Modern Interpretation of Risk Factors in Breast Cancer of Women
Abstract
:Introduction
Discussion
- 0 - 49 years - 2.1% (1 in 49 women)
- 50 - 59 years - 2.4% (1 in 42 women)
- 60 - 69 years - 3.5% (1 in 28 women)
- 70 years and over - 7.0% (1 in 14 women)
- lifetime - 12.9% (1 in 8 women)
Conclusions
Conflict of interest disclosure
Compliance with ethical standards
References
- Kwee, R.M.; Kwee, T.C. Mapping the cancer imaging research landscape: which cancers are more and which cancers are less frequently investigated? Clin Imaging. 2022, 85, 89–93. [Google Scholar] [CrossRef] [PubMed]
- Giordano, S.H. Breast Cancer in Men. N Engl J Med. 2018, 378, 2311–2320. [Google Scholar] [CrossRef] [PubMed]
- Miricescu, D.; Diaconu, C.C.; Stefani, C.; Stanescu, A.M.A.; Totan, A.; et al. The Serine/Threonine Protein Kinase (Akt)/ Protein Kinase B (PkB) Signaling Pathway in Breast Cancer. J Mind Med Sci. 2020, 7, 34–39. [Google Scholar] [CrossRef]
- Salzman, B.; Collins, E.; Hersh, L. Common Breast Problems. Am Fam Physician. 2019, 99, 505–514. [Google Scholar]
- Danciu, R.; Marina, C.N.; Ardeleanu, V.; Marin, R.; Scăunașu, R.V.; Răducu, L. Breast implant illness: a step forward in understanding this complex entity and the impact of social media. J Mind Med Sci. 2019, 6, 351–355. [Google Scholar] [CrossRef]
- Lynch, H.T.; Watson, P.; Conway, T.A.; Lynch, J.F. Clinical/ genetic features in hereditary breast cancer. Breast Cancer Res Treat. 1990, 15, 63–71. [Google Scholar] [CrossRef]
- Mirman, Z.; Sharma, K.; Carroll, T.S.; de Lange, T. Expression of BRCA1, BRCA2, RAD51, and other DSB repair factors is regulated by CRL4WDR70. DNA Repair (Amst). 2022, 113, 103320. [Google Scholar] [CrossRef]
- Perou, C.M.; Sørlie, T.; Eisen, M.B.; van de Rijn, M.; Jeffrey, S.S.; Rees, C.A.; Pollack, J.R.; Ross, D.T.; Johnsen, H.; Akslen, L.A.; Fluge, O.; Pergamenschikov, A.; Williams, C.; Zhu, S.X.; Lønning, P.E.; Børresen-Dale, A.L.; Brown, P.O.; Botstein, D. Molecular portraits of human breast tumours. Nature. 2000, 406, 747–752. [Google Scholar] [CrossRef]
- Barchiesi, G.; Mazzotta, M.; Krasniqi, E.; et al. Neoadjuvant Endocrine Therapy in Breast Cancer: Current Knowledge and Future Perspectives. Int J Mol Sci. 2020, 21, 3528. [Google Scholar] [CrossRef]
- Katuwal, S.; Tapanainen, J.; Pukkala, E. Multivariate analysis of independent roles of socioeconomic status, occupational physical activity, reproductive factors, and postmenopausal hormonal therapy in risk of breast cancer. Breast Cancer Res Treat 2022. [Google Scholar] [CrossRef]
- Kale, I. The predictive role of monocyte-lymphocyte ratio and platelet-lymphocyte ratio in postmenopausal osteoporosis. J Clin Invest Surg. 2021, 6, 141–147. [Google Scholar] [CrossRef]
- Tan, D.A.; Dayu, A.R.B. Menopausal hormone therapy: why we should no longer be afraid of the breast cancer risk. Climacteric. 2022, 1–7. [Google Scholar] [CrossRef]
- Key, T.J.; Appleby, P.N.; Reeves, G.K.; Travis, R.C.; Alberg, A.J.; Barricarte, A.; Berrino, F.; Krogh, V.; Sieri, S.; Brinton, L.A.; Dorgan, J.F.; Dossus, L.; Dowsett, M.; Eliassen, A.H.; Fortner, R.T.; Hankinson, S.E.; Helzlsouer, K.J.; Hoff man-Bolton, J.; Comstock, G.W.; Kaaks, R.; Kahle, L.L.; Muti, P.; Overvad, K.; Peeters, P.H.; Riboli, E.; Rinaldi, S.; Rollison, D.E.; Stanczyk, F.Z.; Trichopoulos, D.; Tworoger, S.S.; Vineis, P.; Endogenous Hormones and Breast Cancer Collaborative Group. Sex hormones and risk of breast cancer in premenopausal women: a collaborative reanalysis of individual participant data from seven prospective studies. Lancet Oncol. 2013, 14, 1009–1019. [Google Scholar] [CrossRef] [PubMed]
