Anthropogenic Microparticles in Aquaculture and Wild Fish: A Case Study of Three Commercially Important Species in the Eastern Mediterranean
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Extraction of Anthropogenic Microparticles (AM) from Fish Tissues
2.3. Anthropogenic Microparticle Detection and Quantification
2.4. Precautions and Quality Control
2.5. Statistical Analysis
3. Results
3.1. Anthropogenic Microparticle Ingestion
3.2. Anthropogenic Microparticle Characterization (Shape, Size, and Color)
4. Discussion
4.1. Anthropogenic Microparticle Ingestion Across Species and Habitats
4.2. Anthropogenic Microparticle Characterization
4.3. Human Exposure and Food Safety Implications
4.4. Methodological Considerations and Future Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Derraik, J.G.B. The pollution of the marine environment by plastic debris: A review. Mar. Pollut. Bull. 2002, 44, 842–852. [Google Scholar] [CrossRef]
- Lusher, A.L.; McHugh, M.; Thompson, R.C. Occurrence of microplastics in the gastrointestinal tract of pelagic and demersal fish from the English Channel. Mar. Pollut. Bull. 2013, 67, 94–99. [Google Scholar] [CrossRef]
- Laskar, N.; Kumar, U. Plastics and microplastics: A threat to environment. Environ. Technol. Innov. 2019, 14, 100352. [Google Scholar] [CrossRef]
- Wang, R.; Liu, Χ. Environmental processes and ecological effects of microplastics in the ocean. IOP Conf. Ser. Earth Environ. Sci. 2019, 227, 052047. [Google Scholar] [CrossRef]
- Borrelle, S.B.; Ringma, J.; Law, K.L.; Monnahan, C.C.; Lebreton, L.; McGivern, A.; Murphy, E.; Jambeck, J.; Leonard, G.H.; Hilleary, M.A.; et al. Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution. Science 2020, 369, 1515–1518. [Google Scholar] [CrossRef]
- OECD. Global Plastics Outlook: Economic Drivers, Environmental Impacts and Policy Options; OECD Publishing: Paris, France, 2022. [Google Scholar] [CrossRef]
- Calleja-Setién, E.; Rios-Fuster, B.; Alomar, C.; Fagiano, V.; Sánchez-García, N.; Bernal-Mondejar, I.; Deudero, S. Floating microplastics along the western Mediterranean Sea: Are we reaching a “Good Environmental Status” or drifting away? Mar. Pollut. Bull. 2025, 211, 117372. [Google Scholar] [CrossRef] [PubMed]
- Gove, J.M.; Whitney, J.L.; McManus, M.A.; Lecky, J.; Carvalho, F.C.; Lynch, J.M.; Li, J.; Neubauer, P.; Smith, K.A.; Phipps, J.E.; et al. Prey-size plastics are invading larval fish nurseries. Proc. Natl. Acad. Sci. USA 2019, 116, 24143–24149. [Google Scholar] [CrossRef] [PubMed]
- Klaine, S.J.; Koelmans, A.A.; Horne, N.; Carley, S.; Handy, R.D.; Kapustka, L.; Nowack, B.; von der Kammer, F. Paradigms to assess the environmental impact of manufactured nanomaterials. Environ. Toxicol. Chem. 2012, 31, 3–14. [Google Scholar] [CrossRef]
- Moore, C.J.; Moore, S.L.; Leecaster, M.K.; Weisberg, S.B. A comparison of plastic and plankton in the North Pacific central Gyre. Mar. Pollut. Bull. 2001, 42, 1297–1300. [Google Scholar] [CrossRef]
