Nanoparticles as Drug Delivery Vehicles for People with Cystic Fibrosis
Abstract
:1. Cystic Fibrosis Introduction
- (i)
- No CFTR protein is produced: This can be caused by mutations in the start codon for CFTR or mutations in promoter regions causing a lack of transcription.
- (ii)
- CFTR protein does not make it to the membrane: This occurs when certain mutations cause the CFTR protein to not fold correctly and thus be marked for degradation before it can make it to the membrane.
- (iii)
- CFTR is non-functional: Here, CFTR properly folds and is transported to the membrane but has a loss of function mutation in residues that are needed for ion transport.
- (iv)
- CFTR is less functional: While CFTR is mostly functional, it is not able to transport as many chloride ions and bicarbonate as required to sustain homeostasis.
- (v)
- Less CFTR is produced: CFTR is fully functional and transcribed but is not transcribed at high enough levels.
- (vi)
- CFTR is less stable: CFTR is fully functional and transcribed at the correct levels but is marked for degradation earlier than it should be, causing less CFTR to remain at the membrane.
2. Pulmonary Mucosal Layer
3. Nanoparticles
3.1. Pulmonary Deposition
3.2. Mucus Penetration
3.3. Biofilm Penetration
3.4. Cell Selectivity
3.5. Optimal Properties
4. Metallic Nanoparticles
4.1. Silver Nanoparticles
4.2. Gold Nanoparticles
4.3. Iron Oxide Nanoparticles
4.4. Metallic Nanoparticle Functionalization
5. Polymeric Nanoparticles
5.1. Polyethylene Glycol
5.2. Chitosan
5.3. Poly Lactic-co-Glycolic Acid
5.4. Alginate
6. Lipid-Based Nanoparticles
6.1. Liposome and Micelle Formation
6.2. Types of Lipid-Based Nanoparticles
6.3. Phospholipid Structure and Functionalization
7. Current FDA-Approved Inhalable Nanoparticles
7.1. TOBI® PODHALER®
7.2. ARIKAYCE®
8. Conclusions and Future Directions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
CF | Cystic Fibrosis |
pwCF | People with Cystic Fibrosis |
CFTR | Cystic Fibrosis Transmembrane Conductance Regulator |
ENaC | Epithelial Sodium Channel |
NP(s) | Nanoparticle(s) |
PEG | Polyethylene Glycol |
PEO | Polyethylene Oxide |
PLGA | Poly Lactic-co-Glycolic Acid |
ROS | Reactive Oxygen Species |
SPIONs | Superparamagnetic Iron Oxide Nanoparticles |
DSPC | 1,2-Distearoyl-sn-glycero-3-phosphocholine |
DPPC | 1,2-Dipalmitoylphosphatidylcholine |
TC | Gel-Phase Transition Temperature for Phospholipids |
SLNP(s) | Solid Lipid Nanoparticle(s) |
NLCs | Nanostructured Lipid Carriers |
TIP | Tobramycin Inhalation Powder (TOBI® PODHALER®) |
TIS | Tobramycin Inhalation Solution (TOBI®) |
FEV1 | Forced Expiratory Volume in 1 Second |
References
- Lyczak, J.B.; Cannon, C.L.; Pier, G.B. Lung Infections Associated with Cystic Fibrosis. Clin. Microbiol. Rev. 2002, 15, 194–222. [Google Scholar] [CrossRef] [PubMed]
- About Cystic Fibrosis | Cystic Fibrosis Foundation. Available online: https://www.cff.org/intro-cf/about-cystic-fibrosis (accessed on 21 April 2024).
- McBennett, K.A.; Davis, P.B.; Konstan, M.W. Increasing Life Expectancy in Cystic Fibrosis: Advances and Challenges. Pediatr. Pulmonol. 2022, 57, S5–S12. [Google Scholar] [CrossRef] [PubMed]
- Understanding Changes in Life Expectancy | Cystic Fibrosis Foundation. Available online: https://www.cff.org/managing-cf/understanding-changes-life-expectancy (accessed on 21 April 2024).
