Functional miRNA-mRNA Regulatory Modules in the Head Kidney of Pelteobagrus vachellii in Response to Aeromonas veronii Infection
Abstract
1. Introduction
2. Materials and Methods
2.1. Fish Preparation
2.2. Bacterial Challenge and Sample Collection
2.3. Histopathological Analysis
2.4. RNA Extraction
2.5. mRNA Sequencing and Data Analysis
2.6. Gene Set Enrichment Analysis (GSEA) of RNA-Seq Data
2.7. Small RNA Sequencing and Data Analysis
2.8. Establishment of miRNA-mRNA Target Network
2.9. Quantitative Real Time-PCR (qRT-PCR) Validation
3. Results
3.1. Histopathology Characteristics of P. vachellii Challenged with A. veronii
3.2. mRNA Sequencing of P. vachellii Challenged with A. veronii
3.3. GSEA of DEGs
3.4. miRNA Sequencing of P. vachellii Challenged with A. veronii
3.5. Interaction Analysis of mRNA and miRNA
3.6. qRT-PCR Validation
4. Discussion
4.1. Histopathological Characteristics of A. veronii Infection
4.2. Regulatory Patterns of Pathways Revealed by DEGs Enrichment Analysis
4.3. Regulatory Patterns of Pathways Revealed by GSEA
4.4. Infection-Responsive Functions of the miRNA-mRNA Regulatory Network
4.5. Limitations and Future Perspectives
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Deretic, V.; Saitoh, T.; Akira, S. Autophagy in infection, inflammation and immunity. Nat. Rev. Immunol. 2013, 13, 722–737. [Google Scholar] [CrossRef]
- Li, J.; Zhang, X.; Xu, J.; Pei, X.; Wu, Z.; Wang, T.; Yin, S. iTRAQ analysis of liver immune-related proteins from darkbarbel catfish (Pelteobagrus vachelli) infected with Edwardsiella ictaluri. Fish Shellfish Immun. 2019, 87, 695–704. [Google Scholar] [CrossRef]
- Qin, C.; Gong, Q.; Wen, Z.; Yuan, D. Molecular characterization and expression of complement factor I in Pelteobagrus vachellii during Aeromonas hydrophila infection. Dev. Comp. Immunol. 2018, 82, 66–71. [Google Scholar] [CrossRef]
- Li, T.; Raza, S.H.; Yang, B.; Sun, Y.; Wang, G.; Sun, W.; Qian, A.; Wang, C.; Kang, Y.; Shan, X. Aeromonas veronii infection in commercial freshwater fish: A potential threat to public health. Animals 2020, 10, 608. [Google Scholar] [CrossRef] [PubMed]
- Hoai, T.D.; Trang, T.T.; Van Tuyen, N.; Giang, N.T.H.; Van Van, K. Aeromonas veronii caused disease and mortality in channel catfish in Vietnam. Aquaculture 2019, 513, 734425. [Google Scholar] [CrossRef]
- Li, Z.; Wang, X.; Chen, C.; Gao, J.; Lv, A. Transcriptome profiles in the spleen of African catfish (Clarias gariepinus) challenged with Aeromonas veronii. Fish Shellfish Immun. 2019, 86, 858–867. [Google Scholar] [CrossRef]
- Li, M.; Xu, C.; Li, D.; Wu, G.; Wu, G.; Yang, C.; Pan, Y.; Pan, Z.; Tan, G.; Liu, Y. Transcriptome analysis of the spleen provides insight into the immunoregulation of Cyprinus carpio koi under Aeromonas veronii infection. Aquaculture 2021, 540, 736650. [Google Scholar] [CrossRef]
- Jiang, G.; Yan, F.; Xu, Y.; Li, J.; Feng, W.; Hua, G.A.; Li, W.J.; Zhou, J.; Tang, Y. Transcriptome analysis reveals potential regulatory mechanism of genes and pathways following Aeromonas veronii infection and hypoxic stress in Chinese mitten crab, Eriocheir sinensis. Aquac. Rep. 2025, 40, 102607. [Google Scholar] [CrossRef]
