Efficacy of Mango Leaf-Based Feed Additive on Growth Performance, Antioxidant Status and Digestive Enzyme Activities in Litopenaeus vannamei
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material and Experimental Diets
2.2. Animals and Experimental Design
2.3. Growth Performance Parameters
2.4. Determination of Antioxidant and Digestive Enzyme Activities
2.5. Hepatopancreatic Histology
2.6. Statistical Analysis
3. Results
3.1. Impact of MLP on Survival and Growth in L. vannamei
3.2. Antioxidant Enzyme Activities and MDA
3.2.1. SOD Enzyme Activity
3.2.2. CAT Enzyme Activity
3.2.3. T-AOC Enzyme Activity
3.2.4. POD Enzyme Activity
3.2.5. MDA Content
3.3. Digestive Enzyme Activities
3.3.1. Amylase Activity
3.3.2. Trypsin Enzyme Activity
3.3.3. Lipase Enzyme Activity
3.4. Effects of MLP on the Nutritional Composition of L. vannamei
3.4.1. Muscle Water Content
3.4.2. Crude Fat Content
3.4.3. Crude Protein Content
3.5. Histological Analyses of Hepatopancreatic Tissue
4. Discussion
4.1. Effects of the MLP on the Growth and Survival of L. vannamei
4.2. Influence of the MLP on Antioxidant Capacity Enhancement
4.3. Effects of the MLP on Digestive Enzyme Activity
4.4. Effects of Dietary MLP on the Nutritional Composition of L. vannamei
4.5. Effects of Dietary MLP on Hepatopancreas Tissue Structure
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CAT | Catalase |
FCR | Feed Conversion Ratio |
GR | Growth Rate |
MDA | Malondialdehyde |
MLP | Mango Leaf Powder |
µmol Trolox/g | Micromoles of Trolox equivalent per gram |
POD | Peroxidase |
SGR | Specific Growth Rate |
SOD | Superoxide Dismutase |
SR | Survival Rate |
T-AOC | Total Antioxidant Capacity |
U/mg prot | Units per milligram of protein |
WGR | Weight Gain Rate |
References
- Shen, Q.; Li, S.; Zhang, S.; Xu, J.; Chen, H.; Luo, Q.; Yang, R.; Chen, J. The impact of Neoporphyra haitanensis dietary supplement on astaxanthin esters and fatty acids accumulation associated with immune promotion in Pacific white shrimp (Litopenaeus vannamei). Aquaculture 2024, 593, 741347. [Google Scholar] [CrossRef]
- Liu, N.; Zhang, J.; Gong, Y. Hazards of antibiotic abuse in breeding Farms and preventive measures. J. Mod. Anim. Husb. Technol. 2020, 67, 72–73. [Google Scholar] [CrossRef]
- Pan, Y.; Zeng, J.; Zhang, L.; Hu, J.; Hao, H.; Zeng, Z.; Li, Y. The fate of antibiotics and antibiotic resistance genes in large-scale chicken farm environments: Preliminary view of the performance of national veterinary antimicrobial use reduction action in Guangdong, China. Environ. Int. 2024, 191, 108974. [Google Scholar] [CrossRef] [PubMed]
- Tu, P.T.C.; Lien, N.T.K.; Diep, D.X.; Ly, T.H. Effect of ginger, Zingiber officinale extract on growth performance, digestive enzyme and stress tolerance of whiteleg shrimp, Litopenaeus vannamei juveniles. Isr. J. Aquac.-Bamidgeh 2023, 75, 1–8. [Google Scholar] [CrossRef]
- Li, J.; Jing, Z.; Chen, H.; Zheng, P.; Lu, Y.; Zhang, X.; Zhang, Z.; Lv, Y.; Xu, J.R.; Wang, D.; et al. Effects of Alpinia officinarum stems and leaves extract on growth performance, non-specific immunity, and intestinal microflora of Litopenaeus vannamei. Aquac. Rep. 2024, 34, 101893. [Google Scholar] [CrossRef]
