Genomic-Based Newborn Screening for Inborn Errors of Immunity: Practical and Ethical Considerations
Abstract
:1. Introduction
1.1. Selection of Disease Candidates for Newborn Screening Programs
1.2. Genetic Screening Will Enable Us to Identify a Wider Range of Clinically Actionable Conditions
2. Ethical, Legal and Social Implications (ELSIs) in Screening for IEI
2.1. Individual: Physical and Psychological Well-Being
2.2. Individual: Autonomy and Informed Consent
2.3. Society: Privacy and Protection of Genetic Information
2.4. Society: Health and Economic Considerations
2.5. Society: Equity and Access to Newborn Screening
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Centerwall, S.A.; Centerwall, W.R. The discovery of phenylketonuria: The story of a young couple, two retarded children, and a scientist. Pediatrics 2000, 105, 89–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cornel, M.C.; Rigter, T.; Jansen, M.E.; Henneman, L. Neonatal and carrier screening for rare diseases: How innovation challenges screening criteria worldwide. J. Community Genet. 2021, 12, 257–265. [Google Scholar] [CrossRef]
- Tangye, S.G.; Al-Herz, W.; Bousfiha, A.; Chatila, T.; Cunningham-Rundles, C.; Etzioni, A.; Franco, J.L.; Holland, S.M.; Klein, C.; Morio, T.; et al. Human Inborn Errors of Immunity: 2022 Update on the Classification from the International Union of Immunological Societies Expert Committee. J. Clin. Immunol. 2022, 42, 1473–1507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, L.; Xu-Bayford, J.; Allwood, Z.; Slatter, M.; Cant, A.; Davies, E.G.; Veys, P.; Gennery, A.R.; Gaspar, H.B. Neonatal diagnosis of severe combined immunodeficiency leads to significantly improved survival outcome: The case for newborn screening. Blood 2011, 117, 3243–3246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- King, J.R.; Hammarström, L. Newborn Screening for Primary Immunodeficiency Diseases: History, Current and Future Practice. J. Clin. Immunol. 2017, 38, 56–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dezfouli, M.; Bergström, S.; Skattum, L.; Abolhassani, H.; Neiman, M.; Torabi-Rahvar, M.; Jarava, C.F.; Martin-Nalda, A.; Balaguer, J.M.F.; Slade, C.A.; et al. Newborn Screening for Presymptomatic Diagnosis of Complement and Phagocyte Deficiencies. Front. Immunol. 2020, 11, 455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamsten, C.; Skattum, L.; Truedsson, L.; von Döbeln, U.; Uhlén, M.; Schwenk, J.M.; Hammarström, L.; Nilsson, P.; Neiman, M. Heat differentiated complement factor profiling. J. Proteom. 2015, 126, 155–162. [Google Scholar] [CrossRef]
- Borte, S.; Meeths, M.; Liebscher, I.; Krist, K.; Nordenskjöld, M.; Hammarström, L.; von Döbeln, U.; Henter, J.-I.; Bryceson, Y.T. Combined newborn screening for familial hemophagocytic lymphohistiocytosis and severe T- and B-cell immunodeficiencies. J. Allergy Clin. Immunol. 2014, 134, 226–228. [Google Scholar] [CrossRef]
- Janzi, M.; Sjöberg, R.; Wan, J.; Fischler, B.; von Döbeln, U.; Isaac, L.; Nilsson, P.; Hammarström, L. Screening for C3 deficiency in newborns using microarrays. PLoS ONE 2009, 4, e5321. [Google Scholar] [CrossRef] [Green Version]
- Kingsmore, S.F.; Smith, L.D.; Kunard, C.M.; Bainbridge, M.; Batalov, S.; Benson, W.; Blincow, E.; Caylor, S.; Chambers, C.; Del Angel, G.; et al. A genome sequencing system for universal newborn screening, diagnosis, and precision medicine for severe genetic diseases. Am. J. Hum. Genet. 2022, 109, 1605–1619. [Google Scholar] [CrossRef]
- Smedley, D.; Smith, K.R.; Martin, A.; Thomas, E.A.; McDonagh, E.M.; Cipriani, V.; Ellingford, J.M.; Arno, G.; Tucci, A.; Vandrovcova, J.; et al. 100,000 Genomes Pilot on Rare-Disease Diagnosis in Health Care-Preliminary Report. N. Engl. J. Med. 2021, 385, 1868–1880. [Google Scholar]
- Jian, M.; Wang, X.; Sui, Y.; Fang, M.; Feng, C.; Huang, Y.; Liu, C.; Guo, R.; Guan, Y.; Gao, Y.; et al. A pilot study of assessing whole genome sequencing in newborn screening in unselected children in China. Clin. Transl. Med. 2022, e843. [Google Scholar] [CrossRef] [PubMed]
