Infants with Congenital Diseases Identified through Newborn Screening—United States, 2018–2020
Abstract
:1. Introduction
2. Materials and Methods
2.1. NewSTEPs Data Repository
2.2. Aggregate Case Data Request
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wilson, J.M.G.; Jungner, G.; World Health Organization. Principles and Practice of Screening for Disease; World Health Organization: Geneva, Switzerland, 1968. [Google Scholar]
- APHL. NewSTEPs. Available online: https://www.newsteps.org/ (accessed on 31 December 2022).
- Hale, K.; Kellar-Guenther, Y.; McKasson, S.; Singh, S.; Ojodu, J. Expanding Newborn Screening for Pompe Disease in the United States: The NewSTEPs New Disorders Implementation Project, a Resource for New Disorder Implementation. Int. J. Neonatal Screen. 2020, 6, 48. [Google Scholar] [CrossRef]
- Kellar-Guenther, Y.; McKasson, S.; Hale, K.; Singh, S.; Sontag, M.K.; Ojodu, J. Implementing statewide newborn screening for new disorders: US program experiences. Int. J. Neonatal Screen. 2020, 6, 35. [Google Scholar] [CrossRef]
- Hale, K.; Ojodu, J.; Singh, S. Landscape of spinal muscular atrophy newborn screening in the united states: 2018–2021. Int. J. Neonatal Screen. 2021, 7, 33. [Google Scholar] [CrossRef] [PubMed]
- Sontag, M.K.; Yusuf, C.; Grosse, S.D.; Edelman, S.; Miller, J.I.; McKasson, S.; Kellar-Guenther, Y.; Gaffney, M.; Hinton, C.F.; Cuthbert, C.; et al. Infants with congenital disorders identified through newborn screening—United States, 2015–2017. Morb. Mortal. Wkly. Rep. 2020, 69, 1265. [Google Scholar] [CrossRef] [PubMed]
- Darby, E.; Thompson, J.; Johnson, C.; Singh, S.; Ojodu, J. Establishing a National Community of Practice for Newborn Screening Follow-Up. Int. J. Neonatal Screen. 2021, 7, 49. [Google Scholar] [CrossRef] [PubMed]
- Sontag, M.K.; Sarkar, D.; Comeau, A.M.; Hassell, K.; Botto, L.D.; Parad, R.; Rose, S.R.; Wintergerst, K.A.; Smith-Whitley, K.; Singh, S.; et al. Case definitions for conditions identified by newborn screening public health surveillance. Int. J. Neonatal Screen. 2018, 4, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ojodu, J.; Singh, S.; Kellar-Guenther, Y.; Yusuf, C.; Jones, E.; Wood, T.; Baker, M.; Sontag, M.K. NewSTEPs: The establishment of a national newborn screening technical assistance resource center. Int. J. Neonatal Screen. 2017, 4, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bergougnoux, A.; Lopez, M.; Girodon, E. The role of extended CFTR gene sequencing in newborn screening for Cystic Fibrosis. Int. J. Neonatal Screen. 2020, 6, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parrado, E.A. How high is Hispanic/Mexican fertility in the United States? Immigration and tempo considerations. Demography 2011, 48, 1059–1080. [Google Scholar] [CrossRef] [PubMed]
- Harris, K.B.; Pass, K.A. Increase in congenital hypothyroidism in New York State and in the United States. Mol. Genet. Metab. 2007, 91, 268–277. [Google Scholar] [CrossRef] [PubMed]
- Olivieri, A.; Fazzini, C.; Medda, E.; Italian Study Group for Congenital Hypothyroidism. Multiple factors influencing the incidence of congenital hypothyroidism detected by neonatal screening. Horm. Res. Paediatr. 2015, 83, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Schachter, B.; Knapp. New Population Estimates Show COVID-19 Pandemic Significantly Disrupted Migration across Borders. Available online: https://www.census.gov/library/stories/2021/12/net-international-migration-at-lowest-levels-in-decades.html (accessed on 31 December 2022).