- Shah, K. Mangifera Indica (Mango). Pharmacogn. Rev. 2010, 4, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Cai, H.; Li, Z.; Lin, M.; Huang, S.; Weng, L.; Feng, S.; Qian, R. Antibacterial effect of mango leaf extract on several fish pathogens. Feed. Res. 2022, 45, 63–67. [Google Scholar] [CrossRef]
- Adamczyk, B.; Simon, J.; Kitunen, V.; Adamczyk, S.; Smolander, A. Tannins and their complex Interaction with different organic nitrogen compounds and enzymes: Old paradigms versus recent advances. Chemistryopen 2017, 6, 610–614. [Google Scholar] [CrossRef]
- Bodiba, D.C.; Prasad, P.; Srivastava, A.; Crampton, B.; Lall, N.S. Antibacterial activity of Azadirachta indica, Pongamia pinnata, Psidium guajava, and Mangifera indica and their mechanism of action against Streptococcus mutans. Pharmacogn. Mag. 2018, 14, 76–80. [Google Scholar] [CrossRef]
- Engels, C.; Schieber, A.; Gaenzle, M.G. Inhibitory spectra and modes of antimicrobial action of gallotannins from mango Kernels (Mangifera indica L.). Appl. Environ. Microbiol. 2011, 77, 2215–2223. [Google Scholar] [CrossRef]
- Alaiya, M.A.; Odeniyi, M.A. Utilisation of Mangifera indica plant extracts and parts in antimicrobial formulations and as a pharmaceutical excipient: A review. Future J. Pharm. Sci. 2023, 9, 29. [Google Scholar] [CrossRef]
- Singh, S.K.; Kumar, Y.; Kumar, S.S.; Sharma, V.K.; Dua, K.; Samad, A. Antimicrobial evaluation of Mangiferin Analogues. Indian J. Pharm. Sci. 2009, 71, 328–331. [Google Scholar] [CrossRef] [PubMed]
- Diso, S.; Ali, M.; Mukhtar, S.; Garba, M. Antibacterial activity and phytochemical screening of Mangifera indica (Mango) stem and leaf extractson clinical isolates of Methicillin Resistant Staphylococcus aureus. J. Adv. Med. Pharm. Sci. 2017, 13, 1–6. [Google Scholar] [CrossRef]
- Jin, M.; Xiong, J.; Zhou, Q.C.; Yuan, Y.; Wang, X.X.; Sun, P. Dietary yeast hydrolysate and brewer’s yeast supplementation could enhance growth performance, innate immunity capacity and ammonia nitrogen stress resistance ability of Pacific white shrimp (Litopenaeus vannamei). Fish Shellfish. Immunol. 2018, 82, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Beauchamp, C.; Fridovich, I. Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 1971, 44, 276–287. [Google Scholar] [CrossRef] [PubMed]
- Johansson, L.H.; Borg, L.A.H. A spectrophotometric method for determination of catalase activity in small tissue samples. Anal. Biochem. 1988, 174, 331–336. [Google Scholar] [CrossRef]
- Tyanova, S.; Temu, T.; Sinitcyn, P.; Carlson, A.; Cox, J. The Perseus computational platform for comprehensive analysis of proteomics data. Nat. Methods 2016, 13, 731. [Google Scholar] [CrossRef]
- Jeyavani, J.; Sibiya, A.; Sivakamavalli, J.; Divya, M.; Preetham, E.; Vaseeharan, B.; Faggio, C. Phytotherapy and combined nanoformulations as a promising disease management in aquaculture: A review. Aquac. Int. 2022, 30, 1071–1086. [Google Scholar] [CrossRef]
