Select Ethical Aspects of Next-Generation Sequencing Tests for Newborn Screening and Diagnostic Evaluation of Critically Ill Newborns
Abstract
:1. Introduction
2. Next-Generation Sequencing for Newborn Screening
3. Next-Generation Sequencing for Diagnostic Evaluation of Critically Ill Newborns
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Roman, T.S.; Crowley, S.B.; Roche, M.I.; Foreman, A.K.M.; O’Daniel, J.M.; Seifert, B.A.; Lee, K.; Brandt, A.; Gustafson, C.; DeCristo, D.M.; et al. Genomic Sequencing for Newborn Screening: Results of the NC NEXUS Project. Am. J. Hum. Genet. 2020, 107, 596–611. [Google Scholar] [CrossRef]
- Holm, I.A.; Agrawal, P.B.; Ceyhan-Birsoy, O.; Christensen, K.D.; Fayer, S.; Frankel, L.A.; Genetti, C.A.; Krier, J.B.; LaMay, R.C.; Levy, H.L.; et al. The BabySeq project: Implementing genomic sequencing in newborns. BMC Pediatr. 2018, 18, 225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saunders, C.J.; Miller, N.A.; Soden, S.E.; Dinwiddie, D.L.; Noll, A.; Alnadi, N.A.; Andraws, N.; Patterson, M.L.; Krivohlavek, L.A.; Fellis, J.; et al. Rapid whole-genome sequencing for genetic disease diagnosis in neonatal intensive care units. Sci. Transl. Med. 2012, 4, 154ra135. [Google Scholar] [CrossRef] [Green Version]
- Ceyhan-Birsoy, O.; Murry, J.B.; Machini, K.; Lebo, M.S.; Yu, T.W.; Fayer, S.; Genetti, C.A.; Schwartz, T.S.; Agrawal, P.B.; Parad, R.B.; et al. Interpretation of Genomic Sequencing Results in Healthy and Ill Newborns: Results from the BabySeq Project. Am. J. Hum. Genet. 2019, 104, 76–93. [Google Scholar] [CrossRef] [Green Version]
- El-Hattab, A.W.; Almannai, M.; Sutton, V.R. Newborn Screening: History, Current Status, and Future Directions. Pediatr. Clin. N. Am. 2017, 65, 389–405. [Google Scholar] [CrossRef] [PubMed]
- Fabie, N.A.V.; Pappas, K.B.; Feldman, G.L. The Current State of Newborn Screening in the United States. Pediatr. Clin. N. Am. 2019, 66, 369–386. [Google Scholar] [CrossRef] [PubMed]
- American College of Medical Genetics Newborn Screening Expert Group. Newborn screening: Toward a uniform screening panel and system–executive summary. Pediatrics 2006, 117, S296–S307. [Google Scholar] [CrossRef] [Green Version]
- Guthrie, R.; Susi, A. A simple phenylalanine method for detecting phenylketonuria in large populations of newborn infants. Pediatrics 1963, 32, 338–343. [Google Scholar] [PubMed]
- Millington, D.S.; Kodo, N.; Norwood, D.L.; Roe, C.R. Tandem mass spectrometry: A new method for acylcarnitine profiling with potential for neonatal screening for inborn errors of metabolism. J. Inherit. Metab. Dis. 1990, 13, 321–324. [Google Scholar] [CrossRef]
- Matern, D.; Gavrilov, D.; Oglesbee, D.; Raymond, K.; Rinaldo, P.; Tortorelli, S. Newborn screening for lysosomal storage disorders. Semin. Perinatol. 2015, 39, 206–216. [Google Scholar] [CrossRef]
- Wasserstein, M.P.; Andriola, M.; Arnold, G.; Aron, A.; Duffner, P.; Erbe, R.W.; Escolar, M.L.; Estrella, L.; Galvin-Parton, P.; Iglesias, A.; et al. Clinical outcomes of children with abnormal newborn screening results for Krabbe disease in New York State. Genet. Med. 2016, 18, 1235–1243. [Google Scholar] [CrossRef] [Green Version]