Disease | Year Added to RUSP | 2018 1 | 2019 1 | 2020 1 |
---|---|---|---|---|
Pompe disease | 2015 | 16 | 21 | 25 |
MPS I | 2016 | 15 | 20 | 24 |
X-ALD | 2016 | 13 | 17 | 21 |
SMA | 2018 | 5 | 15 | 29 |
Disorder | MMWR * No. of Cases Reported 2015–2017 | MMWR No. of Births | MMWR Rate (Cases Per 10,000 Births) | No. of Cases Reported 2015–2017 | No. of Births | Rate (Cases Per 10,000 Births) | No. of Cases Reported 2018–2020 | No. of Births | Rate (Cases Per 10,000 Births) | Rate Difference |
---|---|---|---|---|---|---|---|---|---|---|
Amino Acid Disorders | ||||||||||
PAH deficiency | 691 | 11,750,876 | 0.59 | 724 | 11,843,949 | 0.61 | 852 | 11,086,342 | 0.77 | 0.16 |
MSUD | 64 | 11,750,876 | 0.05 | 65 | 11,843,949 | 0.05 | 56 | 11,086,342 | 0.05 | 0.00 |
Homocystinuria | 18 | 11,750,876 | 0.02 | 19 | 11,843,949 | 0.02 | 16 | 11,086,342 | 0.01 | 0.00 |
Citrullinemia, type I | 75 | 11,750,876 | 0.06 | 76 | 11,843,949 | 0.06 | 69 | 11,086,342 | 0.06 | 0.00 |
Argininosuccinic aciduria | 59 | 11,750,876 | 0.05 | 59 | 11,753,317 | 0.05 | 57 | 11,086,342 | 0.05 | 0.0 |
Tyrosinemia, type I | 22 | 11,750,876 | 0.02 | 22 | 11,669,593 | 0.02 | 39 | 11,025,632 | 0.04 | 0.02 |
Organic Acid Disorders | ||||||||||
Isovaleric acidemia | 84 | 11,750,876 | 0.07 | 84 | 11,843,949 | 0.07 | 67 | 11,086,342 | 0.06 | −0.01 |
Glutaric acidemia, type I | 104 | 11,750,876 | 0.09 | 104 | 11,843,949 | 0.09 | 106 | 11,086,342 | 0.10 | 0.01 |
3-Hydroxy-3-methylglutaric aciduria | 6 | 11,750,876 | 0.01 | 6 | 11,843,949 | 0.01 | 8 | 11,086,342 | 0.01 | 0.00 |
3-Methylcrotonyl-CoA carboxylase deficiency | 293 | 11,750,876 | 0.25 | 298 | 11,843,949 | 0.25 | 224 | 11,086,342 | 0.20 | −0.05 |
Methylmalonic acidemia (methylmalonyl-CoA mutase) | 22 | 11,750,876 | 0.02 | 29 | 11,843,949 | 0.02 | 45 | 11,086,342 | 0.04 | 0.02 |
Propionic acidemia | 63 | 11,750,876 | 0.05 | 63 | 11,843,949 | 0.05 | 62 | 11,086,342 | 0.06 | 0.00 |
Methylmalonic acidemia (cobalamin disorders) | 43 | 11,750,876 | 0.04 | 41 | 11,843,949 | 0.03 | 23 | 11,086,342 | 0.02 | −0.01 |
Holocarboxylase synthase deficiency | 6 | 11,750,876 | 0.01 | 5 | 11,843,949 | 0.004 | 7 | 11,086,342 | 0.01 | 0.002 |
β-Ketothiolase deficiency | 8 | 11,750,876 | 0.01 | 9 | 11,843,949 | 0.01 | 15 | 11,086,342 | 0.01 | 0.01 |
Fatty Acid Oxidation Disorders | ||||||||||
Medium-chain acyl-CoA dehydrogenase deficiency | 689 | 11,750,876 | 0.59 | 690 | 11,843,949 | 0.58 | 651 | 11,086,342 | 0.59 | 0.00 |
Very long-chain acyl-CoA dehydrogenase deficiency | 206 | 11,750,876 | 0.18 | 206 | 11,843,949 | 0.17 | 204 | 11,086,342 | 0.18 | 0.01 |
Long-chain L-3 hydroxyacyl-CoA dehydrogenase deficiency | 26 | 11,750,876 | 0.02 | 27 | 11,843,949 | 0.02 | 32 | 11,086,342 | 0.03 | 0.01 |