- Atilano, M.L.; Glittenberg, M.; Monteiro, A.; Copley, R.R.; Ligoxygakis, P. MicroRNAs that contribute to coordinating the immune response in Drosophila melanogaster. Genetics 2017, 207, 163–178. [Google Scholar] [CrossRef]
- Chu, Q.; Gao, Y.; Bi, D.; Xu, T. MicroRNA-148 as a negative regulator of the common TLR adaptor mediates inflammatory response in teleost fish. Sci. Rep. 2017, 7, 4124. [Google Scholar] [CrossRef]
- Pedersen, I.M.; Cheng, G.; Wieland, S.; Volinia, S.; Croce, C.M.; Chisari, F.V.; David, M. Interferon modulation of cellular microRNAs as an antiviral mechanism. Nature 2007, 449, 919–922. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Zhang, B.; Zhou, H.; Guan, X.; Sun, L. Edwardsiella tarda-induced miRNAs in a teleost host: Global profile and role in bacterial infection as revealed by integrative miRNA–mRNA analysis. Virulence 2017, 8, 1457–1464. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Hao, Y.; Peng, L.; Liu, Y.; Wei, N.; Liang, Q. MiR-122 is involved in immune response by regulating Interleukin-15 in the orange-spotted grouper (Epinephelus coioides). Fish Shellfish Immun. 2020, 106, 404–409. [Google Scholar] [CrossRef]
- Sun, J.L.; Zhao, L.L.; He, K.; Liu, Q.; Luo, J.; Zhang, D.M.; Liang, J.; Liao, L.; Yang, S. MiRNA-mRNA integration analysis reveals the regulatory roles of miRNAs in the metabolism of largemouth bass (Micropterus salmoides) livers during acute hypoxic stress. Aquaculture 2020, 526, 735362. [Google Scholar] [CrossRef]
- Qu, X.; Hu, M.; Shang, Y.; Pan, L.; Jia, P.; Fu, C.; Liu, Q.; Wang, Y. Liver transcriptome and miRNA analysis of silver carp (Hypophthalmichthys molitrix) intraperitoneally injected with microcystin-LR. Front. Physiol. 2018, 9, 381. [Google Scholar] [CrossRef]
- Zhai, W.; Wang, Q.; Zhu, X.; Jia, X.; Chen, L. Pathogenic infection and microbial composition of yellow catfish (Pelteobagrus fulvidraco) challenged by Aeromonas veronii and Proteus mirabilis. Aquac. Fish. 2023, 8, 166–173. [Google Scholar] [CrossRef]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef]
- Gong, G.; Ke, W.; Liao, Q.; Xiong, Y.; Hu, J.; Mei, J. A chromosome-level genome assembly of the darkbarbel catfish Pelteobagrus vachelli. Sci. Data 2023, 10, 598. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Langmead, B.; Salzberg, S.L. HISAT: A fast spliced aligner with low memory requirements. Nat. Methods 2015, 12, 357–360. [Google Scholar] [CrossRef]
- Li, B.; Dewey, C.N. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 2011, 12, 323. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef]
- Wu, T.; Hu, E.; Xu, S.; Chen, M.; Guo, P.; Dai, Z.; Feng, T.; Zhou, L.; Tang, W.; Zhan, L.I. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innovation 2021, 2, 100141. [Google Scholar] [CrossRef] [PubMed]