- Kemper, A.R.; Brosco, J.; Comeau, A.M.; Green, N.; Grosse, S.D.; Jones, E.; Kwon, J.M.; Lam, W.K.; Ojodu, J.; Prosser, L.A.; et al. Newborn screening for X-linked adrenoleukodystrophy: Evidence summary and advisory committee recommendation. Genet. Med. 2016, 19, 121–126. [Google Scholar] [CrossRef] [Green Version]
- Boardman, F.K.; Young, P.J.; Griffiths, F.E. Newborn screening for spinal muscular atrophy: The views of affected families and adults. Am. J. Med. Genet. A 2017, 173, 1546–1561. [Google Scholar] [CrossRef]
- Botkin, J.R.; Rothwell, E. Whole Genome Sequencing and Newborn Screening. Curr. Genet. Med. Rep. 2016, 4, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Hall, P.L.; Li, H.; Hagar, A.F.; Jerris, S.C.; Wittenauer, A.; Wilcox, W. Newborn Screening for X-Linked Adrenoleukodystrophy in Georgia: Experiences from a Pilot Study Screening of 51,081 Newborns. Int. J. Neonatal. Screen. 2020, 6, 81. [Google Scholar] [CrossRef] [PubMed]
- Vasquez-Loarte, T.; Thompson, J.D.; Merritt, J.L., 2nd. Considering Proximal Urea Cycle Disorders in Expanded Newborn Screening. Int. J. Neonatal. Screen. 2020, 6, 77. [Google Scholar] [CrossRef]
- Peretz, R.H.; Mew, N.A.; Vernon, H.J.; Ganetzky, R.D. Prospective diagnosis of MT-ATP6-related mitochondrial disease by newborn screening. Mol. Genet. Metab. 2021, 134, 37–42. [Google Scholar] [CrossRef]
- Wilson, J.; Jungner, J. Principles and Practices of Screening for Disease; Public Health Papers; World Health Organization: Geneva, Switzerland, 1968; p. 34. [Google Scholar]
- Adhikari, A.N.; Gallagher, R.C.; Wang, Y.; Currier, R.J.; Amatuni, G.; Bassaganyas, L.; Chen, F.; Kundu, K.; Kvale, M.; Mooney, S.D.; et al. The role of exome sequencing in newborn screening for inborn errors of metabolism. Nat. Med. 2020, 26, 1392–1397. [Google Scholar] [CrossRef] [PubMed]
- Wojcik, M.H.; Zhang, T.; Ceyhan-Birsoy, O.; Genetti, C.A.; Lebo, M.S.; Yu, T.W.; Parad, R.B.; Holm, I.A.; Rehm, H.L.; Beggs, A.H.; et al. Discordant results between conventional newborn screening and genomic sequencing in the BabySeq Project. Genet. Med. 2021, 23, 1372–1375. [Google Scholar] [CrossRef]
- Friedman, J.M.; Cornel, M.C.; Goldenberg, A.J.; Lister, K.J.; Sénécal, K.; Vears, D.F.; Global Alliance for Genomics and Health Regulatory and Ethics Working Group Paediatric Task Team. Genomic newborn screening: Public health policy considerations and recommendations. BMC Med. Genom. 2017, 10, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tarini, B.A.; Goldenberg, A.J. Ethical issues with newborn screening in the genomics era. Annu. Rev. Genom. Hum. Genet. 2012, 13, 381–393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ross, L.F.; Saal, H.M.; David, K.L.; Anderson, R.R.; American Academy of Pediatrics; American College of Medical Genetics and Genomics. Technical report: Ethical and policy issues in genetic testing and screening of children. Genet. Med. 2013, 15, 234–245. [Google Scholar] [CrossRef] [Green Version]