- Rashidian, G.; Mahboub, H.H.; Fahim, A.; Hefny, A.A.; Prokic, M.D.; Rainis, S.; Boldaji, J.T.; Faggio, C. Mooseer (Allium hirtifolium) boosts growth, general health status, and resistance of rainbow trout (Oncorhynchus mykiss) against Streptococcus iniae infection. Fish Shellfish. Immunol. 2022, 120, 360–368. [Google Scholar] [CrossRef]
- Paulpandian, P.; Beevi, I.S.; Somanath, B.; Kamatchi, R.K.; Paulraj, B.; Faggio, C. Impact of camellia sinensis iron oxide nanoparticle on growth, hemato-biochemical and antioxidant capacity of blue gourami (Trichogaster trichopterus) Fingerlings. Biol. Trace Elem. Res. 2023, 201, 412–424. [Google Scholar] [CrossRef]
- Phan, T.C.T.; Nguyen, T.K.L.; Truong, T.P.T.; Pham, T.T.N.; Huynh, T.G.; Doan, X.D. Effects of noni fruit extract on the growth performance, digestive enzymes, and stress tolerance of juvenile whiteleg shrimp (Litopenaeus vannamei). Egypt. J. Aquat. Res. 2023, 49, 549–554. [Google Scholar] [CrossRef]
- Jahurul, M.H.A.; Zaidul, I.S.M.; Ghafoor, K.; Al-Juhaimi, F.Y.; Nyam, K.-L.; Norulaini, N.A.N.; Sahena, F.; Omar, A.K.M. Mango (Mangifera indica L.) by-products and their valuable components: A review. Food Chem. 2015, 183, 173–180. [Google Scholar] [CrossRef]
- Aung, K.T.; Win, K.S.; Mu, K.S.; Aung, M.; Kyawt, Y.Y. A diet containing mango peel silage impacts upon feed intake, energy supply and growth performances of male dairy calves. Anim. Open Space 2024, 3, 100069. [Google Scholar] [CrossRef]
- Li, M.; Zhu, X.; Tian, J.; Liu, M.; Wang, G. Dietary flavonoids from Allium mongolicum Regel promotes growth, improves immune, antioxidant status, immune-related signaling molecules and disease resistance in juvenile northern snakehead fish (Channa argus). Aquaculture 2019, 501, 473–481. [Google Scholar] [CrossRef]
- Si, X.; Wang, Y.; Wang, X.; Wang, A.; Liu, J.; Ren, X.; Dong, H.; Liu, X. Research progress on the development and application of natural plant derived flavonoids as feed additives for livestock and poultry. Chin. J. Anim. Sci. 2023, 59, 11–18. [Google Scholar] [CrossRef]
- Liu, Z.; Peng, N. Current application status and development prospect of probiotics. Acta Microbiol. Sin. 2023, 63, 1863–1887. [Google Scholar] [CrossRef]
- Dong, C.; Shi, Y.; Yuan, J.; Mi, Y. Advance and Prospect of Growth-PromotingFeed Additives after Prohibiting Addition of Antibiotics. Adv. Microbiol. 2015, 4, 36–43. [Google Scholar] [CrossRef]
- Rowley, A.F.; Powell, A. Invertebrate immune systems specific, quasi-specific, or nonspecific? J. Immunol. 2007, 179, 7209–7214. [Google Scholar] [CrossRef]
- Zhang, Y.; Gu, Z.; Lan, J. Recent advances in study of immune response of shrimp to pathogen infection: A review. J. Huazhong Agric. Univ. 2019, 38, 119–130. [Google Scholar] [CrossRef]
- Yao, C.L.; Wang, A.L.; Wang, Z.Y.; Wang, W.N.; Sun, R.Y. Purification and partial characterization of Cu, Zn superoxide dismutase from haemolymph of Oriental river prawn Macrobrachium nipponense. Aquaculture 2007, 270, 559–565. [Google Scholar] [CrossRef]