- Friedländer, M.R.; Mackowiak, S.D.; Li, N.; Chen, W.; Rajewsky, N. miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res. 2012, 40, 37–52. [Google Scholar] [CrossRef]
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010, 26, 139–140. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, V.; Bell, G.W.; Nam, J.; Bartel, D.P. Predicting effective microRNA target sites in mammalian mRNAs. Elife 2015, 4, e5005. [Google Scholar] [CrossRef]
- Enright, A.J.; John, B.; Gaul, U.; Tuschl, T.; Sander, C.; Marks, D.S. MicroRNA targets in Drosophila. Genome Biol. 2003, 5, R1. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Li, F.; Zhao, J.; Zhao, Y.; Liu, X.; Huang, J.; Zhang, Y.; Wang, Z. Pathological findings of Chinese sucker (Myxocyprinus asiaticus) infected with virulent Aeromonas hydrophila. Aquac. Rep. 2021, 21, 100884. [Google Scholar] [CrossRef]
- Pei, C.; Song, H.; Zhu, L.; Qiao, D.; Yan, Y.; Li, L.; Zhao, X.; Zhang, J.; Jiang, X.; Kong, X. Identification of Aeromonas veronii isolated from largemouth bass Micropterus salmoides and histopathological analysis. Aquaculture 2021, 540, 736707. [Google Scholar] [CrossRef]
- Gao, X.; Chen, Z.; Zhang, Z.; Qian, Q.; Chen, A.; Qin, L.; Tang, X.; Jiang, Q.; Zhang, X. Pathogenicity of Aeromonas veronii isolated from diseased Macrobrachium rosenbergii and host immune-related gene expression profiles. Microorganisms 2024, 12, 694. [Google Scholar] [CrossRef]
- Ning, X.; Peng, Y.; Tang, P.; Zhang, Y.; Wang, L.; Zhang, W.; Zhang, K.; Ji, J.; Yin, S. Integrated analysis of transcriptome and metabolome reveals distinct responses of Pelteobagrus fulvidraco against Aeromonas veronii infection at invaded and recovering stage. Int. J. Mol. Sci. 2022, 23, 10121. [Google Scholar] [CrossRef]
- Han, C.; Li, Q.; Chen, Q.; Zhou, G.; Huang, J.; Zhang, Y. Transcriptome analysis of the spleen provides insight into the immunoregulation of Mastacembelus armatus under Aeromonas veronii infection. Fish Shellfish Immun. 2019, 88, 272–283. [Google Scholar] [CrossRef] [PubMed]
- Sun, P.; Zhang, D.; Li, N.; Li, X.; Ma, Y.; Li, H.; Tian, Y.; Wang, T.; Siddiquid, S.A.; Sun, W.; et al. Transcriptomic insights into the immune response of the intestine to Aeromonas veronii infection in northern snakehead (Channa argus). Ecotox. Environ. Saf. 2023, 255, 114825. [Google Scholar] [CrossRef]
- Liu, H.; Xie, J.F.; Yu, H.; Ma, Z.; Yu, Y.Y.; Yang, Y. The early response expression profiles of miRNA-mRNA in farmed yellow catfish (Pelteobagrus fulvidraco) challenged with Edwardsiella tarda infection. Dev. Comp. Immunol. 2021, 119, 104018. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Xiao, Z.Z.; Sun, L. Overexpression of NF-κB inhibitor alpha in Cynoglossus semilaevis impairs pathogen-induced immune response. Dev. Comp. Immunol. 2012, 36, 253–257. [Google Scholar] [CrossRef]
- Kong, X.; Liu, T.; Wei, J. Parkinson’ s Disease: The neurodegenerative enigma under the “Undercurrent” of endoplasmic reticulum stress. Int. J. Mol. Sci. 2025, 26, 3367. [Google Scholar] [CrossRef]