- Boerger, C.M.; Lattin, G.L.; Moore, S.L.; Moore, C.J. Plastic ingestion by planktivorous fishes in the North Pacific Central Gyre. Mar. Pollut. Bull. 2010, 60, 2275–2278. [Google Scholar] [CrossRef]
- Davison, P.; Asch, R. Plastic ingestion by mesopelagic fishes in the North Pacific subtropical gyre. Mar. Ecol. Prog. Ser. 2011, 432, 173–180. [Google Scholar] [CrossRef]
- Lazar, B.; Gračan, R. Ingestion of marine debris by loggerhead sea turtles, Caretta caretta, in the Adriatic Sea. Mar. Pollut. Bull. 2011, 62, 43–47. [Google Scholar] [CrossRef]
- Anastasopoulou, A.; Mytilineou, C.; Smith, C.J.; Papadopoulou, K.N. Plastic debris ingested by deep-water fish of the Ionian Sea (Eastern Mediterranean). Deep-Sea Res. I Oceanogr. Res. Pap. 2013, 74, 11–13. [Google Scholar] [CrossRef]
- Deudero, S.; Alomar, C. Mediterranean marine biodiversity under threat: Reviewing influence of marine litter on species. Mar. Pollut. Bull. 2015, 98, 58–68. [Google Scholar] [CrossRef] [PubMed]
- Anastasopoulou, A.; Kovač Viršek, M.; Bojanić Varezić, D.; Digka, N.; Fortibuoni, T.; Koren, Š.; Mandić, M.; Mytilineou, C.; Pešić, A.; Ronchi, F.; et al. Assessment on marine litter ingested by fish in the Adriatic and NE Ionian Sea macro-region (Mediterranean). Mar. Pollut. Bull. 2018, 133, 841–851. [Google Scholar] [CrossRef]
- Garcia-Garin, O.; Vighi, M.; Aguilar, A.; Tsangaris, C.; Digka, N.; Kaberi, H.; Borrell, A. Boops boops as a bioindicator of microplastic pollution along the Spanish Catalan coast. Mar. Pollut. Bull. 2019, 149, 110648. [Google Scholar] [CrossRef]
- Reinold, S.; Herrera, A.; Saliu, F.; Hernández-González, C.; Martinez, I.; Lasagni, M.; Gómez, M. Evidence of microplastic ingestion by cultured European sea bass (Dicentrarchus labrax). Mar. Pollut. Bull. 2021, 168, 112450. [Google Scholar] [CrossRef]
- Tsangaris, C.; Digka, N.; Valente, T.; Aguilar, A.; Borrell, A.; de Lucia, G.A.; Gambaiani, D.; Garcia-Garin, O.; Kaberi, H.; Martin, J.; et al. Using Boops boops (osteichthyes) to assess microplastic ingestion in the Mediterranean Sea. Mar. Pollut. Bull. 2020, 158, 111397. [Google Scholar] [CrossRef]
- Nadal, M.A.; Alomar, C.; Deudero, S. High levels of microplastic ingestion by the semipelagic fish bogue Boops boops (L.) around the Balearic Islands. Environ. Pollut. 2016, 214, 517–523. [Google Scholar] [CrossRef]
- Sbrana, A.; Valente, T.; Scacco, U.; Bianchi, J.; Silvestri, C.; Palazzo, L.; de Lucia, G.A.; Valerani, C.; Ardizzone, G.; Matiddi, M. Spatial variability and influence of biological parameters on microplastic ingestion by Boops boops (L.) along the Italian coasts (Western Mediterranean Sea). Environ. Pollut. 2020, 263, 114429. [Google Scholar] [CrossRef]