- Pichini, A.; Ahmed, A.; Patch, C.; Bick, D.; Leblond, M.; Kasperaviciute, D.; Deen, D.; Wilde, S.; Noriega, S.G.; Matoko, C.; et al. Developing a National Newborn Genomes Program: An Approach Driven by Ethics, Engagement and Co-design. Front. Genet. 2022, 13, 866168. [Google Scholar] [CrossRef]
- Cho, Y.; Lee, C.-H.; Jeong, E.-G.; Kim, M.-H.; Hong, J.H.; Ko, Y.; Lee, B.; Yun, G.; Kim, B.J.; Jung, J.; et al. Prevalence of Rare Genetic Variations and Their Implications in NGS-data Interpretation. Sci. Rep. 2017, 7, 9810. [Google Scholar] [CrossRef]
- Bhattacharjee, A.; Sokolsky, T.; Wyman, S.K.; Reese, M.G.; Puffenberger, E.; Strauss, K.; Morton, H.; Parad, R.B.; Naylor, E.W. Development of DNA Confirmatory and High-Risk Diagnostic Testing for Newborns Using Targeted Next-Generation DNA Sequencing. Genet. Med. 2015, 17, 337–347. [Google Scholar] [CrossRef] [PubMed]
- Bodian, D.L.; Klein, E.; Iyer, R.K.; Wong, W.S.W.; Kothiyal, P.; Stauffer, D.; Huddleston, K.C.; Gaither, A.D.; Remsburg, I.; Khromykh, A.; et al. Utility of whole-genome sequencing for detection of newborn screening disorders in a population cohort of 1696 neonates. Genet. Med. 2016, 18, 221–230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Willig, L.K.; Petrikin, J.E.; Smith, L.D.; Saunders, C.J.; Thiffault, I.; Miller, N.A.; Soden, S.E.; Cakici, J.A.; Herd, S.M.; Twist, G.; et al. Whole-genome sequencing for identification of Mendelian disorders in critically ill infants: A retrospective analysis of diagnostic and clinical findings. Lancet Respir. Med. 2015, 3, 377–387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pavey, A.R.; Bodian, D.L.; Vilboux, T.; Khromykh, A.; Hauser, N.S.; Huddleston, K.; Klein, E.; Black, A.; Kane, M.S.; Iyer, R.K.; et al. Utilization of genomic sequencing for population screening of immunodeficiencies in the newborn. Genet. Med. 2017, 19, 1367–1375. [Google Scholar] [CrossRef]
- Ceyhan-Birsoy, O.; Murry, J.B.; Machini, K.; Lebo, M.S.; Yu, T.W.; Fayer, S.; Genetti, C.A.; Schwartz, T.S.; Agrawal, P.B.; Parad, R.B.; et al. Interpretation of Genomic Sequencing Results in Healthy and Ill Newborns: Results from the BabySeq Project. Am. J. Hum. Genet. 2019, 104, 76–93. [Google Scholar] [CrossRef] [Green Version]
- King, J.R.; Notarangelo, L.D.; Hammarström, L. An appraisal of the Wilson & Jungner criteria in the context of genomic-based newborn screening for inborn errors of immunity. J. Allergy Clin. Immunol. 2021, 147, 428–438. [Google Scholar]
- Wilson, J.; Jungner, G. The Principles and Practice of Screening for Disease; World Health Organization: Geneva, Switzerland, 1968. [Google Scholar]
- Dobrow, M.J.; Hagens, V.; Chafe, R.; Sullivan, T.; Rabeneck, L. Consolidated principles for screening based on a systematic review and consensus process. CMAJ 2018, 190, E422–E429. [Google Scholar] [CrossRef] [Green Version]
- Petros, M. Revisiting the Wilson-Jungner criteria: How can supplemental criteria guide public health in the era of genetic screening? Genet. Med. 2012, 14, 129–134. [Google Scholar] [CrossRef] [Green Version]
- Andermann, A.; Blancquaert, I.; Beauchamp, S.; Déry, V. Revisiting Wilson and Jungner in the genomic age: A review of screening criteria over the past 40 years. Bull. World Health Organ. 2008, 86, 317–319. [Google Scholar] [CrossRef] [PubMed]
- Bick, D.; Ahmed, A.; Deen, D.; Ferlini, A.; Garnier, N.; Kasperaviciute, D.; Leblond, M.; Pichini, A.; Rendon, A.; Satija, A.; et al. Newborn Screening by Genomic Sequencing: Opportunities and Challenges. Int. J. Neonatal. Screen 2022, 8, 40. [Google Scholar] [CrossRef] [PubMed]
- Children UACoHDiNa; Administration HRaS. Committee Approach to Evaluating the Condition Review Report (Decision Matrix). 2022. Available online: https://www.hrsa.gov/advisory-committees/heritable-disorders/decision-matrix (accessed on 15 December 2022).