- Early Breast Cancer Trialists' Collaborative Group (EBCTCG). Aromatase inhibitors versus tamoxifen in premenopausal women with oestrogen receptor-positive early-stage breast cancer treated with ovarian suppression: a patient-level meta-analysis of 7030 women from four randomised trials. Lancet Oncol. 2022, 23, 382–392. [Google Scholar] [CrossRef]
- Lazar, A.L.; Vulturar, R.; Fodor, A.; et al. The molecular mechanisms linking metabolic syndrome to endometrial and breast cancers. J Mind Med Sci. 2021, 8, 167–178. [Google Scholar] [CrossRef]
- Ellingjord-Dale, M.; Vos, L.; Tretli, S.; Hofvind, S.; Dos-Santos-Silva, I.; Ursin, G. Parity, hormones and breast cancer subtypes -results from a large nested case-control study in a national screening program. Breast Cancer Res. 2017, 19, 10. [Google Scholar] [CrossRef]
- Abubakar, M.; Figueroa, J.; Ali, H.R.; Blows, F.; Lissowska, J.; Caldas, C.; Easton, D.F.; Sherman, M.E.; Garcia-Closas, M.; Dowsett, M.; Pharoah, P.D. Combined quantitative measures of, E.R.; PR, HER2, and KI67 provide more prognostic information than categorical combinations in luminal breast cancer. Mod Pathol. 2019, 32, 1244–1256. [Google Scholar] [CrossRef]
- Seretis, A.; Cividini, S.; Markozannes, G.; Tseretopoulou, X.; Lopez, D.S.; Ntzani, E.E.; Tsilidis, K.K. Association between blood pressure and risk of cancer development: a systematic review and meta-analysis of observational studies. Sci Rep. 2019, 9, 8565. [Google Scholar] [CrossRef]
- Han, H.; Guo, W.; Shi, W.; Yu, Y.; Zhang, Y.; Ye, X.; He, J. Hypertension and breast cancer risk: a systematic review and meta-analysis. Sci Rep. 2017, 7, 44877. [Google Scholar] [CrossRef]
- Dibaba, D.T.; Ogunsina, K.; Braithwaite, D.; Akinyemiju, T. Metabolic syndrome and risk of breast cancer mortality by menopause, obesity, and subtype. Breast Cancer Res Treat. 2019, 174, 209–218. [Google Scholar] [CrossRef]
- Johnson, K.C.; Miller, A.B.; Collishaw, N.E.; Palmer, J.R.; Hammond, S.K.; Salmon, A.G.; Cantor, K.P.; Miller, M.D.; Boyd, N.F.; Millar, J.; Turcotte, F. Active smoking and secondhand smoke increase breast cancer risk: the report of the Canadian Expert Panel on Tobacco Smoke and Breast Cancer Risk (2009). Tob Control. 2011, 20, e2. [Google Scholar] [CrossRef] [PubMed]
- Boyd, N.F.; Byng, J.W.; Jong, R.A.; Fishell, E.K.; Little, L.E.; Miller, A.B.; Lockwood, G.A.; Tritchler, D.L.; Yaffe, M.J. Quantitative classification of mammographic densities and breast cancer risk: results from the Canadian National Breast Screening Study. J Natl Cancer Inst. 1995, 87, 670–675. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Houssami, N.; Noguchi, N.; Zeng, A.; Marinovich, M.L. Differential detection by breast density for digital breast tomosynthesis versus digital mammography population screening: a systematic review and meta-analysis. Br J Cancer 2022. [Google Scholar] [CrossRef]