- Harris, A. Cystic Fibrosis Gene. Br. Med. Bull. 1992, 48, 738–753. [Google Scholar] [CrossRef] [PubMed]
- Clunes, M.T.; Boucher, R.C. Chapter 1 Introduction to Section I: Overview of Approaches to Study Cystic Fibrosis Pathophysiology; Humana Press: Totowa, NJ, USA, 2011. [Google Scholar] [CrossRef]
- Turcios, N.L. Cystic Fibrosis Lung Disease: An Overview. Respir. Care 2020, 65, 233–251. [Google Scholar] [CrossRef] [PubMed]
- Levring, J.; Terry, D.S.; Kilic, Z.; Fitzgerald, G.; Blanchard, S.; Chen, J. CFTR Function, Pathology and Pharmacology at Single-Molecule Resolution. Nature 2023, 616, 606–614. [Google Scholar] [CrossRef]
- Fahy, J.V.; Dickey, B.F. Airway Mucus Function and Dysfunction. New Engl. J. Med. 2010, 363, 2233–2247. [Google Scholar] [CrossRef]
- Favia, M.; De Bari, L.; Bobba, A.; Atlante, A. Clinical Medicine An Intriguing Involvement of Mitochondria in Cystic Fibrosis. J. Clin. Med. 2019, 8, 1890. [Google Scholar] [CrossRef]
- Mishra, A.; Greaves, R.; Massie, J. The Relevance of Sweat Testing for the Diagnosis of Cystic Fibrosis in the Genomic Era. Clin. Biochem Rev. 2005, 26, 135–153. [Google Scholar]
- Sweat Test | Cystic Fibrosis Foundation. Available online: https://www.cff.org/intro-cf/sweat-test (accessed on 2 July 2024).
- Levitan, I.B. The Basic Defect in Cystic Fibrosis. Science 1989, 244, 1423. [Google Scholar] [CrossRef]
- Lopes-Pacheco, M. CFTR Modulators: Shedding Light on Precision Medicine for Cystic Fibrosis. Front. Pharmacol. 2016, 7. [Google Scholar] [CrossRef]
- Cutting, G.R. Cystic Fibrosis Genetics: From Molecular Understanding to Clinical Application. Nat. Rev. Genet 2015, 16, 45–56. [Google Scholar] [CrossRef] [PubMed]
- Sosnay, P.R.; Castellani, C.; Corey, M.; Dorfman, R.; Zielenski, J.; Karchin, R.; Penland, C.M.; Cutting, G.R. Evaluation of the Disease Liability of CFTR Variants; Humana Press: Totowa, NJ, USA, 2011. [Google Scholar] [CrossRef]
- Sosnay, P.R.; Siklosi, K.R.; Van Goor, F.; Kaniecki, K.; Yu, H.; Sharma, N.; Ramalho, A.S.; Amaral, M.D.; Dorfman, R.; Zielenski, J.; et al. Defining the Disease Liability of Variants in the Cystic Fibrosis Transmembrane Conductance Regulator Gene. Nat. Genet 2013, 45, 1160–1167. [Google Scholar] [CrossRef] [PubMed]
- Ridley, C.; Thornton, D.J. Mucins: The Frontline Defence of the Lung. Biochem. Soc. Trans. 2018, 46, 1099–1106. [Google Scholar] [CrossRef]
- MUC5B—Mucin-5B—Homo Sapiens (Human) | UniProtKB | UniProt. Available online: https://www.uniprot.org/uniprotkb/Q9HC84/entry (accessed on 1 June 2024).
- MUC5AC—Mucin-5AC—Homo Sapiens (Human) | UniProtKB | UniProt. Available online: https://www.uniprot.org/uniprotkb/P98088/entry (accessed on 1 June 2024).