- Rios-Fuster, B.; Alomar, C.; Compa, M.; Guijarro, B.; Deudero, S. Anthropogenic particles ingestion in fish species from two areas of the western Mediterranean Sea. Mar. Pollut. Bull. 2019, 144, 325–333. [Google Scholar] [CrossRef]
- Compa, M.; Ventero, A.; Iglesias, M.; Deudero, S. Anthropogenic microparticles in different commercial fish species from a Marine Protected Area in Cabrera (Western Mediterranean Sea). Biology 2022, 11, 1600. [Google Scholar] [CrossRef]
- Alomar, C.; Compa, M.; Sanz-Martín, M.; Fagiano, V.; Álvaraz, E.; Valencia, J.M.; Deudero, S.A. Holistic approach to plastic pollution in integrated multi-trophic aquaculture facilities: Plastic ingestion in Sparus aurata and Mytilus galloprovincialis. Aquaculture 2022, 561, 738666. [Google Scholar] [CrossRef]
- Sánchez-Almeida, R.; Hernández-Sánchez, C.; Villanova-Solano, C.; Díaz-Peña, F.J.; Clemente, S.; González-Sálamo, J.; González-Pleiter, M.; Hernández-Borges, J. Microplastics Determination in Gastrointestinal Tracts of European Sea Bass (Dicentrarchus labrax) and Gilt-Head Sea Bream (Sparus aurata) from Tenerife (Canary Islands, Spain). Polymers 2022, 14, 1931. [Google Scholar] [CrossRef]
- Savoca, S.; Matanović, K.; D’Angelo, G.; Vetri, V.; Anselmo, S.; Bottari, T.; Mancuso, M.; Kuzir, S.; Spanò, N.; Capillo, G.; et al. Ingestion of plastic and non-plastic microfibers by farmed gilthead sea bream (Sparus aurata) and common carp (Cyprinus carpio) at different life stages. Sci. Total Environ. 2021, 782, 146851. [Google Scholar] [CrossRef]
- Digka, N.; Tsangaris, C.; Torre, M.; Anastasopoulou, A.; Zeri, C. Microplastics in mussels and fish from the northern Ionian Sea. Mar. Pollut. Bull. 2018, 135, 30–40. [Google Scholar] [CrossRef]
- Mosconi, G.; Panseri, S.; Magni, S.; Malandra, R.; D’Amato, A.; Carini, M.; Chiesa, L.; Della Torre, C. Plastic Contamination in Seabass and Seabream from Off-Shore Aquaculture Facilities from the Mediterranean Sea. J. Xenobiot. 2023, 13, 625–640. [Google Scholar] [CrossRef]
- Matias, R.S.; Gomes, S.; Barboza, L.G.A.; Almeida, C.M.R.; Marques, A.; Guilhermino, L.; Valente, L.M.P. Occurrence of microplastics and metals in European seabass produced in different aquaculture systems: Implications for human exposure, risk, and food safety. Sci. Total Environ. 2024, 929, 172535. [Google Scholar] [CrossRef] [PubMed]
- El-Sayed, A.A.M.; Ibrahim, M.I.A.; Shabaka, S.; Ghobashy, M.M.; Shreadah, M.; Abdel Ghani, S. Microplastics contamination in commercial fish from Alexandria City, the Mediterranean Coast of Egypt. Environ. Pollut. 2022, 313, 120044. [Google Scholar] [CrossRef] [PubMed]
- Bottari, T.; Mancuso, M.; Pedà, C.; De Domenico, F.; Laface, F.; Schirinzi, G.F.; Battaglia, P.; Consoli, P.; Spanò, N.; Greco, S.; et al. Microplastics in the bogue, Boops boops: A snapshot of the past from the southern Tyrrhenian Sea. J. Hazard. Mater. 2022, 424, 127669. [Google Scholar] [CrossRef] [PubMed]