- Johnston, J.; Lantos, J.D.; Goldenberg, A.; Chen, F.; Parens, E.; Koenig, B.A. Sequencing Newborns: A Call for Nuanced Use of Genomic Technologies. Hastings Cent. Rep. 2018, 48 (Suppl. 2), S2–S6. [Google Scholar] [CrossRef] [Green Version]
- Tangye, S.G.; Al-Herz, W.; Bousfiha, A.; Skogstrand, K.; Bækvad-Hansen, M. Human Inborn Errors of Immunity: 2019 Update on the Classification from the International Union of Immunological Societies Expert Committee. J. Clin. Immunol. 2020. [Google Scholar]
- DiStefano, M.T.; Goehringer, S.; Babb, L.; Alkuraya, F.S.; Amberger, J.; Amin, M.; Austin-Tse, C.; Balzotti, M.; Berg, J.S.; Birney, E.; et al. The Gene Curation Coalition: A global effort to harmonize gene–disease evidence resources. Genet. Med. 2022, 24, 1732–1742. [Google Scholar] [CrossRef]
- Adhikari, A.N.; Gallagher, R.C.; Wang, Y.; Currier, R.J.; Amatuni, G.; Bassaganyas, L.; Chen, F.; Kundu, K.; Kvale, M.; Mooney, S.D.; et al. The role of exome sequencing in newborn screening for inborn errors of metabolism. Nat. Med. 2020, 26, 1392–1397. [Google Scholar] [CrossRef] [PubMed]
- la Marca, G.; Canessa, C.; Giocaliere, E.; Romano, F.; Duse, M.; Malvagia, S.; Lippi, F.; Funghini, S.; Bianchi, L.; Della Bona, M.L.; et al. Tandem mass spectrometry, but not T-cell receptor excision circle analysis, identifies newborns with late-onset adenosine deaminase deficiency. J. Allergy Clin. Immunol. 2013, 131, 1604–1610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- la Marca, G.; Canessa, C.; Giocaliere, E.; Romano, F.; Malvagia, S.; Funghini, S.; Moriondo, M.; Valleriani, C.; Lippi, F.; Ombrone, D.; et al. Diagnosis of immunodeficiency caused by a purine nucleoside phosphorylase defect by using tandem mass spectrometry on dried blood spots. J. Allergy Clin. Immunol. 2014, 134, 155–159. [Google Scholar] [CrossRef]
- Lund, A.M.; Wibrand, F.; Skogstrand, K.; Bækvad-Hansen, M.; Gregersen, N.; Andresen, B.S.; Hougaard, D.M.; Dunø, M.; Olsen, R.K.J. Use of Molecular Genetic Analyses in Danish Routine Newborn Screening. Int. J. Neonatal Screen 2021, 7, 50. [Google Scholar] [CrossRef]
- Goldenberg, A.J.; Lloyd-Puryear, M.; Brosco, J.P.; Therrell, B.; Bush, L.; Berry, S.; Brower, A.; Bonhomme, N.; Bowdish, B.; Chrysler, D.; et al. Including ELSI research questions in newborn screening pilot studies. Genet. Med. 2019, 21, 525–533. [Google Scholar] [CrossRef] [PubMed]
- Blom, M.; Schoenaker, M.H.D.; Hulst, M.; de Vries, M.C.; Weemaes, C.M.R.; Willemsen, M.A.A.P.; Henneman, L.; van der Burg, M. Dilemma of Reporting Incidental Findings in Newborn Screening Programs for SCID: Parents’ Perspective on Ataxia Telangiectasia. Front. Immunol. 2019, 10, 2438. [Google Scholar] [CrossRef] [Green Version]
- Juth, N.; Munthe, C. The Ethics of Screening in Health Care and Medicine: Serving Society or Serving the Patient? Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Nijsingh, N.; Juth, N.; Munthe, C. International Encyclopedia of Public Health, 2nd ed.; Academic Press (Elsevier): Amsterdam, The Netherlands, 2017. [Google Scholar]