- Stoian, A.P.; Hainarosie, R.; Pietrosanu, C.; Rusescu, A.; Andronache, L.F.; et al. Modern concepts in non-surgical esthetics; a review. J Mind Med Sci. 2019, 6, 190–195. [Google Scholar] [CrossRef]
- McCormack, V.A.; dos Santos Silva, I. Breast density and parenchymal patterns as markers of breast cancer risk: a meta-analysis. Cancer Epidemiol Biomarkers Prev. 2006, 15, 1159–1169. [Google Scholar] [CrossRef]
- Boyd, N.F.; Stone, J.; Martin, L.J.; Jong, R.; Fishell, E.; Yaffe, M.; Hammond, G.; Minkin, S. The association of breast mitogens with mammographic densities. Br J Cancer. 2002, 87, 876–882. [Google Scholar] [CrossRef]
- Greendale, G.A.; Huang, M.H.; Ursin, G.; Ingles, S.; Stanczyk, F.; Crandall, C.; Laughlin, G.A.; Barrett-Connor, E.; Karlamangla, A. Serum prolactin levels are positively associated with mammographic density in postmenopausal women. Breast Cancer Res Treat. 2007, 105, 337–346. [Google Scholar] [CrossRef]
- Tamimi, R.M.; Byrne, C.; Colditz, G.A.; Hankinson, S.E. Endogenous hormone levels, mammographic density, and subsequent risk of breast cancer in postmenopausal women. J Natl Cancer Inst. 2007, 99, 1178–1187. [Google Scholar] [CrossRef]
- Bertrand, K.A.; Eliassen, A.H.; Hankinson, S.E.; Rosner, B.A.; Tamimi, R.M. Circulating Hormones and Mammographic Density in Premenopausal Women. Horm Cancer. 2018, 9, 117–127. [Google Scholar] [CrossRef]
- Johansson, H.; Gandini, S.; Bonanni, B.; Mariette, F.; Guerrieri-Gonzaga, A.; Serrano, D.; Cassano, E.; Ramazzotto, F.; Baglietto, L.; Sandri, M.T.; Decensi, A. Relationships between circulating hormone levels, mammographic percent density and breast cancer risk factors in postmenopausal women. Breast Cancer Res Treat. 2008, 108, 57–67. [Google Scholar] [CrossRef]
- Ursin, G.; Lillie, E.O.; Lee, E.; Cockburn, M.; Schork, N.J.; Cozen, W.; Parisky, Y.R.; Hamilton, A.S.; Astrahan, M.A.; Mack, T. The relative importance of genetics and environment on mammographic density. Cancer Epidemiol Biomarkers Prev. 2009, 18, 102–112. [Google Scholar] [CrossRef] [PubMed]
- Azam, S.; Sjölander, A.; Eriksson, M.; Gabrielson, M.; Czene, K.; Hall, P. Determinants of Mammographic Density Change. JNCI Cancer Spectr. 2019, 3, pkz004. [Google Scholar] [CrossRef] [PubMed]
- Howell, A.; Anderson, A.S.; Clarke, R.B.; Duffy, S.W.; Evans, D.G.; Garcia-Closas, M.; Gescher, A.J.; Key, T.J.; Saxton, J.M.; Harvie, M.N. Risk determination and prevention of breast cancer. Breast Cancer Res. 2014, 16, 446. [Google Scholar] [CrossRef] [PubMed]
- Choi, E.; Suh, M.; Jung, S.Y.; et al. Estimating Age-Specific Mean Sojourn Time of Breast Cancer and Sensitivity of Mammographic Screening by Breast Density among Korean Women. Cancer Res Treat 2022. [Google Scholar] [CrossRef]
- McTiernan, A.; Martin, C.F.; Peck, J.D.; Aragaki, A.K.; Chlebowski, R.T.; Pisano, E.D.; Wang, C.Y.; Brunner, R.L.; Johnson, K.C.; Manson, J.E.; Lewis, C.E.; Kotchen, J.M.; Hulka, B.S.; Women's Health Initiative Mammogram Density Study Investigators. Estrogen-plus-progestin use and mammographic density in postmenopausal women: Women's Health Initiative randomized trial. J Natl Cancer Inst. 2005, 97, 1366–1376. [Google Scholar] [CrossRef]
- Greendale, G.A.; Reboussin, B.A.; Sie, A.; Singh, H.R.; Olson, L.K.; Gatewood, O.; Bassett, L.W.; Wasilauskas, C.; Bush, T.; Barrett-Connor, E. Effects of estrogen and estrogen-progestin on mammographic parenchymal density. Postmenopausal Estrogen/Progestin Interventions (PEPI) Investigators. Ann Intern Med 1999, 130 Pt 1, 262–269. [Google Scholar] [CrossRef]
