholar] [CrossRef] [PubMed]
- Kraemer, A.M.; Saraiva, L.R.; Korsching, S.I. Structural and functional diversification in the teleost S100 family of calcium-binding proteins. BMC Evol. Biol. 2008, 8, 48. [Google Scholar] [CrossRef] [PubMed]
- Courties, A.; Do, A.; Leite, S.; Legris, M.; Sudre, L.; Pigenet, A.; Petit, J.; Nourissat, G.; Cambon-Binder, A.; Maskos, U.; et al. The role of the non-neuronal cholinergic system in inflammation and degradation processes in osteoarthritis. Arth. Rheum. 2020, 72, 2072–2082. [Google Scholar] [CrossRef]
- Ohsawa, K.; Imai, Y.; Kanazawa, H.; Sasaki, Y.; Kohsaka, S. Involvement of Iba1 in membrane ruffling and phagocytosis of macrophages/microglia. J. Cell Sci. 2000, 113, 3073–3084. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, X.; Zhou, D.; Zhou, W.; Dai, F.; Lin, H. Macrophages in heterotopic ossification: From mechanisms to therapy. Npj Regen. Med. 2021, 6, 70. [Google Scholar] [CrossRef]
- Hu, Y.; Huang, J.; Chen, C.; Wang, Y.; Hao, Z.; Chen, T.; Wang, J.; Li, J. Strategies of macrophages to maintain bone homeostasis and promote bone repair: A narrative review. J. Funct. Biomater. 2022, 14, 18. [Google Scholar] [CrossRef] [PubMed]
- Khajavi, M.; Hajimoradloo, A.; Zandi, M.; Pezeshki-Modaress, M.; Bonakdar, S.; Zamani, A. Fish cartilage: A promising source of biomaterial for biological scaffold fabrication in cartilage tissue engineering. J. Biomed. Mater. Res. 2021, 109, 1737–1750. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Zhou, Y.; Mao, G.; Zou, Y.; Zhao, J.; Bai, S.; Yang, L.; Wu, X. Extraction, purification and characterization of chondroitin sulfate in Chinese sturgeon cartilage. J. Sci. Food Agric. 2013, 93, 1633–1640. [Google Scholar] [CrossRef]
- Kan, S.; Duan, M.; Liu, Y.; Wang, C.; Xie, J. Role of mitochondria in physiology of chondrocytes and diseases of osteoarthritis and rheumatoid arthritis. Cartilage 2021, 13, 1102S–1121S. [Google Scholar] [CrossRef] [PubMed]
- Gvaramia, D.; Kern, J.; Jakob, Y.; Zenobi-Wong, M.; Rotter, N. Regenerative potential of perichondrium: A tissue engineering perspective. Tissue Eng. Part B. Rev. 2022, 28, 531–541. [Google Scholar] [CrossRef]
- Root, Z.D.; Gould, C.; Brewer, M.; Jandzik, D.; Medeiros, D.M. Comparative approaches in vertebrate cartilage histogenesis and regulation: Insights from Lampreys and Hagfishes. Diversity 2021, 13, 435. [Google Scholar] [CrossRef]
- Klein, M.; Csöbönyeiová, M.; Danišovič, Ľ.; Lapides, L.; Varga, I. Telocytes in the female reproductive system: Up-to-Date knowledge, challenges and possible clinical applications. Life 2022, 12, 267. [Google Scholar] [CrossRef]
- Verdile, N.; Pasquariello, R.; Cardinaletti, G.; Tibaldi, E.; Brevini, T.A.L.; Gandolfi, F. Telocytes: Active players in the rainbow trout (Oncorhynchus mykiss) intestinal stem-cell niche. Animals 2022, 12, 74. [Google Scholar] [CrossRef]
- Mokhtar, D.M. Functional morphology of cardiac stomach of Nile catfish (Clarias gariepinus): Histological, scanning, and ultrastructural studies. Microsc. Res. Technol. 2022, 85, 1845–1855. [Google Scholar] [CrossRef]
- Zaccone, G.; Mokhtar, D.M.; Alesci, A.; Capillo, G.; Albano, M.; Hussein, M.T.; Aragona, M.; Germanà, A.; Lauriano, E.R.; Sayed, R.K.A. From proliferation to protection: Immunohistochemical profiling of cardiomyocytes and immune cells in Molly Fish hearts. Fishes 2024, 9, 283. [Google Scholar] [CrossRef]
- Gandahi, N.S.; Ding, B.; Shi, Y.; Bai, X.; Gandahi, J.A.; Vistro, W.A.; Chen, Q.; Yang, P. Identification of telocytes in the pancreas of Turtles—A role in cellular communication. Int. J. Mol. Sci. 2020, 21, 2057. [Google Scholar] [CrossRef] [PubMed]
- Condrat, C.E.; Barbu, M.G.; Thompson, D.C.; Dănilă, C.A.; Boboc, A.E.; Suciu, N.; Crețoiu, D.; Voinea, S.C. Roles and distribution of telocytes in tissue organization in health and disease. In Tissue Barriers in Disease, Injury and Regeneration; Gorbunov, N.V., Ed.; Elsevier Ltd.: Amsterdam, The Netherlands, 2021; pp. 1–41. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mokhtar, D.M.; Abdel-Ghani, M.A.; Abdelhafez, E.A.; Albano, M.; Alkhodair, K.M.; Zaccone, G. Histological, Immunohistochemical, and Ultrastructural Characterization of Cartilage in Molly Fish (Poecilia sphenops): Insights into Skeletal Adaptations in Teleosts. Fishes 2025, 10, 202. https://doi.org/10.3390/fishes10050202
Mokhtar DM, Abdel-Ghani MA, Abdelhafez EA, Albano M, Alkhodair KM, Zaccone G. Histological, Immunohistochemical, and Ultrastructural Characterization of Cartilage in Molly Fish (Poecilia sphenops): Insights into Skeletal Adaptations in Teleosts. Fishes. 2025; 10(5):202. https://doi.org/10.3390/fishes10050202
Chicago/Turabian StyleMokhtar, Doaa M., Mohammed A. Abdel-Ghani, Enas A. Abdelhafez, Marco Albano, Khalid M. Alkhodair, and Giacomo Zaccone. 2025. "Histological, Immunohistochemical, and Ultrastructural Characterization of Cartilage in Molly Fish (Poecilia sphenops): Insights into Skeletal Adaptations in Teleosts" Fishes 10, no. 5: 202. https://doi.org/10.3390/fishes10050202
APA StyleMokhtar, D. M., Abdel-Ghani, M. A., Abdelhafez, E. A., Albano, M., Alkhodair, K. M., & Zaccone, G. (2025). Histological, Immunohistochemical, and Ultrastructural Characterization of Cartilage in Molly Fish (Poecilia sphenops): Insights into Skeletal Adaptations in Teleosts. Fishes, 10(5), 202. https://doi.org/10.3390/fishes10050202