- Esquerda, M.; Palau, F.; Lorenzo, D.; Cambra, F.J.; Bofarull, M.; Cusi, V.; Bioetica, G.I.E. Ethical questions concerning newborn genetic screening. Clin. Genet. 2021, 99, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Dawson, A. The determination of the best interests in relation to childhood immunisation. Bioethics 2005, 19, 72–89. [Google Scholar] [CrossRef]
- Brighouse, H.; Swift, A. Family Values: The Ethics of Parent-Child Relationships; Princeton University Press: Princeton, NJ, USA, 2014. [Google Scholar]
- Nicholls, S.G. Knowledge or Understanding? Informed Choice in the Context of Newborn Bloodspot Screening. Public Health Ethics 2010, 3, 128–136. [Google Scholar] [CrossRef]
- Franková, V.; Driscoll, R.O.; Jansen, M.E.; Loeber, J.G.; Kožich, V.; Bonham, J.; Borde, P.; Brincat, I.; Cheillan, D.; Dekkers, E.; et al. Regulatory landscape of providing information on newborn screening to parents across Europe. Eur. J. Hum. Genet. 2021, 29, 67–78. [Google Scholar] [CrossRef]
- Biesecker, L.G.; Green, E.D.; Manolio, T.; Solomon, B.D.; Curtis, D. Should all babies have their genome sequenced at birth? BMJ 2021, 375, n2679. [Google Scholar] [CrossRef] [PubMed]
- Powles, J.; Hodson, H. Google DeepMind and healthcare in an age of algorithms. Health Technol. 2017, 7, 351–367. [Google Scholar] [CrossRef] [Green Version]
- Hårstrån kan Fälla Gärningsmannen. 2004. Available online: https://www.dn.se/arkiv/inrikes/harstran-kan-falla-garningsmannen/ (accessed on 15 December 2022).
- 2018. Available online: https://blog.myheritage.com/2018/06/myheritage-statement-about-a-cybersecurity-incident/ (accessed on 15 December 2022).
- Hasan, M.Z.; Mahdi, M.S.R.; Sadat, M.N.; Mohammed, N. Secure count query on encrypted genomic data. J. Biomed. Inform. 2018, 81, 41–52. [Google Scholar] [CrossRef]
- Prince, A.E.R. Comparative perspectives: Regulating insurer use of genetic information. Eur. J. Hum. Genet. 2019, 27, 340–348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pugh, J. Genetic information, insurance and a pluralistic approach to justice. J. Med. Ethics 2021, 47, 473. [Google Scholar] [CrossRef]
- Gardulf, A.; Winiarski, J.; Thorin, M.; Heibert Arnlind, M.; von Dobeln, U.; Hammarstrom, L. Costs associated with treatment of severe combined immunodeficiency-rationale for newborn screening in Sweden. J. Allergy Clin. Immunol. 2016, 139, 1713–1716.e6. [Google Scholar] [CrossRef] [Green Version]
- Chan, K.; Davis, J.; Pai, S.Y.; Bonilla, F.A.; Puck, J.M.; Apkon, M. A Markov model to analyze cost-effectiveness of screening for severe combined immunodeficiency (SCID). Mol. Genet. Metab. 2011, 104, 383–389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, Y.; Thompson, J.D.; Kobrynski, L.; Ojodu, J.; Zarbalian, G.; Grosse, S.D. Cost-Effectiveness/Cost-Benefit Analysis of Newborn Screening for Severe Combined Immune Deficiency in Washington State. J. Pediatr. 2016, 172, 127–135. [Google Scholar] [CrossRef] [Green Version]
- Farnaes, L.; Hildreth, A.; Sweeney, N.M.; Clark, M.M.; Chowdhury, S.; Nahas, S.; Cakici, J.A.; Benson, W.; Kaplan, R.H.; Kronick, R.; et al. Rapid whole-genome sequencing decreases infant morbidity and cost of hospitalization. NPJ Genom. Med. 2018, 3, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Author | Methodology | Cohort | Number of Screened Infants | Number of Genes Interrogated | Mendelian Diseases Covered | Key Findings | Reference |