- McTiernan, A.; Chlebowski, R.T.; Martin, C.; Peck, J.D.; Aragaki, A.; Pisano, E.D.; Wang, C.Y.; Johnson, K.C.; Manson, J.E.; Wallace, R.B.; Vitolins, M.Z.; Heiss, G. Conjugated equine estrogen influence on mammographic density in postmenopausal women in a substudy of the women's health initiative randomized trial. J Clin Oncol. 2009, 27, 6135–6143. [Google Scholar] [CrossRef]
- Crandall, C.J.; Guan, M.; Laughlin, G.A.; Ursin, G.A.; Stanczyk, F.Z.; Ingles, S.A.; Barrett-Connor, E.; Greendale, G.A. Increases in serum estrone sulfate level are associated with increased mammographic density during menopausal hormone therapy. Cancer Epidemiol Biomarkers Prev. 2008, 17, 1674–1681. [Google Scholar] [CrossRef]
- Chlebowski, R.T.; Hendrix, S.L.; Langer, R.D.; Stefanick, M.L.; Gass, M.; Lane, D.; Rodabough, R.J.; Gilligan, M.A.; Cyr, M.G.; Thomson, C.A.; Khandekar, J.; Petrovitch, H.; McTiernan, A.; WHI Investigators. Influence of estrogen plus progestin on breast cancer and mammography in healthy postmenopausal women: the Women's Health Initiative Randomized Trial. JAMA. 2003, 289, 3243–3253. [Google Scholar] [CrossRef]
- Bălălău, C.; Voiculescu, S.; Motofei, I.; Scăunașu, R.V.; Negrei, C. Low dose tamoxifen as treatment of benign breast proliferative lesions. Farmacia. 2015, 63, 371–375. [Google Scholar]
- Maskarinec, G.; Pagano, I.; Lurie, G.; Kolonel, L.N. A longitudinal investigation of mammographic density: the multiethnic cohort. Cancer Epidemiol Biomarkers Prev. 2006, 15, 732–739. [Google Scholar] [CrossRef] [PubMed]
- Kale, İ.; Helvacıoğlu, Ç.; Muğurtay, T.E. Evaluation of complete blood count parameters in the first trimester: an early indicator of miscarriage? J Clin Invest Surg. 2021, 6, 48–52. [Google Scholar] [CrossRef]
- Jordan, W.J. Mental Health & Drugs; A Map the Mind. J Mind Med Sci. 2020, 7, 133–140. [Google Scholar] [CrossRef]
- Kelemen, L.E.; Pankratz, V.S.; Sellers, T.A.; Brandt, K.R.; Wang, A.; Janney, C.; Fredericksen, Z.S.; Cerhan, J.R.; Vachon, C.M. Age-specific trends in mammographic density: the Minnesota Breast Cancer Family Study. Am J Epidemiol. 2008, 167, 1027–1036. [Google Scholar] [CrossRef]
- Bălălău, O.D.; Olaru, O.G.; Dumitru, A.V.; et al. Maternal infections with an increased risk of transmission to the foetus; a literature review. J Clin Invest Surg. 2020, 5, 66–72. [Google Scholar] [CrossRef]
- Olaru, O.G.; Stanescu, A.D.; Raduta, C.; et al. Caesarean section versus vaginal birth in the perception of woman who gave birth by both methods. J Mind Med Sci. 2021, 8, 127–132. [Google Scholar] [CrossRef]
- Han, X.; Stevens, J.; Truesdale, K.P.; Bradshaw, P.T.; Kucharska-Newton, A.; Prizment, A.E.; Platz, E.A.; Joshu, C.E. Body mass index at early adulthood, subsequent weight change and cancer incidence and mortality. Int J Cancer. 2014, 135, 2900–2909. [Google Scholar] [CrossRef]
- Key, T.J.; Appleby, P.N.; Reeves, G.K.; et al.; Endogenous Hormones Breast Cancer Collaborative Group Body mass index, serum sex hormones, and breast cancer risk in postmenopausal women. J Natl Cancer Inst. 2003, 95, 1218–1226. [Google Scholar] [CrossRef]