- Zapata, A.; Diez, B.; Cejalvo, T.; Gutiérrez-de Frías, C.; Cortés, A. Ontogeny of the immune system of fish. Fish Shellfish Immun. 2006, 20, 126–136. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Nie, L.; Zhu, G.; Xiang, L.; Shao, J. Advances in research of fish immune-relevant genes: A comparative overview of innate and adaptive immunity in teleosts. Dev. Comp. Immunol. 2013, 39, 39–62. [Google Scholar] [CrossRef]
- Dembinski, H.E.; Wismer, K.; Vargas, J.D.; Suryawanshi, G.W.; Kern, N.; Kroon, G.; Dyson, H.J.; Hoffmann, A.; Komives, E.A. Functional importance of stripping in NFκB signaling revealed by a stripping-impaired IκBα mutant. Proc. Natl. Acad. Sci. USA 2017, 114, 1916–1921. [Google Scholar] [CrossRef]
- Xie, Y.; Song, L.; Weng, Z.; Liu, S.; Liu, Z. Hsp90, Hsp60 and sHsp families of heat shock protein genes in channel catfish and their expression after bacterial infections. Fish Shellfish Immun. 2015, 44, 642–651. [Google Scholar] [CrossRef]
- Thompson, S.J.; Loftus, L.T.; Ashley, M.D.; Meller, R. Ubiquitin–proteasome system as a modulator of cell fate. Curr. Opin. Pharmacol. 2008, 8, 90–95. [Google Scholar] [CrossRef]
- Diao, J.; Liu, H.; Hu, F.; Li, L.; Wang, X.; Gai, C.; Yu, X.; Fan, Y.; Xu, L.; Ye, H. Transcriptome analysis of immune response in fat greenling (Hexagrammos otakii) against Vibrio harveyi infection. Fish Shellfish Immun. 2019, 84, 937–947. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Sheng, X.; Tang, X.; Xing, J.; Chi, H.; Zhan, W. Transcriptome analysis reveals molecular mechanisms of lymphocystis formation caused by lymphocystis disease virus infection in flounder (Paralichthys olivaceus). Front. Immunol. 2023, 14, 1268851. [Google Scholar] [CrossRef]
- Ni, L.; Li, P.; Zou, Q.; Li, F.; Chen, Y.; Chen, H.; Lai, J.; Du, J.; Liu, Y. Natural infection of hybrid sturgeon (Acipenser baerii♀× Acipenser schrenckii♂) with Nocardia seriolae and white sturgeon iridovirus: Pathological and transcriptomic analyses. Front. Immunol. 2024, 15, 1488159. [Google Scholar] [CrossRef]
- Yibcharoenporn, C.; Muanprasat, C.; Moonwiriyakit, A.; Satitsri, S.; Pathomthongtaweechai, N. AMPK in intestinal health and disease: A multifaceted therapeutic target for metabolic and inflammatory disorders. Drug Des. Dev. Ther. 2025, 19, 3029–3058. [Google Scholar] [CrossRef]
- Contreras, J.; Rao, D.S. MicroRNAs in inflammation and immune responses. Leukemia 2012, 26, 404–413. [Google Scholar] [CrossRef]
- Kloosterman, W.P.; Plasterk, R.H. The diverse functions of microRNAs in animal development and disease. Dev. Cell 2006, 11, 441–450. [Google Scholar] [CrossRef] [PubMed]
- Chu, Q.; Xu, T. MicroRNA regulation of Toll-like receptor, RIG-I-like receptor and Nod-like receptor pathways in teleost fish. Rev. Aquac. 2020, 12, 2177–2193. [Google Scholar] [CrossRef]
- Cui, J.; Gu, L.; Zhong, L.; Liu, X.; Sun, Y.; Xu, T. microRNA-20-1 and microRNA-101a suppress the NF-κB-mediated inflammation production by targeting TRAF6 in miiuy croaker. Infect. Immun. 2022, 90, e521–e585. [Google Scholar] [CrossRef]