- Reinstein, E. Challenges of using next generation sequencing in newborn screening. Genet. Res. 2015, 97, e21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kingsmore, S.F.; Henderson, A.; Owen, M.J.; Clark, M.M.; Hansen, C.; Dimmock, D.; Chambers, C.D.; Jeliffe-Pawlowski, L.L.; Hobbs, C. Measurement of genetic diseases as a cause of mortality in infants receiving whole genome sequencing. NPJ Genom. Med. 2020, 5, 49. [Google Scholar] [CrossRef] [PubMed]
- Weiner, J.; Sharma, J.; Lantos, J.; Kilbride, H. How infants die in the neonatal intensive care unit: Trends from 1999 through 2008. Arch. Pediatr. Adolesc. Med. 2011, 165, 630–634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berg, J.S.; Agrawal, P.B.; Bailey, D.B.; Beggs, A.H.; Brenner, S.E.; Brower, A.M.; Cakici, J.A.; Ceyhan-Birsoy, O.; Chan, K.; Chen, F.; et al. Newborn Sequencing in Genomic Medicine and Public Health. Pediatrics 2017, 139, e20162252. [Google Scholar] [CrossRef] [Green Version]
- Willig, L.K.; Petrikin, J.E.; Smith, L.D.; Saunders, C.J.; Thiffault, I.; Miller, N.A.; Soden, S.E.; Cakici, J.A.; Herd, S.M.; Twist, G.; et al. Whole-genome sequencing for identification of Mendelian disorders in critically ill infants: A retrospective analysis of diagnostic and clinical findings. Lancet Respir. Med. 2015, 3, 377–387. [Google Scholar] [CrossRef] [Green Version]
- Van Diemen, C.C.; Kerstjens-Frederikse, W.S.; Bergman, K.A.; De Koning, T.J.; Sikkema-Raddatz, B.; Van Der Velde, J.K.; Abbott, K.M.; Herkert, J.C.; Löhner, K.; Rump, P.; et al. Rapid Targeted Genomics in Critically Ill Newborns. Pediatrics 2017, 140, e20162854. [Google Scholar] [CrossRef] [Green Version]
- Meng, L.; Pammi, M.; Saronwala, A.; Magoulas, P.; Ghazi, A.R.; Vetrini, F.; Zhang, J.; He, W.; Dharmadhikari, A.V.; Qu, C.; et al. Use of Exome Sequencing for Infants in Intensive Care Units: Ascertainment of Severe Single-Gene Disorders and Effect on Medical Management. JAMA Pediatr. 2017, 171, e173438. [Google Scholar] [CrossRef]
- French, C.E.; Delon, I.; Dolling, H.; Sanchis-Juan, A.; Shamardina, O.; Mégy, K.; Abbs, S.; Austin, T.; Bowdin, S.; Branco, R.G.; et al. Whole genome sequencing reveals that genetic conditions are frequent in intensively ill children. Intensive Care Med. 2019, 45, 627–636. [Google Scholar] [CrossRef] [Green Version]
- Elliott, A.M.; du Souich, C.; Lehman, A.; Guella, I.; Evans, D.M.; Candido, T.; Tooman, L.; Armstrong, L.; Clarke, L.; Gibson, W.; et al. RAPIDOMICS: Rapid genome-wide sequencing in a neonatal intensive care unit—Successes and challenges. Eur. J. Pediatr. 2019, 178, 1207–1218. [Google Scholar] [CrossRef] [PubMed]
- Kingsmore, S.F.; Cakici, J.A.; Clark, M.M.; Gaughran, M.; Feddock, M.; Batalov, S.; Bainbridge, M.N.; Carroll, J.; Caylor, S.A.; Clarke, C.; et al. A Randomized, Controlled Trial of the Analytic and Diagnostic Performance of Singleton and Trio, Rapid Genome and Exome Sequencing in Ill Infants. Am. J. Hum. Genet. 2019, 105, 719–733. [Google Scholar] [CrossRef] [PubMed]
- Freed, A.S.; Clowes Candadai, S.V.; Sikes, M.C.; Thies, J.; Byers, H.M.; Dines, J.N.; Ndugga-Kabuye, M.K.; Smith, M.B.; Fogus, K.; Mefford, H.C.; et al. The Impact of Rapid Exome Sequencing on Medical Management of Critically Ill Children. J. Pediatr. 2020, 226, 202–212.e1. [Google Scholar] [CrossRef] [PubMed]