- Chan, D.S.M.; Abar, L.; Cariolou, M.; et al. World Cancer Research Fund International: Continuous Update Project-systematic literature review and meta-analysis of observational cohort studies on physical activity, sedentary behavior, adiposity, and weight change and breast cancer risk. Cancer Causes Control. 2019, 30, 1183–1200. [Google Scholar] [CrossRef]
- Shield, K.D.; Soerjomataram, I.; Rehm, J. Alcohol Use and Breast Cancer: A Critical Review. Alcohol Clin Exp Res. 2016, 40, 1166–1181. [Google Scholar] [CrossRef]
- Frydenberg, H.; Flote, V.G.; Larsson, I.M.; Barrett, E.S.; Furberg, A.S.; et al. Alcohol consumption, endogenous estrogen and mammographic density among premenopausal women. Breast Cancer Res. 2015, 17, 103. [Google Scholar] [CrossRef] [PubMed]
- Harris, H.R.; Bergkvist, L.; Wolk, A. Adherence to the World Cancer Research Fund/American Institute for Cancer Research recommendations and breast cancer risk. Int J Cancer. 2016, 138, 2657–2664. [Google Scholar] [CrossRef] [PubMed]
- Keskin, A.; Karslioglu, B. Did Covid-19 pandemic narrow the spectrum of surgical indications? J Clin Invest Surg. 2021, 6, 58–63. [Google Scholar] [CrossRef]
- Tamimi, R.M.; Spiegelman, D.; Smith-Warner, S.A.; Wang, M.; Pazaris, M.; Willett, W.C.; Eliassen, A.H.; Hunter, D.J. Population Attributable Risk of Modifiable and Nonmodifiable Breast Cancer Risk Factors in Postmenopausal Breast Cancer. Am J Epidemiol. 2016, 184, 884–893. [Google Scholar] [CrossRef]
- Arthur, R.S.; Wang, T.; Xue, X.; Kamensky, V.; Rohan, T.E. Genetic Factors, Adherence to Healthy Lifestyle Behavior, and Risk of Invasive Breast Cancer Among Women in the UK Biobank. J Natl Cancer Inst. 2020, 112, 893–901. [Google Scholar] [CrossRef]
- Scaunasu, R.V.; Voiculescu, S.; Popescu, B.; et al. Depression and breast cancer; postoperative short-term implications. J Mind Med Sci. 2018, 5, 82–84. [Google Scholar] [CrossRef]
- Bălălău, O.D.; Bacalbașa, N.; Olaru, O.G.; Pleș, L.; Stănescu, D.A. Vaginal birth after cesarean section – literature review and modern guidelines. J Clin Invest Surg. 2020, 5, 13–17. [Google Scholar] [CrossRef]
- van Oers, H.; Schlebusch, L. Indicators of psychological distress and body image disorders in female patients with breast cancer. J Mind Med Sci. 2020, 7, 179–187. [Google Scholar] [CrossRef]
- Pătru, C.L.; Marinaş, M.C.; Tudorache, Ş.; et al. The performance of hyperadherence markers in anterior placenta praevia overlying the Caesarean scar. Rom J Morphol Embryol. 2019, 60, 861–867. [Google Scholar]
- King, M.C.; Marks, J.H.; Mandell, J.B.; New York Breast Cancer Study Group. Breast and ovarian cancer risks due to inherited mutations in BRCA1 and BRCA2. Science. 2003, 302, 643–646. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Statistics, 2021. CA Cancer J Clin. 2021, 71, 7–33. [Google Scholar] [CrossRef] [PubMed]
- Chlebowski, R.T.; Chen, Z.; Anderson, G.L.; Rohan, T.; Aragaki, A.; Lane, D.; Dolan, N.C.; Paskett, E.D.; McTiernan, A.; Hubbell, F.A.; Adams-Campbell, L.L.; Prentice, R. Ethnicity and breast cancer: factors influencing differences in incidence and outcome. J Natl Cancer Inst. 2005, 97, 439–448. [Google Scholar] [CrossRef] [PubMed]