- Tiessen, A.; Pérez-Rodríguez, P.; Delaye-Arredondo, L. Mathematical Modeling and Comparison of Protein Size Distribution in Different Plant, Animal, Fungal and Microbial Species Reveals a Negative Correlation between Protein Size and Protein Number, Thus Providing Insight into the Evolution of Proteomes. BMC Res. Notes 2012, 5, 85. [Google Scholar] [CrossRef] [PubMed]
- Rose, M.C. Mucins: Structure, Function, and Role in Pulmonary Diseases. Am. J. Physiol. Cell. Mol. Physiol. 1992, 263, 413–429. [Google Scholar] [CrossRef]
- Purushothaman, A.K.; Nelson, E.J.R. Role of Innate Immunity and Systemic Inflammation in Cystic Fibrosis Disease Progression. Heliyon 2023, 9, e17553. [Google Scholar] [CrossRef]
- Lee, T.; Sawicki, G.S.; Altenburg, J.; Millar, S.J.; Geiger, J.M.; Jennings, M.T.; Lou, Y.; McGarry, L.J.; Van Brunt, K.; Linnemann, R.W. Effect of Elexacaftor/Tezacaftor/Ivacaftor on Annual Rate of Lung Function Decline in People with Cystic Fibrosis. J. Cyst. Fibros. 2023, 22, 402–406. [Google Scholar] [CrossRef]
- Tiwari, G.; Tiwari, R.; Bannerjee, S.; Bhati, L.; Pandey, S.; Pandey, P.; Sriwastawa, B. Drug Delivery Systems: An Updated Review. Int. J. Pharm. Investig. 2012, 2, 2. [Google Scholar] [CrossRef]
- Vargason, A.M.; Anselmo, A.C.; Mitragotri, S. The Evolution of Commercial Drug Delivery Technologies. Nat. Biomed. Eng. 2021, 5, 951–967. [Google Scholar] [CrossRef]
- Klinger-Strobel, M.; Lautenschläger, C.; Fischer, D.; Mainz, J.G.; Bruns, T.; Tuchscherr, L.; Pletz, M.W.; Makarewicz, O. Aspects of Pulmonary Drug Delivery Strategies for Infections in Cystic Fibrosis-Where Do We Stand? Expert Opin. Drug Deliv. 2015, 12, 1351–1374. [Google Scholar] [CrossRef]
- d’Angelo, I.; Conte, C.; La Rotonda, M.I.; Miro, A.; Quaglia, F.; Ungaro, F. Improving the Efficacy of Inhaled Drugs in Cystic Fibrosis: Challenges and Emerging Drug Delivery Strategies. Adv. Drug Deliv. Rev. 2014, 75, 92–111. [Google Scholar] [CrossRef] [PubMed]
- De Matteis, V. Exposure to Inorganic Nanoparticles: Routes of Entry, Immune Response, Biodistribution and in Vitro/In Vivo Toxicity Evaluation. Toxics 2017, 5, 29. [Google Scholar] [CrossRef] [PubMed]
- Ponce, M.C.; Sankari, A.; Sharma, S. Pulmonary Function Tests; StatPearls: Treasure Island, FL, USA, 2023. [Google Scholar]
- Earnest, A.; Salimi, F.; Wainwright, C.E.; Bell, S.C.; Ruseckaite, R.; Ranger, T.; Kotsimbos, T.; Ahern, S. Lung Function over the Life Course of Paediatric and Adult Patients with Cystic Fibrosis from a Large Multi-Centre Registry. Sci. Rep. 2020, 10, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Clunes, M.T.; Boucher, R.C. Cystic Fibrosis: The Mechanisms of Pathogenesis of an Inherited Lung Disorder. Drug Discov. Today Dis. Mech. 2007, 4, 63–72. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S. Sialic Acids and Sialoglycoconjugates in the Biology of Life, Health and Disease; Academic Press: Cambridge, MA, USA, 2020; pp. 1–61. ISBN 978-0-12-816126-5. [Google Scholar]
- Marcos, V.; Zhou-Suckow, Z.; Yildirim, A.Ö.; Bohla, A.; Hector, A.; Vitkov, L.; Krautgartner, W.D.; Stoiber, W.; Griese, M.; Eickelberg, O.; et al. Free DNA in Cystic Fibrosis Airway Fluids Correlates with Airflow Obstruction. Mediat. Inflamm. 2015, 2015, 408935. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, B.M.; Tsifansky, M.D.; Yang, Y.; Yeo, Y. Challenges and Advances in the Development of Inhalable Drug Formulations for Cystic Fibrosis Lung Disease. Expert Opin. Drug Deliv. 2011, 8, 451–466. [Google Scholar] [CrossRef] [PubMed]
- Chmiel, J.F.; Davis, P.B. State of the Art: Why Do the Lungs of Patients with Cystic Fibrosis Become Infected and Why Can’t They Clear the Infection? Respir. Res. 2003, 4, 8. [Google Scholar] [CrossRef]
- Martin, I.; Waters, V.; Grasemann, H. Approaches to Targeting Bacterial Biofilms in Cystic Fibrosis Airways. Int. J. Mol. Sci. 2021, 22, 2155. [Google Scholar] [CrossRef]
- Martin, C.; Li Low, W.; Gupta, A.; Ca, M.; Cairul Iqbal Mohd Amin, M.; Radecka, I.; Britland, S.T.; Raj, P.; Kenward, K. Strategies for Antimicrobial Drug Delivery to Biofilm. Curr. Pharm. Des. 2015, 21, 43–66. [Google Scholar] [CrossRef]
- Alshimaysawee, S.; Fadhel Obaid, R.; Al-Gazally, M.E.; Alexis Ramírez-Coronel, A.; Bathaei, M.S. Recent Advancements in Metallic Drug-Eluting Implants. Pharmaceutics 2023, 15, 223. [Google Scholar] [CrossRef]
- Silver Nanoparticles | Sigma-Aldrich. Available online: https://www.sigmaaldrich.com/US/en/search/silver-nanoparticles?focus=products&page=1&perpage=30&sort=relevance&term=silver%20nanoparticles&type=product_name (accessed on 1 June 2024).