- Farnaes, L.; Hildreth, A.; Sweeney, N.M.; Clark, M.M.; Chowdhury, S.; Nahas, S.; Cakici, J.A.; Benson, W.; Kaplan, R.H.; Kronick, R.; et al. Rapid whole-genome sequencing decreases infant morbidity and cost of hospitalization. NPJ Genom. Med. 2018, 3, 10. [Google Scholar] [CrossRef] [Green Version]
- Kernohan, K.D.; Hartley, T.; Naumenko, S.; Armour, C.M.; Graham, G.E.; Nikkel, S.M.; Lines, M.; Geraghty, M.T.; Richer, J.; Mears, W.; et al. Diagnostic clarity of exome sequencing following negative comprehensive panel testing in the neonatal intensive care unit. Am. J. Med. Genet. A 2018, 176, 1688–1691. [Google Scholar] [CrossRef] [PubMed]
- Kingsmore, S.F. Is Rapid Exome Sequencing Standard of Care in the Neonatal and Pediatric Intensive Care Units? J. Pediatr. 2020, 226, 14–15. [Google Scholar] [CrossRef] [PubMed]
- Ross, L.F.; Clayton, E.W. Ethical Issues in Newborn Sequencing Research: The Case Study of BabySeq. Pediatrics 2019, 144, e20191031. [Google Scholar] [CrossRef]
- Bunnik, E.M.; de Jong, A.; Nijsingh, N.; de Wert, G.M.W.R. The New Genetics and Informed Consent: Differentiating Choice to Preserve Autonomy: The New Genetics and Informed Consent: Differentiating Choice to Preserve Autonomy. Bioethics 2013, 27, 348–355. [Google Scholar] [CrossRef]
- Holm, I.A.; McGuire, A.; Pereira, S.; Rehm, H.; Green, R.C.; Beggs, A.H.; BabySeq Project Team. Returning a Genomic Result for an Adult-Onset Condition to the Parents of a Newborn: Insights from the BabySeq Project. Pediatrics 2019, 143, S37–S43. [Google Scholar] [CrossRef] [Green Version]
- Van der Meer, L.; van Duijn, E.; Wolterbeek, R.; Tibben, A. Adverse childhood experiences of persons at risk for Huntington’s disease or BRCA1/2 hereditary breast/ovarian cancer. Clin. Genet. 2012, 81, 18–23. [Google Scholar] [CrossRef]
- Brunelli, L.; Jenkins, S.M.; Gudgeon, J.M.; Bleyl, S.B.; Miller, C.E.; Tvrdik, T.; Dames, S.A.; Ostrander, B.; Daboub, J.A.F.; Zielinski, B.A.; et al. Targeted gene panel sequencing for the rapid diagnosis of acutely ill infants. Mol. Genet. Genom. Med. 2019, 7, e00796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maron, J.L.; Kingsmore, S.F.; Wigby, K.; Chowdhury, S.; Dimmock, D.; Poindexter, B.; Suhrie, K.; Vockley, J.; Diacovo, T.; Gelb, B.D.; et al. Novel Variant Findings and Challenges Associated with the Clinical Integration of Genomic Testing: An Interim Report of the Genomic Medicine for Ill Neonates and Infants (GEMINI) Study. JAMA Pediatr. 2021, 175, e205906. [Google Scholar] [CrossRef]
- Elroy, M. Researchers and Policymakers Point to Successes and Challenges in Personalized Medicine; American Association for the Advancement of Science (AAAS): Washington, DC, USA, 2009. [Google Scholar]
- Dimmock, D.P.; Clark, M.M.; Gaughran, M.; Cakici, J.A.; Caylor, S.A.; Clarke, C.; Feddock, M.; Chowdhury, S.; Salz, L.; Cheung, C.; et al. An RCT of Rapid Genomic Sequencing among Seriously Ill Infants Results in High Clinical Utility, Changes in Management, and Low Perceived Harm. Am. J. Hum. Genet. 2020, 107, 942–952. [Google Scholar] [CrossRef] [PubMed]
