Performance of a Deep Learning Reconstruction Method on Clinical Chest–Abdomen–Pelvis Scans from a Dual-Layer Detector CT System
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Sample and Image Acquisition
2.2. Image Reconstruction
2.3. Image Assessment
2.4. Statistics
3. Results
3.1. Quantitative Image Quality Assessment
3.2. Qualitative Image Quality Assessment
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ADAM | adaptive moment estimation optimizer |
ALARA | as low as reasonably achievable |
CI | confidence interval |
CT | computed tomography |
CTDIvol | volumetric computed tomography dose index |
DLCT | dual-layer spectral detector CT |
DLR | deep learning reconstruction |
FBP | filtered back projection |
HU | Hounsfield unit |
ICC | intraclass correlation coefficient |
IMR | iterative model reconstruction |
ROI | region of interest |
SD | standard deviation |
SNR | signal-to-noise ratio |
References
- Stiller, W. Principles of multidetector-row computed tomography. Part 2: Determinants of radiation exposure and current technical developments. Radiologe 2011, 51, 1061–1076, quiz 1068–1077. [Google Scholar] [CrossRef] [PubMed]
- Willemink, M.J.; Noel, P.B. The evolution of image reconstruction for CT-from filtered back projection to artificial intelligence. Eur. Radiol. 2019, 29, 2185–2195. [Google Scholar] [CrossRef]
- Koetzier, L.R.; Mastrodicasa, D.; Szczykutowicz, T.P.; van der Werf, N.R.; Wang, A.S.; Sandfort, V.; van der Molen, A.J.; Fleischmann, D.; Willemink, M.J. Deep Learning Image Reconstruction for CT: Technical Principles and Clinical Prospects. Radiology 2023, 306, e221257. [Google Scholar] [CrossRef] [PubMed]
- McLeavy, C.M.; Chunara, M.H.; Gravell, R.J.; Rauf, A.; Cushnie, A.; Staley Talbot, C.; Hawkins, R.M. The future of CT: Deep learning reconstruction. Clin. Radiol. 2021, 76, 407–415. [Google Scholar] [CrossRef] [PubMed]
- Higaki, T.; Nakamura, Y.; Zhou, J.; Yu, Z.; Nemoto, T.; Tatsugami, F.; Awai, K. Deep Learning Reconstruction at CT: Phantom Study of the Image Characteristics. Acad. Radiol. 2020, 27, 82–87. [Google Scholar] [CrossRef] [PubMed]
- Jung, Y.; Hur, J.; Han, K.; Imai, Y.; Hong, Y.J.; Im, D.J.; Lee, K.H.; Desnoyers, M.; Thomsen, B.; Shigemasa, R.; et al. Radiation dose reduction using deep learning-based image reconstruction for a low-dose chest computed tomography protocol: A phantom study. Quant. Imaging Med. Surg. 2023, 13, 1937–1947. [Google Scholar] [CrossRef] [PubMed]
- Greffier, J.; Durand, Q.; Frandon, J.; Si-Mohamed, S.; Loisy, M.; de Oliveira, F.; Beregi, J.P.; Dabli, D. Improved image quality and dose reduction in abdominal CT with deep-learning reconstruction algorithm: A phantom study. Eur. Radiol. 2023, 33, 699–710. [Google Scholar] [CrossRef] [PubMed]