---|---|---|---|---|---|---|---|
Jian et al., 2022 | NBS WGS | Unselected neonates | 321 | 251 | 59 | 136/321 (33.33%) pathogenic/likely pathogenic/copy number variants identified | [12] |
Kingsmore et al., 2022 | Simulated NBS rWGS | Critically unwell infants Biobank (healthy) subjects | 2208 454,707 | 317 | 388 388 | Negative predictive value 99.6%, sensitivity 88.8%, sensitivity 99.7% | [10] |
Cho et al., 2017 | Targeted NGS computational exome analysis, exome analysis | Unwell infants Controls (mutation carriers) (negative controls) | Total: 103 81 22 (10) (12) | 307 | 159 | 5/25 (20%) known causal mutations in databases 20/25 (80%) rare variants (SNVs, nonsense mutations, short indels, gene duplication or deletion) 7/25 (30%) compound heterozygosity 93% sensitivity for core metabolic conditions | [14] |
Bhattacharjee et al., 2015 | WES ‘NBDx’ gene panel, in silico gene filter | Infants with known genetic disorders | 36 | 126 | 27 | 75% sensitivity for core metabolic conditions | [15] |
Bodian et al., 2016 | Research-generated WGS data | Unselected infants | 1696 | 163 | 28 | 88.6% true positive and 98.9% true negative rates for state-screened disorders Good genetic coverage of disorders using WGS | [16] |
Willig et al., 2015 | Rapid trio WGS | Unwell infants, <4 months of age, NICU/PICU | 35 | 5430 | 20 | 20/35 (57%) genetic diagnoses achieved | [17] |
Pavey et al., 2017 | Trio WGS | Healthy cohort (genotype-first) Re-analysis of cohort with suspected IEI (phenotype-first) | 1349 29 | 329 (IEI-associated genes) | 396 (29%) pathogenic/likely pathogenic mutations identified 1/1349 (0.07%) clinically actionable IEI 3 (10%) non-IEI genetic diagnosis | [18] | |
Ceyhan-Birsoy et al., 2019 | Singleton WES (trio re-analysis selected cases) BabySeq Project | Healthy newborns Unwell newborns in NICU | Total: 159 (127) (32) | 15/59 (9.4%) risk of childhood-onset disease (10 from healthy cohort, 5 in NICU) 3/85 (3.5%) actionable adult-onset disease 140/159 (88%) carrier status for AR conditions 8/159 (5%) pharmacogenomic variants | [19] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
King, J.R.; Grill, K.; Hammarström, L. Genomic-Based Newborn Screening for Inborn Errors of Immunity: Practical and Ethical Considerations. Int. J. Neonatal Screen. 2023, 9, 22. https://doi.org/10.3390/ijns9020022
King JR, Grill K, Hammarström L. Genomic-Based Newborn Screening for Inborn Errors of Immunity: Practical and Ethical Considerations. International Journal of Neonatal Screening. 2023; 9(2):22. https://doi.org/10.3390/ijns9020022
Chicago/Turabian StyleKing, Jovanka R., Kalle Grill, and Lennart Hammarström. 2023. "Genomic-Based Newborn Screening for Inborn Errors of Immunity: Practical and Ethical Considerations" International Journal of Neonatal Screening 9, no. 2: 22. https://doi.org/10.3390/ijns9020022
APA StyleKing, J. R., Grill, K., & Hammarström, L. (2023). Genomic-Based Newborn Screening for Inborn Errors of Immunity: Practical and Ethical Considerations. International Journal of Neonatal Screening, 9(2), 22. https://doi.org/10.3390/ijns9020022