- Yin, I.X.; Zhang, J.; Zhao, I.S.; Mei, M.L.; Li, Q.; Chu, C.H. The Antibacterial Mechanism of Silver Nanoparticles and Its Application in Dentistry. Int. J. Nanomed. 2020, 15, 2555–2562. [Google Scholar] [CrossRef] [PubMed]
- Cohen, A.A.; Hancock, J.; Franco, R.; Van Raamsdonk, J.M.; Shields, H.J.; Traa, A. Beneficial and Detrimental Effects of Reactive Oxygen Species on Lifespan: A Comprehensive Review of Comparative and Experimental Studies. Front. Cell Dev. Biol. 2021, 9, 628157. [Google Scholar] [CrossRef]
- Park, H.J.; Kim, J.Y.; Kim, J.; Lee, J.H.; Hahn, J.S.; Gu, M.B.; Yoon, J. Silver-Ion-Mediated Reactive Oxygen Species Generation Affecting Bactericidal Activity. Water Res. 2009, 43, 1027–1032. [Google Scholar] [CrossRef] [PubMed]
- Gold Nanoparticles | Sigma-Aldrich. Available online: https://www.sigmaaldrich.com/US/en/search/gold-nanoparticles?focus=products&page=1&perpage=30&sort=relevance&term=gold%20nanoparticles&type=product_name (accessed on 1 June 2024).
- Merchant, B. Gold, the Noble Metal and the Paradoxes of Its Toxicology. Biologicals 1998, 26, 49–59. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Yan, X.; Xia, M.; Shen, B.; Cao, Y.; Wu, X.; Sun, J.; Zhang, Y.; Zhang, M. Nanoparticle/Nanocarrier Formulation as an Antigen: The Immunogenicity and Antigenicity of Itself. Mol. Pharm. 2022, 19, 148–159. [Google Scholar] [CrossRef]
- Lucas, I.T.; Durand-Vidal, S.; Dubois, E.; Chevalet, J.; Turq, P. Surface Charge Density of Maghemite Nanoparticles: Role of Electrostatics in the Proton Exchange. J. Phys. Chem. C 2007, 111, 18568–18576. [Google Scholar] [CrossRef]
- Alcantara, D.; Josephson, L. Magnetic Nanoparticles for Application in Biomedical Sensing. Front. Nanosci. 2012, 4, 269–289. [Google Scholar] [CrossRef]
- Mittal, A.; Roy, I.; Gandhi, S. Magnetic Nanoparticles: An Overview for Biomedical Applications. Magnetochemistry 2022, 8, 107. [Google Scholar] [CrossRef]
- Ahmad, F.; Salem-Bekhit, M.M.; Khan, F.; Alshehri, S.; Khan, A.; Ghoneim, M.M.; Wu, H.F.; Taha, E.I.; Elbagory, I. Unique Properties of Surface-Functionalized Nanoparticles for Bio-Application: Functionalization Mechanisms and Importance in Application. Nanomaterials 2022, 12, 1333. [Google Scholar] [CrossRef]
- Monopoli, M.P.; Åberg, C.; Salvati, A.; Dawson, K.A. Biomolecular Coronas Provide the Biological Identity of Nanosized Materials. Nat. Nanotechnol 2012, 7, 779–786. [Google Scholar] [CrossRef]
- Al-Momani, H.; Almasri, M.; Al Balawi, D.A.; Hamed, S.; Albiss, B.A.; Aldabaibeh, N.; Ibrahim, L.; Albalawi, H.; Al Haj Mahmoud, S.; Khasawneh, A.I.; et al. The Efficacy of Biosynthesized Silver Nanoparticles against Pseudomonas Aeruginosa Isolates from Cystic Fibrosis Patients. Sci. Rep. 2023, 13, 8876. [Google Scholar] [CrossRef] [PubMed]