- Greffier, J.; Si-Mohamed, S.; Frandon, J.; Loisy, M.; de Oliveira, F.; Beregi, J.P.; Dabli, D. Impact of an artificial intelligence deep-learning reconstruction algorithm for CT on image quality and potential dose reduction: A phantom study. Med. Phys. 2022, 49, 5052–5063. [Google Scholar] [CrossRef] [PubMed]
- Bie, Y.; Yang, S.; Li, X.; Zhao, K.; Zhang, C.; Zhong, H. Impact of deep learning-based image reconstruction on image quality compared with adaptive statistical iterative reconstruction-Veo in renal and adrenal computed tomography. J. X-Ray Sci. Technol. 2022, 30, 409–418. [Google Scholar] [CrossRef] [PubMed]
- Nagayama, Y.; Sakabe, D.; Goto, M.; Emoto, T.; Oda, S.; Nakaura, T.; Kidoh, M.; Uetani, H.; Funama, Y.; Hirai, T. Deep Learning-based Reconstruction for Lower-Dose Pediatric CT: Technical Principles, Image Characteristics, and Clinical Implementations. Radiographics 2021, 41, 1936–1953. [Google Scholar] [CrossRef] [PubMed]
- Park, C.; Choo, K.S.; Jung, Y.; Jeong, H.S.; Hwang, J.Y.; Yun, M.S. CT iterative vs deep learning reconstruction: Comparison of noise and sharpness. Eur. Radiol. 2021, 31, 3156–3164. [Google Scholar] [CrossRef] [PubMed]
- Son, W.; Kim, M.; Hwang, J.Y.; Kim, Y.W.; Park, C.; Choo, K.S.; Kim, T.U.; Jang, J.Y. Comparison of a Deep Learning-Based Reconstruction Algorithm with Filtered Back Projection and Iterative Reconstruction Algorithms for Pediatric Abdominopelvic CT. Korean J. Radiol. 2022, 23, 752–762. [Google Scholar] [CrossRef] [PubMed]
- Greffier, J.; Durand, Q.; Serrand, C.; Sales, R.; de Oliveira, F.; Beregi, J.P.; Dabli, D.; Frandon, J. First Results of a New Deep Learning Reconstruction Algorithm on Image Quality and Liver Metastasis Conspicuity for Abdominal Low-Dose CT. Diagnostics 2023, 13, 1182. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Zuo, W.; Chen, Y.; Meng, D.; Zhang, L. Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising. IEEE Trans. Image Process. 2017, 26, 3142–3155. [Google Scholar] [CrossRef] [PubMed]
- Zabic, S.; Wang, Q.; Morton, T.; Brown, K.M. A low dose simulation tool for CT systems with energy integrating detectors. Med. Phys. 2013, 40, 031102. [Google Scholar] [CrossRef] [PubMed]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Greffier, J.; Hamard, A.; Pereira, F.; Barrau, C.; Pasquier, H.; Beregi, J.P.; Frandon, J. Image quality and dose reduction opportunity of deep learning image reconstruction algorithm for CT: A phantom study. Eur. Radiol. 2020, 30, 3951–3959. [Google Scholar] [CrossRef] [PubMed]
- Greffier, J.; Frandon, J.; Si-Mohamed, S.; Dabli, D.; Hamard, A.; Belaouni, A.; Akessoul, P.; Besse, F.; Guiu, B.; Beregi, J.P. Comparison of two deep learning image reconstruction algorithms in chest CT images: A task-based image quality assessment on phantom data. Diagn. Interv. Imaging 2022, 103, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Im, J.Y.; Halliburton, S.; Mei, K.; Perkins, A.E.; Wong, E.; Roshkovan, L.; Sandvold, O.F.; Liu, L.P.; Gang, G.J.; Noel, P.B. Patient-derived PixelPrint phantoms for evaluating clinical imaging performance of a deep learning CT reconstruction algorithm. Phys. Med. Biol. 2024, 69, 115009. [Google Scholar] [CrossRef] [PubMed]