- Bellas, J.; Martínez-Armental, J.; Martínez-Cámara, A.; Besada, V.; Martínez-Gómez, C. Ingestion of microplastics by demersal fish from the Spanish Atlantic and Mediterranean coasts. Mar. Pollut. Bull. 2016, 109, 55–60. [Google Scholar] [CrossRef]
- Güven, O.; Gökdağ, K.; Jovanović, B.; Kıdeyş, A.E. Microplastic litter composition of the Turkish territorial waters of the Mediterranean Sea, and its occurrence in the gastrointestinal tract of fish. Environ. Pollut. 2017, 223, 286–294. [Google Scholar] [CrossRef]
- Compa, M.; Ventero, A.; Iglesias, M.; Deudero, S. Ingestion of microplastics and natural fibres in Sardina pilchardus (Walbaum, 1792) and Engraulis encrasicolus (Linnaeus, 1758) along the Spanish Mediterranean coast. Mar. Pollut. Bull. 2018, 128, 89–96. [Google Scholar] [CrossRef]
- Bessa, F.; Barría, P.; Neto, J.M.; Frias, J.P.G.L.; Otero, V.; Sobral, P.; Marques, J.C. Occurrence of microplastics in commercial fish from a natural estuarine environment. Mar. Pollut. Bull. 2018, 128, 575–584. [Google Scholar] [CrossRef] [PubMed]
- Avio, C.G.; Gorbi, S.; Regoli, F. Experimental development of a new protocol for extraction and characterization of microplastics in fish tissues: First observations in commercial species from Adriatic Sea. Mar. Environ. Res. 2015, 111, 18–26. [Google Scholar] [CrossRef]
- Phuong, N.N.; Poirier, L.; Pham, Q.T.; Lagarde, F.; Zalouk-Vergnoux, A. Factors influencing the microplastic contamination of bivalves from the French Atlantic coast: Location, season and/or mode of life? Mar. Pollut. Bull. 2018, 129, 664–674. [Google Scholar] [CrossRef] [PubMed]
- Rochman, C.M.; Tahir, A.; Williams, S.L.; Baxa, D.V.; Lam, R.; Miller, J.T.; The, F.C.; Werorilangi, S.; Teh, S.J. Anthropogenic debris in seafood: Plastic debris and fibers from textiles in fish and bivalves sold for human consumption. Sci. Rep. 2015, 5, 14340. [Google Scholar] [CrossRef]
- Romeo, T.; Pietro, B.; Pedà, C.; Consoli, P.; Andaloro, F.; Fossi, M.C. First evidence of presence of plastic debris in stomach of large pelagic fish in the Mediterranean Sea. Mar. Pollut. Bull. 2015, 95, 358–361. [Google Scholar] [CrossRef]
- Peters, C.A.; Thomas, P.A.; Rieper, K.B.; Bratton, S.P. Foraging preferences influence microplastic ingestion by six marine fish species from the Texas Gulf Coast. Mar. Pollut. Bull. 2017, 124, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Alomar, C.; Sanz-Martín, M.; Compa, M.; Rios-Fuster, B.; Alvarez, E.; Ripolles, V.; Valencia, J.M.; Deudero, S. Microplastic ingestion in reared aquaculture fish: Biological responses to low-density polyethylene-controlled diets in Sparus aurata. Environ. Pollut. 2021, 280, 116–960. [Google Scholar] [CrossRef]
- Hacısalihoğlu, S. A Hazard Index of Microplastics Contamination in Commercial Marine Fish Species and Mussels in the Southern Marmara Sea, Turkey. Aquac. Res. 2025, 2025, 6690338. [Google Scholar] [CrossRef]
