Optimizing Permanganic Acid Production: Effects of Temperature on Stability
Abstract
1. Introduction
2. Materials and Methods
2.1. Permanganic Acid Preparation
2.2. Preliminary Evaluation of Ion Exchange Conditions
- In Test 1, a low concentration of KMnO4 (316 ppm) was used with 0.49 g of AmberLite IRN97 H resin, calculated based on a 1:1 molar ratio between H+ and K+.
- In Test 2, the concentration of KMnO4 increased tenfold (3610) while keeping the resin quantity constant. This test aimed to provide insights into its maximum ion exchange capacity and observe any possible changes in pH or other chemical interactions that might occur under these conditions.
- In Test 3 the resin quantity increased to 1.48 g while maintaining the KMnO4 concentration at 316 ppm, as in Test 1.
2.3. Potassium Ion Monitoring by Ion Chromatography
2.4. Cr2O3 Kinetic Dissolution in HMnO4 Solution
2.5. Decomposing HMnO4 with Oxalic Acid
2.6. Analytical Methods
3. Results and Discussion
3.1. Pre-Optimization of HMnO4 Production
3.1.1. pH Evolution
3.1.2. K+ Ions Concentration
3.2. Optimization of HMnO4 Production
3.3. Evolution of Cr2O3 Dissolution in Presence of HMnO4 Solution
3.3.1. At 240 ppm HMnO4
3.3.2. At 1920 ppm HMnO4
3.4. Effect of Oxalic Acid Concentration on HMnO4 Decomposition at 80 °C
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hanrahan, G. Trace Environmental Quantitative Analysis: Principles, Techniques and Applications. J. Am. Chem. Soc. 2006, 128, 5585. [Google Scholar] [CrossRef]
- Ladbury, J.W.; Cullis, C.F. Kinetics and Mechanism of Oxidation By Permanganate. Chem. Rev. 1958, 58, 403–438. [Google Scholar] [CrossRef]
- Perrin, D.D. Dissociation Contants of Inorganic Acids and Bases in Aqueous Solution. Pure Appl. Chem. 1969, 20, 133–236. [Google Scholar] [CrossRef]
- Kotai, L.; Gacs, I.; Sajo, I.E.; Sharma, P.K.; Banerji, K.K. Beliefs and Facts in Permanganate Chemistry—An Overview on the Synthesis and the Reactivity of Simple and Complex Permanganates. Trends Inorg. Chem. 2009, 11, 25–104. Available online: https://www.researchgate.net/profile/Laszlo-Kotai/publication/257922081_ChemInform_Abstract_Beliefs_and_Facts_in_Permanganate_Chemistry_-_An_Overview_on_the_Synthesis_and_the_Reactivity_of_Simple_and_Complex_Permanganates/links/59e315aba6fdcc7154db620a/ChemInform-Abstract-Beliefs-and-Facts-in-Permanganate-Chemistry-An-Overview-on-the-Synthesis-and-the-Reactivity-of-Simple-and-Complex-Permanganates.pdf? (accessed on 14 October 2025). [CrossRef]
- Williams, C. PKa Compilation. Available online: https://organicchemistrydata.org/hansreich/resources/pka/ (accessed on 14 October 2025).