- Ye, Y.; Li, S.; Du, X.; Zhang, L.; Bao, N.; Li, Y.; Zhao, Y. Effects of dietary 5-aminolevulinic acid on growth performance and nonspecific immunity of Litopenaeus vannamei, as determined by transcriptomic analysis. Fish Shellfish. Immunol. 2024, 151, 14. [Google Scholar] [CrossRef]
- Tang, M.; Fang, R.; Xue, J.; Yang, K.; Lu, Y. Effects of catalase on growth performance, antioxidant capacity, intestinal morphology, and microbial composition in yellow broilers. Front. Vet. Sci. 2022, 9, 802051. [Google Scholar] [CrossRef]
- Jun, Z.Y.L.T.W. Research progress on biological functions of plant flavonoids and their applications in aquatic animal production. Feed. Res. 2023, 46, 174–177. [Google Scholar] [CrossRef]
- Ghafarifarsani, H.; Hoseinifar, S.H.; Adorian, T.J.; Goulart Ferrigolo, F.R.; Raissy, M.; Van Doan, H. The effects of combined inclusion of Malvae sylvestris, Origanum vulgare, and Allium hirtifolium boiss for common carp (Cyprinus carpio) diet: Growth performance, antioxidant defense, and immunological parameters. Fish Shellfish. Immunol. 2021, 119, 670–677. [Google Scholar] [CrossRef] [PubMed]
- Lv, X.; Hao, Q.; Chen, Y.; Chen, H.; Luo, H.; Fu, Q.; Tai, J.; Lv, F. Mango extractum additive promoting fish growth. Trans. Chin. Soc. Agric. Eng. 2013, 29, 277–283. [Google Scholar] [CrossRef]
- Lu, M.; Liu, R.; Chen, Z.; Su, C.; Pan, L. Effects of dietary dihydromyricetin on growth performance, antioxidant capacity, immune response and intestinal microbiota of shrimp (Litopenaeus vannamei). Fish Shellfish. Immunol. 2023, 142, 109086. [Google Scholar] [CrossRef] [PubMed]
- Ajila, C.M.; Naidu, K.A.; Bhat, S.G.; Rao, U.J.S.P. Bioactive compounds and antioxidant potential of mango peel extract. Food Chem. 2007, 105, 982–988. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, W.; Huang, X. Effects of dietary energy sources and levels on growth, antioxidant capacity and protein utilization of Litopenaeus vannamei. J. Fish. Sci. China 2023, 30, 1067–1079. [Google Scholar] [CrossRef]
- Zhang, H.; He, Y.; Li, J.; Hu, S.; Han, X. Effects of Stocking Density on Growth, Water Quality, and Antioxidant System of Juvenile Fenneropenaeus chinensis. Prog. Fish. Sci. 2020, 41, 140–149. [Google Scholar] [CrossRef]
- Liu, B.; Zhou, Q.; He, Y.; He, Q.; Xie, J.; Xu, P.; Zhou, L. Effects of plants extracts on growth, factors associated with immunity and antioxidation, and disease resistance of allogynogenetic crucian carp (Carassius auratus gibelio var. E’ergisi, Bloch). J. Shanghai Fish. Univ. 2008, 17, 193–198. [Google Scholar]
- Lu, C.; Wang, H.; Lv, W.; Xun, P.; Zhu, J.; Xie, J.; Liu, B.; Lan, Q.; Yang, L.; Wang, Y. Antimicrobial activity of plant extracts against Aeromonas hydrophila. J. Food Sci. Biotechnol. 2011, 30, 178–184. [Google Scholar]
- Huang, Y.; Bai, H.; Yuan, C.; Cui, Q. Effect of bile acid on growth performance, digestive enzyme activity and gene expression related to immune metabolism in Litopenaeus vannamei. Feed. Res. 2023, 46, 53–57. [Google Scholar] [CrossRef]