- Savoca, S.; Capillo, G.; Mancuso, M.; Panarello, G.; Crupi, R.; Bonsignore, M.; D’Urso, L.; Compagnini, G.; Neri, F.; Fazio, E.; et al. Detection of artificial cellulose microfibers in Boops boops from the northern coasts of Sicily (Central Mediterranean). Sci. Total Environ. 2019, 691, 455–465. [Google Scholar] [CrossRef] [PubMed]
- Gao, P.; Mohd Noor, N.Q.I.; Mohamad Razali, U.H.; Mohd Yusop, M.H.; Md Shaarani, S. Anthropogenic particles in the muscle, gill, and gastrointestinal tract of marine fish sold for human consumption. Heliyon 2023, 9, e20835. [Google Scholar] [CrossRef] [PubMed]
Species | Boops boops | Dicentrarchus labrax | Sparus aurata | ||
---|---|---|---|---|---|
Wild/Farmed | Wild | Wild | Farmed | Wild | Farmed |
TL (cm) | 23.70 ± 0.85 | 35.30 ± 3.27 | 35.00 ± 2.04 | 27.90 ± 1.53 | 30.50 ± 1.94 |
RW (kg) | 0.16 ± 0.02 | 0.51 ± 0.13 | 0.51 ± 0.07 | 0.41 ± 0.07 | 0.54 ± 0.05 |
Number of individuals examined | 20 | 10 | 10 | 10 | 10 |
Number of individuals containing AM | 11 | 6 | 8 | 4 | 8 |
AM frequency of occurrence (%) | 55 | 60 | 80 | 40 | 80 |
AM number | 21 | 25 | 36 | 10 | 23 |
AM abundance per individual in all individuals examined a | 1.10 ± 1.20 | 2.50 ± 3.10 | 3.60 ± 2.20 | 1.00 ± 1.70 | 2.30 ± 2.10 |
AM abundance per individual in individuals containing AM b | 1.90 ± 1.00 | 4.20 ± 2.90 | 4.50 ± 1.30 | 2.50 ± 1.90 | 2.90 ± 1.90 |
AM abundance per gram weight in individuals containing AM c | 11.40 ± 6.70 | 21.50 ± 17.60 | 20.00 ± 12.10 | 14.30 ± 13.50 | 7.70 ± 5.20 |
Reference | Species | N | Area | Origin | % With AM | AM (Items/Indiv; All) | AM (Items/Indiv; i.c.m.) | AM (Items/g w.w.; i.c.m.) | AM Shape (%) | AM Size | AM Color |
---|---|---|---|---|---|---|---|---|---|---|---|
This study | B. boops | 20 | Cyclades, Greece | Wild | 55% | 1.10 ± 1.20 | 1.90 ± 1.00 | 11.40 ± 6.70 | 86% fibers/14% fragments | <0.05 mm | Black |
This study | S. aurata | 10 | Messolonghi Lagoon, Greece | Wild | 60% | 1.00 ± 1.70 | 2.50 ± 1.90 | 14.30 ± 13.50 | 100% fibers | <0.05 mm | Black |
This study | S. aurata | 10 | Rhodes Island, Greece | Farmed | 80% | 2.30 ± 2.10 | 2.90 ± 1.90 | 7.70 ± 5.20 | 87% fibers/13% fragments | 0.05–1.0 mm | Blue |
This study | D. labrax | 10 | Messolonghi Lagoon, Greece | Wild | 40% | 2.50 ± 3.10 | 4.20 ± 2.90 | 21.50 ± 17.60 | 100% fibers | <0.05 mm | Black |
This study | D. labrax | 10 | Rhodes Island, Greece | Farmed | 80% | 3.60 ± 2.20 | 4.50 ± 1.30 | 20.00 ± 12.10 | 97% fibers/3% fragments | 0.05–1.0 mm | Black |
Anastasopoulou et al. [16] | Chelon auratus, S. aurata, Solea solea, Mullus surmuletus, P. erythrinus, S. pilchardus, M. barbatus | 230 (pooled samples) | Slovenian Sea | Wild | NA | 6.70 ± 3.50 | NA | NA | 75.6% filaments | NA | NA |
Croatian Sea | Wild | NA | 2.50 ± 0.20 | NA | NA | 97.7% filaments | NA | NA | |||
NE Ionian Sea | Wild | NA | 1.70 ± 0.20 | NA | NA | 79% fragments | NA | NA | |||