- Zhang, Y.; Dong, H.; Yan, P.; Zheng, X. Research on Removal of Manganese in Drinking Water by Potassium Permanganate. E3S Web Conf. 2021, 260, 01025. [Google Scholar] [CrossRef]
- Ren, H.; Su, Y.; Zhao, S.; Chen, N.; Li, C.; Wang, X.; Li, B. Study on the Performance of MnOx Modified Graphite Felts as Electrodes for Iron-Chromium Redox Flow Battery Obtained by Permanganic Acid Etching. J. Energy Storage 2024, 75, 109592. [Google Scholar] [CrossRef]
- Riley, J.E. Method and Capacitor Comprising Oxide Electrolyte Derived from Permanganic Acid. U.S. Patent 3,320,494, 16 May 1967. [Google Scholar]
- Schink, N.; Stoiber, R. Method of Obtaining Purest Semiconductor Material by Elimination of Carbon-Impurities. U.S. Patent 3,527,661, 8 September 1970. [Google Scholar]
- Chen, L.; Chamberlain, D.B.; Conner, C.; Vandegrift, G.F. A Survey of Decontamination Processes Applicable to DOE Nuclear Facilities; Argonne National Laboratory: Argonne, Illinois, USA, 1997. [Google Scholar]
- Corrado, M.; Cao, S.; Grassini, S.; Iannucci, L.; Savoldi, L. Optimization for the HP-CORD UV Chemical Decontamination Process for AISI 304 Stainless Steel. Nucl. Eng. Des. 2023, 414, 112550. [Google Scholar] [CrossRef]
- Riess, R.; Odar, S.; Kysela, J. Decontamination and Steam Generator Chemical Cleaning: LCC5 Special Topic Report; Advanced Nuclear Technology International: Skultuna, Sweden, 2009. [Google Scholar]
- Kokubun, Y.; Haraguchi, K.; Yoshizawa, Y.; Yamada, Y. Radiation Control in the Core Shroud Replacement Project of Fukushima-Daiichi NPS Unit # 2. In Proceedings of the 10th International Congress of the International Radiation Protection Association (IRPA-10); Japan Health Physics Society: Hiroshima, Japan, 2000. [Google Scholar]
- Noynaert, L. Decontamination Processes and Technologies in Nuclear Decommissioning Projects. In Nuclear Decommissioning; Woodhead Publishing: Cambridge, UK, 2012; pp. 319–345. [Google Scholar]
- Ma, L.; Wang, J.; Han, L.; Lu, C. Research Progress of Chemical Decontamination Technology in the Decommissioning of Nuclear Facilities. Int. Core J. Eng. 2020, 6, 57–61. [Google Scholar] [CrossRef]
- Subramanian, K.; Gomathi, K.G.; Asokan, K. Electrosynthesis of Potassium Permanganate in a Cation Exchange Membrane Cell. Ind. Eng. Chem. Res. 2008, 47, 8526–8532. [Google Scholar] [CrossRef]
- Petruševski, V.M. Oxidation of HF with KMnO4 and Possible Misconceptions about HF. Maced. J. Chem. Chem. Eng. 2024, 43, 281–284. [Google Scholar] [CrossRef]
- Puspalata, R.; Sumathi, S.; Chandramohan, P.; Bera, S.; Rangarajan, S.; Sudha, R.; Narasimhan, S.V.; Velmurugan, S. Gamma Radiation Induced Formation and Characterization of the Nano-Oxides of Manganese. Radiat. Phys. Chem. 2013, 85, 152–160. [Google Scholar] [CrossRef]
- Nakajima, T.; Kanaori, M.; Tateno, H.; Nomoto, J.; Miseki, Y.; Tsuchiya, T.; Sayama, K. Diffusion Controlled Porous WO3 Thin Film Photoanodes for Efficient Solar-Driven Photoelectrochemical Permanganic Acid Production. Sustain. Energy Fuels 2019, 3, 2380–2390. [Google Scholar] [CrossRef]
- Subramanian, V.; Chandramohan, P.; Srinivasan, M.P.; Sukumar, A.A.; Raju, V.S.; Velmurugan, S.; Narasimhan, S.V. The Effect of Conditioning by Permanganate on the Dissolution Behavior of Stellite Particles in Organic Complexing Acid Medium. J. Nucl. Mater. 2004, 334, 169–179. [Google Scholar] [CrossRef]
- Trémillon, B.; Gaston, C. Les Séparations Par Les Résines Échangeuses D’ions; Monographies de Chimie Minérale; Gauthier-Villars: Paris, France, 1965. [Google Scholar]