- Li, Y.-L.; Fu, Y.-Y.; Zhang, H.; Fang, L.; Wang, Q.; Ruan, G.L. Dietary yeast hydrolysate on growth, digestion, antioxidation, antioxidation and immunity of red swamp crayfish (Procambarus clarkii). Acat Hydrobiol. Sin. 2024, 48, 393–404. [Google Scholar] [CrossRef]
- Qiu, J.; Huang, W.; Zhao, H.; Chen, B.; Lu, H.; Liu, Z. Effects of hydrolysable and condensed tannins on growth performance, body composition, digestive enzyme activities and antioxidant indexes of Litopenaeus vannamei. China Anim. Husb. Vet. Med. 2023, 50, 3073–3083. [Google Scholar] [CrossRef]
- Nong, S.; Liao, Y.; Wang, R.; Lei, L.; Lu, L.; Wei, X.; Shen, S. Biological function of mango extract and its application prospect in poultry production. Feed. Res. 2023, 46, 158–162. [Google Scholar] [CrossRef]
- Ding, H.; Tao, Z.; Cui, H.; Zeng, H.; Chen, X. Active ingredients and functions of plant extracts as feed additives. Feed. Ind. 2019, 40, 1–5. [Google Scholar] [CrossRef]
- Brauer, J.M.E.; Leyva, J.S.; Alvarado, L.B.; Sández, O.R. Effect of dietary protein on muscle collagen, collagenase and shear force of farmed white shrimp (Litopenaeus vannamei). Eur. Food Res. Technol. 2003, 217, 277–280. [Google Scholar] [CrossRef]
- Liu, B.; Jun, X.; Li, X.; Li, N.; Chai, X. Effect of Eucommia ulmoides on growth, serum non-specific immunity, and muscle composition of Litopenaeus vannamei. J. Fish. Sci. China 2013, 20, 869–875. [Google Scholar] [CrossRef]
- Wang, L.; Xie, X.; Qin, Z.; Yu, M.; Ji, L.; Hu, T.; Wei, Y. Effect of Sanhuanglianqiao mixture on blood lymphocytes and growth performance of Penaeusvannamei. Feed. Res. 2022, 45, 48–53. [Google Scholar] [CrossRef]
- Zhang, J.; Ding, Z.; Du, W.; Wang, X.; Guan, Y. Carotenoids act on coloration and increase immunity and antioxidant activity in the novel “Yongzhang Golden turtle” strain of Pelodiscus sinensis. Aquaculture 2023, 563, 738871. [Google Scholar] [CrossRef]
- Zhang, J.X.; Guo, L.Y.; Feng, L.; Jiang, W.D.; Kuang, S.Y.; Liu, Y.; Hu, K.; Jiang, J.; Li, S.H.; Tang, L. Soybean β-Conglycinin induces inflammation and oxidation and causes dysfunction of Intestinal digestion and absorption in Fish. PLoS ONE 2014, 8, e58115. [Google Scholar] [CrossRef] [PubMed]
- Cervellione, F.; Mcgurk, C.; Erksen, T.B.; Broeck, W.V.D. Effect of starvation and refeeding on the hepatopancreas of whiteleg shrimp Penaeus vannamei (Boone) using computer-assisted image analysis. J. Fish Dis. 2017, 40, 1707–1715. [Google Scholar] [CrossRef]
- Lin, Y.H.; Chen, Y.T. Lactobacillus spp. fermented soybean meal partially substitution to fish meal enhances innate immune responses and nutrient digestibility of white shrimp (Litopenaeus vannamei) fed diet with low fish meal. Aquaculture 2022, 548, 737634. [Google Scholar] [CrossRef]
- Alem, W.T. Effect of herbal extracts in animal nutrition as feed additives. Heliyon 2024, 10, e24973. [Google Scholar] [CrossRef] [PubMed]
Nutritional Content | Control | 4% Group | 8% Group |
---|---|---|---|
Crude Protein | 42.52 | 41.41 | 40.34 |
Crude Fat | 8.45 | 8.19 | 7.93 |
Crude Ash | 7.89 | 7.89 | 7.91 |
Total Phosphorus | 0.50 | 0.50 | 0.50 |
Lysine | 2.40 | 2.34 | 2.27 |
Moisture | 9.85 | 9.94 | 10.02 |