- Kedmi, A.; Kadouri, L.; Sagy, I.; Hamburger, T.; Levin, G.; Zimhony-Nissim, N.; Peretz, T. Genetic anticipation of breast cancer among BRCA1/BRCA2 mutation carriers: A retrospective study. Int J Gynaecol Obstet 2022. [Google Scholar] [CrossRef] [PubMed]
- Çalım-Gürbüz, B.; Güvendir, İ.; Ünal, B.; Erdoğan-Durmuş, Ş.; Topal, C.S.; Ağaoğlu, N.B.; Doğanay, H.L.; Kızılboğa, T.; Zemheri, I.E. Immunohistochemical Evaluation of BAP1 Expression in Breast Cancer with Known BRCA1 and BRCA2 Mutations and Comparison with Histopathological Features. Int J Surg Pathol. 2022, 10668969221085969. [Google Scholar] [CrossRef]
- Pharoah, P.D.; Antoniou, A.C.; Easton, D.F.; Ponder, B.A. Polygenes, risk prediction, and targeted prevention of breast cancer. N Engl J Med. 2008, 358, 2796–2803. [Google Scholar] [CrossRef]
- Michailidou, K.; Hall, P.; Gonzalez-Neira, A.; Ghoussaini, M.; Dennis, J.; Milne, R.L.; et al. Large-scale genotyping identifies 41 new loci associated with breast cancer risk. Nat Genet. 2013, 45, 353–361. [Google Scholar] [CrossRef]
- Yu, M.; Hazelton, W.D.; Luebeck, G.E.; Grady, W.M. Epigenetic Aging: More Than Just a Clock When It Comes to Cancer. Cancer Res. 2020, 80, 367–374. [Google Scholar] [CrossRef]
- Herrmann, M.; Pusceddu, I.; März, W.; Herrmann, W. Telomere biology and age-related diseases. Clin Chem Lab Med. 2018, 56, 1210–1222. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, Z.; Guo, Y.; Shui, H.; Liu, G.; Jin, T.; Wang, H. Shorter Telomere Length Is Associated with Increased Breast Cancer Risk in a Chinese Han Population: A Case-Control Analysis. J Breast Cancer. 2018, 21, 391–398. [Google Scholar] [CrossRef]
- Campa, D.; Barrdahl, M.; Santoro, A.; Severi, G.; Baglietto, L.; Omichessan, H.; Tumino, R.; Bueno-de-Mesquita, H.B.A.; Peeters, P.H.; Weiderpass, E.; Chirlaque, M.D.; Rodríguez-Barranco, M.; Agudo, A.; Gunter, M.; Dossus, L.; et al. Mitochondrial DNA copy number variation, leukocyte telomere length, and breast cancer risk in the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Breast Cancer Res. 2018, 20, 29. [Google Scholar] [CrossRef]
© 2022 by the author. 2022 Oana Denisa Bălălău, Răzvan Valentin Scăunașu, Octavian Gabriel Olaru, Anca Silvia Dumitriu, Stana Paunica, Liliana Florina Andronache, Anca Daniela Stănescu
Share and Cite
Bălălău, O.D.; Scăunașu, R.V.; Olaru, O.G.; Dumitriu, A.S.; Paunica, S.; Andronache, L.F.; Stănescu, A.D. Modern Interpretation of Risk Factors in Breast Cancer of Women. J. Mind Med. Sci. 2022, 9, 88-95. https://doi.org/10.22543/7674.91.P8895
Bălălău OD, Scăunașu RV, Olaru OG, Dumitriu AS, Paunica S, Andronache LF, Stănescu AD. Modern Interpretation of Risk Factors in Breast Cancer of Women. Journal of Mind and Medical Sciences. 2022; 9(1):88-95. https://doi.org/10.22543/7674.91.P8895
Chicago/Turabian StyleBălălău, Oana Denisa, Răzvan Valentin Scăunașu, Octavian Gabriel Olaru, Anca Silvia Dumitriu, Stana Paunica, Liliana Florina Andronache, and Anca Daniela Stănescu. 2022. "Modern Interpretation of Risk Factors in Breast Cancer of Women" Journal of Mind and Medical Sciences 9, no. 1: 88-95. https://doi.org/10.22543/7674.91.P8895
APA StyleBălălău, O. D., Scăunașu, R. V., Olaru, O. G., Dumitriu, A. S., Paunica, S., Andronache, L. F., & Stănescu, A. D. (2022). Modern Interpretation of Risk Factors in Breast Cancer of Women. Journal of Mind and Medical Sciences, 9(1), 88-95. https://doi.org/10.22543/7674.91.P8895