- Cui, J.; Chu, Q.; Xu, T. miR-122 involved in the regulation of toll-like receptor signaling pathway after Vibrio anguillarum infection by targeting TLR14 in miiuy croaker. Fish Shellfish Immun. 2016, 58, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Liu, H.; Li, X.; Liu, X. Over-expression of MiR-122 promotes apoptosis of hepatocellular carcinoma via targeting TLR4. Ann. Hepatol. 2019, 18, 869–878. [Google Scholar] [CrossRef] [PubMed]
Sample | Raw Data (bp) | Clean Data (bp) | Q20 Rate (%) | Q30 Rate (%) | GC Rate (%) |
---|---|---|---|---|---|
C1 | 5,645,586,300 | 5,571,126,690 | 97.18 | 92.66 | 46.36 |
C2 | 6,824,948,700 | 6,739,799,764 | 97.34 | 92.98 | 45.69 |
C3 | 7,758,962,700 | 7,668,867,704 | 97.32 | 92.13 | 46.22 |
S1 | 6,953,786,700 | 6,887,975,008 | 97.40 | 92.16 | 46.68 |
S2 | 5,732,555,400 | 5,658,284,303 | 97.13 | 92.19 | 44.63 |
S3 | 5,706,639,300 | 5,651,435,862 | 97.32 | 92.23 | 45.99 |
Sample | Unmapped (%) | Unique Mapped (%) | Multiple Mapped (%) | Total Mapped (%) |
---|---|---|---|---|
C1 | 7.21 | 87.07 | 5.71 | 92.79 |
C2 | 6.83 | 86.98 | 6.19 | 93.17 |
C3 | 6.60 | 86.64 | 6.76 | 93.40 |
S1 | 5.58 | 89.10 | 5.32 | 94.42 |
S2 | 7.00 | 86.41 | 6.59 | 93.00 |
S3 | 5.89 | 87.67 | 6.43 | 94.11 |
Sample | Clean Reads (bp) | High Quality Reads (bp) | High Quality Read Ratio (%) | Clean Tags (bp) | Clean Tag Ratio (%) |
---|---|---|---|---|---|
C1 | 11,762,038 | 11,640,197 | 98.96 | 10,815,589 | 91.95 |
C2 | 11,633,869 | 11,509,109 | 98.93 | 10,244,795 | 88.06 |
C3 | 13,613,363 | 13,489,003 | 99.09 | 11,080,418 | 81.39 |
S1 | 12,737,637 | 12,621,546 | 99.09 | 11,672,262 | 91.64 |
S2 | 10,950,704 | 10,829,962 | 98.90 | 9,401,909 | 85.86 |
S3 | 13,612,104 | 13,474,253 | 98.99 | 11,721,452 | 86.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, F.; Wu, X.; Chen, Y.; Zou, Q.; Li, P.; Song, M.; Gong, Q.; Liu, Y.; Lai, J.; Ni, L.; et al. Functional miRNA-mRNA Regulatory Modules in the Head Kidney of Pelteobagrus vachellii in Response to Aeromonas veronii Infection. Fishes 2025, 10, 530. https://doi.org/10.3390/fishes10100530
Li F, Wu X, Chen Y, Zou Q, Li P, Song M, Gong Q, Liu Y, Lai J, Ni L, et al. Functional miRNA-mRNA Regulatory Modules in the Head Kidney of Pelteobagrus vachellii in Response to Aeromonas veronii Infection. Fishes. 2025; 10(10):530. https://doi.org/10.3390/fishes10100530
Chicago/Turabian StyleLi, Feiyang, Xiaoyun Wu, Yeyu Chen, Qiaolin Zou, Pengcheng Li, Mingjiang Song, Quan Gong, Ya Liu, Jiansheng Lai, Luyun Ni, and et al. 2025. "Functional miRNA-mRNA Regulatory Modules in the Head Kidney of Pelteobagrus vachellii in Response to Aeromonas veronii Infection" Fishes 10, no. 10: 530. https://doi.org/10.3390/fishes10100530
APA StyleLi, F., Wu, X., Chen, Y., Zou, Q., Li, P., Song, M., Gong, Q., Liu, Y., Lai, J., Ni, L., & Wang, J. (2025). Functional miRNA-mRNA Regulatory Modules in the Head Kidney of Pelteobagrus vachellii in Response to Aeromonas veronii Infection. Fishes, 10(10), 530. https://doi.org/10.3390/fishes10100530