Indicator | Survival Rate (SR, %) | Weight Gain Rate (WGR, %) | Specific Growth Rate (SGR, %/Day) | Feed Conversion Rate (FCR) | Relative Length Growth Rate (RLGR) (%) |
---|---|---|---|---|---|
Control | 93.86 ± 0.58 b | 12.63 ± 0.13 b | 0.28 ± 0.01 a | 6.30 ± 0.03 a | 6.51 ± 0.03 c |
4% group | 88.96 ± 0.33 c | 13.12 ± 0.08 a | 0.30 ± 0.01 a | 6.22 ± 0.01 b | 8.25 ± 0.07 b |
8% group | 96.52 ± 0.89 a | 13.32 ± 0.13 a | 0.30 ± 0.01 a | 6.07 ± 0.07 b | 11.69 ± 0.13 a |
Culture Days | Control | 4% Group | 8% Group |
---|---|---|---|
14 d | 0.71 ± 0.01 c | 0.73 ± 0.01 ab | 0.74 ± 0.01 a |
24 d | 1.21 ± 0.01 c | 1.22 ± 0.01 b | 1.26 ± 0.01 a |
34 d | 1.19 ± 0.01 a | 1.21 ± 0.01 a | 1.21 ± 0.02 a |
42 d | 1.17 ± 0.01 c | 1.18 ± 0.01 ab | 1.19 ± 0.01 a |
Culture Days | Control | 4% Group | 8% Group |
---|---|---|---|
14 d | 2836.50 ± 43.10 c | 3040.90 ± 55.30 b | 3404.50 ± 76.20 a |
24 d | 2963.10 ± 22.00 c | 3434.30 ± 27.60 b | 4045.80 ± 56.70 a |
34 d | 2570.90 ± 58.40 c | 3573.80 ± 50.10 b | 4106.40 ± 36.10 c |
42 d | 2677.80 ± 30.40 c | 3363.70 ± 40.30 b | 3898.90 ± 21.60 a |
Culture Days | Control | 4% Group | 8% Group |
---|---|---|---|
14 d | 24.74 ± 0.61 c | 42.63 ± 1.24 a | 30.94 ± 0.59 b |
24 d | 33.08 ± 0.53 a | 34.11 ± 3.15 a | 35.39 ± 1.78 a |
34 d | 28.93 ± 1.09 b | 28.11 ± 2.26 b | 42.27 ± 0.95 a |
42 d | 28.15 ± 1.59 c | 34.67 ± 1.28 b | 38.01 ± 1.21 a |
Culture Days | Control | 4% Group | 8% Group |
---|---|---|---|
14 d | 76.82 ± 0.53 b | 76.65 ± 0.20 b | 78.33 ± 0.28 a |
24 d | 77.48 ± 0.12 b | 78.66 ± 0.20 a | 78.79 ± 0.12 a |
34 d | 74.98 ± 0.18 c | 75.60 ± 0.18 b | 78.24 ± 0.16 a |
42 d | 73.66 ± 0.36 a | 73.85 ± 0.28 a | 74.04 ± 0.16 a |
Culture Days | Control | 4% Group | 8% Group |
---|---|---|---|
14 d | 0.530 ± 0.006 a | 0.547 ± 0.014 a | 0.544 ± 0.009 a |
24 d | 0.545 ± 0.026 b | 0.543 ± 0.025 b | 0.618 ± 0.043 a |
34 d | 0.567 ± 0.028 a | 0.565 ± 0.028 a | 0.570 ± 0.033 a |
42 d | 0.576 ± 0.035 a | 0.609 ± 0.064 a | 0.555 ± 0.022 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, H.; Zhang, H.; Lu, R.; Feng, S.; Lin, M. Efficacy of Mango Leaf-Based Feed Additive on Growth Performance, Antioxidant Status and Digestive Enzyme Activities in Litopenaeus vannamei. Fishes 2025, 10, 524. https://doi.org/10.3390/fishes10100524
Cai H, Zhang H, Lu R, Feng S, Lin M. Efficacy of Mango Leaf-Based Feed Additive on Growth Performance, Antioxidant Status and Digestive Enzyme Activities in Litopenaeus vannamei. Fishes. 2025; 10(10):524. https://doi.org/10.3390/fishes10100524
Chicago/Turabian StyleCai, Hongjiao, Haoye Zhang, Rongze Lu, Shaoyi Feng, and Mao Lin. 2025. "Efficacy of Mango Leaf-Based Feed Additive on Growth Performance, Antioxidant Status and Digestive Enzyme Activities in Litopenaeus vannamei" Fishes 10, no. 10: 524. https://doi.org/10.3390/fishes10100524
APA StyleCai, H., Zhang, H., Lu, R., Feng, S., & Lin, M. (2025). Efficacy of Mango Leaf-Based Feed Additive on Growth Performance, Antioxidant Status and Digestive Enzyme Activities in Litopenaeus vannamei. Fishes, 10(10), 524. https://doi.org/10.3390/fishes10100524