- Shin, Y.J.; Chang, W.; Ye, J.C.; Kang, E.; Oh, D.Y.; Lee, Y.J.; Park, J.H.; Kim, Y.H. Low-Dose Abdominal CT Using a Deep Learning-Based Denoising Algorithm: A Comparison with CT Reconstructed with Filtered Back Projection or Iterative Reconstruction Algorithm. Korean J. Radiol. 2020, 21, 356–364. [Google Scholar] [CrossRef] [PubMed]
Parameter | Value |
---|---|
Sex (female; count and percentage) | 47 (48%) |
Age (years) | 64 ± 12 |
Height (cm) | 172 ± 11 |
Weight (kg) | 77 ± 16 |
BMI (kg/m2) | 25 (23–28) |
Pitch | 0.798 |
Beam Collimation (mm) | 64 × 0.625 |
Peak Tube Voltage (kV) | 120 |
Tube Current-Time Product (mAs) | 74 |
Dose Modulation | Enabled (attenuation based; dose right index 13) |
Predicted CTDIvol (mGy) | 7.5 (using a 32 cm body phantom) |
Scanner-Reported CTDIvol (mGy) | 6.4 (6.0–7.1) |
Contrast Medium | Nonionic 350 mgI/mL (AccupaqueTM 350, GE Healthcare, Chicago, IL, USA) |
Delay after Contrast Medium Injection (s) | 60 |
Region of Interest | ICC [95% CI] |
---|---|
Trachea (Air) | 0.63 [0.50, 0.74] |
Lung | 0.80 [0.72, 0.86] |
Liver | 0.95 [0.92, 0.96] |
Spleen | 0.94 [0.92, 0.96] |
Portal Vein | 0.93 [0.90, 0.95] |
Aorta | 0.94 [0.91, 0.96] |
Psoas Muscle | 0.63 [0.49, 0.73] |
Thoracic Fat | 0.88 [0.83, 0.92] |
Upper Abdominal Fat | 0.96 [0.94, 0.97] |
Lower Abdominal Fat | 0.90 [0.85, 0.93] |
Region of Interest | Attenuation (HU) | p | ||||
---|---|---|---|---|---|---|
FBP | IMR | ‘Smoother’ DLR | ‘Standard’ DLR | ‘Sharper’ DLR | ||
Trachea (Air) | −993.8 ± 6.5 | −994.7 ± 6.3 | −994.4 ± 6.9 | −994.6 ± 6.9 | −994.5 ± 6.8 | 0.67 |
Lung | −873.2 ± 35.6 | −874.0 ± 34.5 | −872.9 ± 36.1 | −873.8 ± 35.6 | −874.0 ± 35.5 | 0.99 |
Liver | 103.3 ± 16.3 | 102.1 ± 16.2 | 103.0 ± 16.1 | 102.9 ± 16.2 | 102.7 ± 16.1 | 0.97 |
Spleen | 105.5 ± 18.5 | 103.9 ± 18.0 | 105.1 ± 18.0 | 105.2 ± 18.3 | 104.9 ± 18.3 | 0.93 |
Portal Vein | 146.3 ± 25.0 | 144.9 ± 25.0 | 146.8 ± 24.7 | 146.6 ± 24.8 | 145.8 ± 24.7 | 0.95 |
Aorta | 141.7 ± 23.0 | 139.7 ± 23.0 | 141.7 ± 22.6 | 141.7 ± 22.8 | 141.1 ± 22.7 | 0.89 |
Psoas Muscle | 61.5 b ± 7.7 | 58.0 a ± 7.2 | 61.0 b ± 7.1 | 60.9 b ± 7.2 | 61.0 b ± 7.3 | <0.001 |
Thoracic Fat | −105.5 ± 14.6 | −106.5 ± 14.5 | −105.8 ± 14.5 | −105.9 ± 14.5 | −106.0 ± 14.5 | 0.98 |
Upper Abdominal Fat | −98.7 ± 19.5 | −99.9 ± 19.4 | −99.1 ± 19.3 | −97.8 ± 24.8 | −99.3 ± 19.5 | 0.90 |
Lower Abdominal Fat | −105.9 ± 13.9 | −106.8 ± 13.1 | −105.9 ± 13.5 | −106.0 ± 13.6 | −106.1 ± 13.7 | 0.96 |
Region of Interest | Noise (HU) | p | |||||||