Trifunctional protein deficiency | 6 | 11,750,876 | 0.01 | 6 | 11,843,949 | 0.01 | 8 | 11,086,342 | 0.01 | 0.00 |
Carnitine uptake defect/carnitine transport defect | 138 | 11,750,876 | 0.12 | 141 | 11,843,949 | 0.12 | 107 | 11,086,342 | 0.10 | −0.02 |
Hemoglobinopathies | ||||||||||
SCD (includes S,S disease, S,beta-thalassemia, and S,C disease) | 5808 | 11,750,876 | 4.94 | 6076 | 11,843,949 | 5.13 | 5517 | 11,086,342 | 4.98 | −0.15 |
Endocrine Diseases | ||||||||||
Primary congenital hypothyroidism | 6629 | 11,049,582 | 6 | 6967 | 11,843,949 | 5.88 | 7421 | 11,086,342 | 6.69 | 0.81 |
Congenital adrenal hyperplasia | 819 | 11,750,876 | 0.7 | 810 | 11,843,949 | 0.68 | 781 | 11,086,342 | 0.70 | 0.02 |
Lysosomal Diseases | ||||||||||
Glycogen storage disease, type II (Pompe) | 62 | 1,828,917 | 0.34 | 59 | 1,952,056 | 0.30 | 309 | 5,479,082 | 0.56 | 0.26 |
Mucopolysaccharidosis, type I | 11 | 965,027 | 0.11 | 12 | 1,001,675 | 0.12 | 71 | 5,121,441 | 0.14 | 0.02 |
Other DBS Screening Diseases | ||||||||||
Biotinidase deficiency | 477 | 11,750,876 | 0.41 | 488 | 11,843,949 | 0.41 | 655 | 11,086,342 | 0.59 | 0.18 |
Cystic fibrosis | 2145 | 11,750,876 | 1.83 | 2451 | 11,735,515 | 2.09 | 2518 | 10,983,899 | 2.29 | 0.20 |
Classical galactosemia | 249 | 11,750,876 | 0.21 | 256 | 11,843,949 | 0.22 | 216 | 11,086,342 | 0.19 | −0.02 |
Severe combined immune deficiency | 220 | 9,763,119 | 0.23 | 181 | 9,673,588 | 0.19 | 185 | 10,947,551 | 0.17 | −0.02 |
Spinal muscular atrophy | NA | NA | NA | NA | NA | NA | 219 | 3,185,560 | 0.69 | NA |
X-linked adrenoleukodystrophy | 83 | 1,561,394 | 0.53 | 161 | 1,556,036 | 1.03 | 345 | 5,125,176 | 0.67 | −0.36 |
Total infants identified via DBS screening | 19,126 | 17.50 | 20,135 | 18.31 | 20,885 | 20.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gaviglio, A.; McKasson, S.; Singh, S.; Ojodu, J. Infants with Congenital Diseases Identified through Newborn Screening—United States, 2018–2020. Int. J. Neonatal Screen. 2023, 9, 23. https://doi.org/10.3390/ijns9020023
Gaviglio A, McKasson S, Singh S, Ojodu J. Infants with Congenital Diseases Identified through Newborn Screening—United States, 2018–2020. International Journal of Neonatal Screening. 2023; 9(2):23. https://doi.org/10.3390/ijns9020023
Chicago/Turabian StyleGaviglio, Amy, Sarah McKasson, Sikha Singh, and Jelili Ojodu. 2023. "Infants with Congenital Diseases Identified through Newborn Screening—United States, 2018–2020" International Journal of Neonatal Screening 9, no. 2: 23. https://doi.org/10.3390/ijns9020023
APA StyleGaviglio, A., McKasson, S., Singh, S., & Ojodu, J. (2023). Infants with Congenital Diseases Identified through Newborn Screening—United States, 2018–2020. International Journal of Neonatal Screening, 9(2), 23. https://doi.org/10.3390/ijns9020023