- Cakici, J.A.; Dimmock, D.P.; Caylor, S.A.; Gaughran, M.; Clarke, C.; Triplett, C.; Clark, M.M.; Kingsmore, S.F.; Bloss, C.S. A Prospective Study of Parental Perceptions of Rapid Whole-Genome and -Exome Sequencing among Seriously Ill Infants. Am. J. Hum. Genet. 2020, 107, 953–962. [Google Scholar] [CrossRef] [PubMed]
- Australian Genomics Health Alliance Acute Care Flagship; Lunke, S.; Eggers, S.; Wilson, M.; Patel, C.; Barnett, C.P.; Pinner, J.; Sandaradura, S.A.; Buckley, M.F.; Krzesinski, E.I.; et al. Feasibility of Ultra-Rapid Exome Sequencing in Critically Ill Infants and Children with Suspected Monogenic Conditions in the Australian Public Health Care System. JAMA 2020, 323, 2503–2511. [Google Scholar]
Authors | Year Published | Study Design | Patient Location | Type of Test | Medium Turnaround Time |
---|---|---|---|---|---|
Willig et al. | 2015 | Retrospective | NICU/PICU | Trio rWGS | 23 days |
Van Diemen et al. | 2017 | Prospective | NICU/PICU (Age < 1 year) | rWGS | 12 days |
Meng et al. | 2017 | Retrospective | NICU/PICU/CICU | WES (proband only/trio/rapid trio) | Proband WES: 95 days Trio WES: 51 days rWES: 13 days |
French et al. | 2019 | Prospective | NICU/PICU | Trio rWGS | 27 days |
Elliott et al. | 2019 | Prospect | NICU | Trio rWES | 7.2 days * |
Kingsmore et al. | 2019 | RCT | NICU/PICU/CICU | urWGS/rWGS/rWES | urWGS: 2–3 days rWGS/rWES: 11.8 days |
Freed et al. | 2020 | Prospective | NICU/PICU/CICU | Trio rWES | 9 days |
Authors | Number of Participants | Number of Diagnoses | Number with Changes in Management | Number with Escalation of Care | Number with Limitation of Care |
---|---|---|---|---|---|
Willig et al. | 35 | rWGS 20/35 (57%) | 13 | 6 | 6 |
Van Diemen et al. | 23 | 7/23 (30%) | Not reported | Not reported | Not reported |
Meng et al. | 278 | 102 (36.7%) Subset: rWES 32/63 (50.8%) | 53 Subset rWES: 23/32 | 12 | 19 |
French et al. | 195 | 40 (21%) | 12 | 5 | 7 |
Elliott et al. | 25 | 18 (72%) | 15 | 4 | 3 |
Kingsmore et al. | 213 | 49 (24%) urWGS 11/24 (46%) rWGS 18/94 (19%) rWES 19/95 (20%) | Not reported | Not reported | Not reported |
Freed et al. | 46 | 20 (43%) | 24 | 5 | 5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sen, K.; Harmon, J.; Gropman, A.L. Select Ethical Aspects of Next-Generation Sequencing Tests for Newborn Screening and Diagnostic Evaluation of Critically Ill Newborns. Int. J. Neonatal Screen. 2021, 7, 76. https://doi.org/10.3390/ijns7040076
Sen K, Harmon J, Gropman AL. Select Ethical Aspects of Next-Generation Sequencing Tests for Newborn Screening and Diagnostic Evaluation of Critically Ill Newborns. International Journal of Neonatal Screening. 2021; 7(4):76. https://doi.org/10.3390/ijns7040076
Chicago/Turabian StyleSen, Kuntal, Jennifer Harmon, and Andrea L. Gropman. 2021. "Select Ethical Aspects of Next-Generation Sequencing Tests for Newborn Screening and Diagnostic Evaluation of Critically Ill Newborns" International Journal of Neonatal Screening 7, no. 4: 76. https://doi.org/10.3390/ijns7040076
APA StyleSen, K., Harmon, J., & Gropman, A. L. (2021). Select Ethical Aspects of Next-Generation Sequencing Tests for Newborn Screening and Diagnostic Evaluation of Critically Ill Newborns. International Journal of Neonatal Screening, 7(4), 76. https://doi.org/10.3390/ijns7040076