---|---|---|---|---|---|---|---|---|---|
FBP | IMR | ‘Smoother’ DLR | ‘Standard’ DLR | ‘Sharper’ DLR | |||||
Trachea (Air) | 16.2 e ± 3.5 | 5.1 a ± 1.6 | 5.9 b ± 2.1 | (+15.7%) | 8.7 c ± 2.1 | (+70.6%) | 12.4 d ± 2.7 | (+143.1%) | <0.001 |
Lung | 37.4 b ± 18.4 | 31.0 a ± 18.8 | 32.5 ab ± 20.0 | (+4.8%) | 33.6 ab ± 19.2 | (+8.4%) | 35.3 ab ± 18.7 | (+13.9%) | 0.01 |
Liver | 31.4 d ± 6.3 | 6.4 a ± 1.0 | 5.5 a ± 2.3 | (−14.1%) | 13.6 b ± 2.8 | (+112.5%) | 22.0 c ± 4.4 | (+243.8%) | <0.001 |
Spleen | 33.3 d ± 9.4 | 7.1 a ± 4.7 | 5.9 a ± 3.0 | (−16.9%) | 14.3 b ± 3.8 | (+101.4%) | 23.0 c ± 5.8 | (+223.9%) | <0.001 |
Portal Vein | 41.7 d ± 8.5 | 8.3 a ± 1.4 | 8.3 a ± 2.8 | (±0.0%) | 18.5 b ± 3.7 | (+122.9%) | 29.3 c ± 5.9 | (+253.0%) | <0.001 |
Aorta | 45.2 d ± 8.6 | 8.2 a ± 1.5 | 8.4 a ± 3.4 | (+2.4%) | 19.6 b ± 3.8 | (+139.0%) | 31.3 c ± 5.9 | (+281.7%) | <0.001 |
Psoas Muscle | 44.4 d ± 10.1 | 7.2 a ± 1.7 | 7.6 a ± 3.1 | (+5.6%) | 18.1 b ± 4.5 | (+151.4%) | 28.9 c ± 7.0 | (+301.4%) | <0.001 |
Thoracic Fat | 16.8 d ± 3.8 | 5.2 a ± 1.5 | 4.9 a ± 2.4 | (−5.8%) | 8.4 b ± 2.1 | (+61.5%) | 12.5 c ± 2.7 | (+140.4%) | <0.001 |
Upper Abdominal Fat | 24.4 d ± 6.1 | 6.8 a ± 2.1 | 6.6 a ± 3.2 | (−2.9%) | 11.9 b ± 3.3 | (+75.0%) | 17.8 c ± 4.3 | (+161.8%) | <0.001 |
Lower Abdominal Fat | 25.3 d ± 7.2 | 5.7 a ± 1.5 | 5.3 a ± 2.5 | (−7.0%) | 11.2 b ± 2.9 | (+96.5%) | 17.4 c ± 4.2 | (+205.3%) | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schuppert, C.; Rahn, S.; Schnellbächer, N.D.; Bergner, F.; Grass, M.; Kauczor, H.-U.; Skornitzke, S.; Weber, T.F.; Do, T.D. Performance of a Deep Learning Reconstruction Method on Clinical Chest–Abdomen–Pelvis Scans from a Dual-Layer Detector CT System. Tomography 2025, 11, 94. https://doi.org/10.3390/tomography11090094
Schuppert C, Rahn S, Schnellbächer ND, Bergner F, Grass M, Kauczor H-U, Skornitzke S, Weber TF, Do TD. Performance of a Deep Learning Reconstruction Method on Clinical Chest–Abdomen–Pelvis Scans from a Dual-Layer Detector CT System. Tomography. 2025; 11(9):94. https://doi.org/10.3390/tomography11090094
Chicago/Turabian StyleSchuppert, Christopher, Stefanie Rahn, Nikolas D. Schnellbächer, Frank Bergner, Michael Grass, Hans-Ulrich Kauczor, Stephan Skornitzke, Tim F. Weber, and Thuy D. Do. 2025. "Performance of a Deep Learning Reconstruction Method on Clinical Chest–Abdomen–Pelvis Scans from a Dual-Layer Detector CT System" Tomography 11, no. 9: 94. https://doi.org/10.3390/tomography11090094
APA StyleSchuppert, C., Rahn, S., Schnellbächer, N. D., Bergner, F., Grass, M., Kauczor, H.-U., Skornitzke, S., Weber, T. F., & Do, T. D. (2025). Performance of a Deep Learning Reconstruction Method on Clinical Chest–Abdomen–Pelvis Scans from a Dual-Layer Detector CT System. Tomography, 11(9), 94. https://doi.org/10.3390/tomography11090094