Digka et al. [27] | S. pilchardus | 36 | Eastern Mediterranean | Wild | 47% | 0.80 ± 0.20 | 1.80 ± 0.20 | 34.90 ± 7.90 | 80% fragments/20% fibers | 0.1–0.5 mm | Blue |
Digka et al. [27] | P. erythrinus | 19 | Eastern Mediterranean | Wild | 42% | 0.80 ± 0.20 | 1.90 ± 0.20 | 27.80 ± 24.60 | 73% fragments/27% fibers | 0.1–0.5 mm | Blue |
Digka et al. [27] | M. barbatus | 25 | Eastern Mediterranean | Wild | 32% | 0.50 ± 0.20 | 1.50 ± 0.30 | 11.20 ± 2.80 | 83% fragments/17% fibers | 0.1–0.5 mm | Blue |
Garcia-Garin et al. [17] | B. boops | 34 | Catalan coast (Barcelona) | Wild | 65% | 1.68 ± 0.31 | 2.59 ± 0.35 | 0.83 ± 0.15 | 60% fragments/40% fibers | 0.1–0.5 mm | Blue |
Garcia-Garin et al. [17] | B. boops | 34 | Catalan coast (Blanes) | Wild | 35% | 0.50 ± 0.14 | 1.42 ± 0.23 | 0.20 ± 0.05 | 60% fragments/40% fibers | 0.1–0.5 mm | Blue |
Garcia-Garin et al. [17] | B. boops | 34 | Catalan coast (Cap de Creus MPA) | Wild | 38% | 0.53 ± 0.14 | 1.38 ± 0.18 | 0.16 ± 0.02 | 60% fragments/40% fibers | 0.1–0.5 mm | Black |
Tsangaris et al. [19] | B. boops | 884 | Eastern Mediterranean | Wild | 47% | NA | 2.51 ± 0.02 | NA | 82% filaments | 1.0–5.0 mm | Black |
Mosconi et al. [28] | S. aurata/D. labrax | 34 | Eastern Mediterranean | Farmed | 38% | 0.51 ± 0.78 | 1.39 ± 0.65 | NA | 68% fibers/32% fragments | NA | Black |
Matias et al. [29] | D. labrax | 46 | Eastern Mediterranean | Cage aquaculture | 89% | NA | 3.20 ± 2.30 | 0.18 ± 0.13 | 59% fibers/22% fragments | 0.1–0.5 mm | Blue |
50 | Semi-intensive pond aquaculture | 94% | NA | 4.20 ± 2.80 | 0.53 ± 0.40 | 48% fibers/36% fragments | 0.1–0.5 mm | Black | |||
55 | Recirculating aquaculture system (RAS) | 96% | NA | 4.89 ± 2.50 | 0.69 ± 0.42 | >60% fibers | 0.1–0.5 mm | Blue |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kostoula, A.; Moschou-Kounopioti, E.; Milatou, N.; Megalofonou, P. Anthropogenic Microparticles in Aquaculture and Wild Fish: A Case Study of Three Commercially Important Species in the Eastern Mediterranean. Fishes 2025, 10, 492. https://doi.org/10.3390/fishes10100492
Kostoula A, Moschou-Kounopioti E, Milatou N, Megalofonou P. Anthropogenic Microparticles in Aquaculture and Wild Fish: A Case Study of Three Commercially Important Species in the Eastern Mediterranean. Fishes. 2025; 10(10):492. https://doi.org/10.3390/fishes10100492
Chicago/Turabian StyleKostoula, Aikaterini, Eugenia Moschou-Kounopioti, Niki Milatou, and Persefoni Megalofonou. 2025. "Anthropogenic Microparticles in Aquaculture and Wild Fish: A Case Study of Three Commercially Important Species in the Eastern Mediterranean" Fishes 10, no. 10: 492. https://doi.org/10.3390/fishes10100492
APA StyleKostoula, A., Moschou-Kounopioti, E., Milatou, N., & Megalofonou, P. (2025). Anthropogenic Microparticles in Aquaculture and Wild Fish: A Case Study of Three Commercially Important Species in the Eastern Mediterranean. Fishes, 10(10), 492. https://doi.org/10.3390/fishes10100492