- Liu, S.; He, Y.; Xie, H.; Ge, Y.; Lin, Y.; Yao, Z.; Jin, M.; Liu, J.; Chen, X.; Sun, Y.; et al. A State-of-the-Art Review of Radioactive Decontamination Technologies: Facing the Upcoming Wave of Decommissioning and Dismantling of Nuclear Facilities. Sustainability 2022, 14, 4021. [Google Scholar] [CrossRef]
- Zhong, L.; Lei, J.; Deng, J.; Lei, Z.; Lei, L.; Xu, X. Existing and Potential Decontamination Methods for Radioactively Contaminated Metals-A Review. Prog. Nucl. Energy 2021, 139, 103854. [Google Scholar] [CrossRef]
- DuPont. DuPontTM AmberLiteTM IRN97 H Ion Exchange Resin, Product Data Sheet; DuPont Water Solutions: Chauny, France, 2023. [Google Scholar]
- Rivonkar, A.; Katona, R.; Robin, M.; Suzuki-Muresan, T.; Abdelouas, A.; Mokili, M.; Bátor, G.; Kovács, T. Optimisation of the Chemical Oxidation Reduction Process (CORD) on Surrogate Stainless Steel in Regards to Its Efficiency and Secondary Wastes. Front. Nucl. Eng. 2022, 1, 1080954. [Google Scholar] [CrossRef]
- Koupparis, M.; Karayannis, M. A Kinetic Study of the Permanganate—Oxalate Reaction and Kinetic Determination of Manganese(II) and Oxalic Acid by the Stopped-Flow Technique. Anal. Chim. Acta 1982, 138, 303–310. [Google Scholar] [CrossRef]
- Robin, M.; Rivonkar, A.; Suzuki-Muresan, T.; Abdelouas, A.; Mokili, M. Optimized Precipitation Process for the Treatment of Radioactive Effluents from Ni-Alloy Decontamination Using a Chemical Oxidation Reduction Process. Front. Nucl. Eng. 2024, 3, 1396821. [Google Scholar] [CrossRef]
- Stiepani, C.; Bertholdt, H.-O. Full System Decontamination with the HP/CORD (R) UV for Decommissioning at German PWR Stade. In Proceedings of the 18th International Conference on Structural Mechanics in Reactor Technology, Beijing, China, 7–12 August 2005. [Google Scholar]
- Lee, H.-K.; Kim, J.-H.; Oh, W.; Choi, S.-J. Spontaneous Reductive Decomposition Behavior of Hydrogen Permanganate in Water for Chemical Decontamination of Nuclear Power Plants. J. Radioanal. Nucl. Chem. 2018, 317, 1361–1366. [Google Scholar] [CrossRef]
- Blenkinsop, J.; Rivonkar, A.; Robin, M.; Carey, T.; Dunnett, B.; Suzuki-Muresan, T.; Percin, C.; Abdelouas, A.; Street, J. Methods for the Destruction of Oxalic Acid Decontamination Effluents. Front. Nucl. Eng. 2024, 3, 1347322. [Google Scholar] [CrossRef]
- Eun, H.-C.; Park, S.-Y.; Choi, W.-K.; Kim, S.-B.; Won, H.-J.; Chang, N.-O.; Lee, S.-B.; Park, J.-S.; Seo, B.-K.; Kim, K.-C. A Waste-Minimized Chemical Decontamination Process for the Decontamination of a Nuclear Reactor Coolant System. J. Radioanal. Nucl. Chem. 2020, 326, 665–674. [Google Scholar] [CrossRef]








| KMnO4 (ppm) | Resin (Grams) | HNO3 (ppm) | |
|---|---|---|---|
| Test 1 | 316 | 0.49 | 190 |
| Test 2 | 3160 | 0.49 | 190 |
| Test 3 | 316 | 1.48 | 190 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bakhite Adam, A.E.; Suzuki-Muresan, T.; Rivonkar, A.; Mokili, M. Optimizing Permanganic Acid Production: Effects of Temperature on Stability. Methods Protoc. 2025, 8, 131. https://doi.org/10.3390/mps8060131
Bakhite Adam AE, Suzuki-Muresan T, Rivonkar A, Mokili M. Optimizing Permanganic Acid Production: Effects of Temperature on Stability. Methods and Protocols. 2025; 8(6):131. https://doi.org/10.3390/mps8060131
Chicago/Turabian StyleBakhite Adam, Abdel Elfatah, Tomo Suzuki-Muresan, Aditya Rivonkar, and Marcel Mokili. 2025. "Optimizing Permanganic Acid Production: Effects of Temperature on Stability" Methods and Protocols 8, no. 6: 131. https://doi.org/10.3390/mps8060131
APA StyleBakhite Adam, A. E., Suzuki-Muresan, T., Rivonkar, A., & Mokili, M. (2025). Optimizing Permanganic Acid Production: Effects of Temperature on Stability. Methods and Protocols, 8(6), 131. https://doi.org/10.3390/mps8060131