- Habash, M.B.; Park, A.J.; Vis, E.C.; Harris, R.J.; Khursigara, C.M. Synergy of Silver Nanoparticles and Aztreonam against Pseudomonas Aeruginosa PAO1 Biofilms. Antimicrob Agents Chemother 2014, 58, 5818–5830. [Google Scholar] [CrossRef] [PubMed]
- Pompilio, A.; Geminiani, C.; Bosco, D.; Rana, R.; Aceto, A.; Bucciarelli, T.; Scotti, L.; Di Bonaventura, G. Electrochemically Synthesized Silver Nanoparticles Are Active against Planktonic and Biofilm Cells of Pseudomonas Aeruginosa and Other Cystic Fibrosis-Associated Bacterial Pathogens. Front Microbiol. 2018, 9, 1349. [Google Scholar] [CrossRef] [PubMed]
- Piktel, E.; Wnorowska, U.; Depciuch, J.; Łysik, D.; Cieśluk, M.; Fiedoruk, K.; Mystkowska, J.; Parlińska-Wojtan, M.; Janmey, P.A.; Bucki, R. N-Acetyl-Cysteine Increases Activity of Peanut-Shaped Gold Nanoparticles Against Biofilms Formed by Clinical Strains of Pseudomonas Aeruginosa Isolated from Sputum of Cystic Fibrosis Patients. Infect Drug Resist 2022, 15, 851–871. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Shi, D.T.; Yan, K.C.; Sedgwick, A.C.; Chen, G.R.; He, X.P.; James, T.D.; Ye, B.; Hu, X.L.; Chen, D. A Glycoconjugate-Based Gold Nanoparticle Approach for the Targeted Treatment of: Pseudomonas Aeruginosa Biofilms. Nanoscale 2020, 12, 23234–23240. [Google Scholar] [CrossRef] [PubMed]
- Brandt, Y.I.; Armijo, L.M.; Rivera, A.C.; Plumley, J.B.; Cook, N.C.; Smolyakov, G.A.; Smyth, H.D.C.; Osiński, M. Effectiveness of Tobramycin Conjugated to Iron Oxide Nanoparticles in Treating Infection in Cystic Fibrosis. In Proceedings of the Colloidal Nanocrystals for Biomedical Applications VIII, San Francisco, CA, USA, 2–4 February 2013; SPIE: Paris, France, 2013; Volume 8595, p. 85951C. [Google Scholar]
- Armijo, L.M.; Wawrzyniec, S.J.; Kopciuch, M.; Brandt, Y.I.; Rivera, A.C.; Withers, N.J.; Cook, N.C.; Huber, D.L.; Monson, T.C.; Smyth, H.D.C.; et al. Antibacterial Activity of Iron Oxide, Iron Nitride, and Tobramycin Conjugated Nanoparticles against Pseudomonas Aeruginosa Biofilms. J. Nanobiotechnology 2020, 18, 35. [Google Scholar] [CrossRef] [PubMed]
- Hasenpusch, G.; Geiger, J.; Wagner, K.; Mykhaylyk, O.; Wiekhorst, F.; Trahms, L.; Heidsieck, A.; Gleich, B.; Bergemann, C.; Aneja, M.K.; et al. Magnetized Aerosols Comprising Superparamagnetic Iron Oxide Nanoparticles Improve Targeted Drug and Gene Delivery to the Lung. Pharm. Res. 2012, 29, 1308–1318. [Google Scholar] [CrossRef]
- Gedde, U.W. Polymer Physics; Springer: Amsterdam, The Netherlands, 1999. [Google Scholar]
- Cho, D.-W.; Lee, J.-S.; Jang, J.; Jung, J.W.; Park, J.H.; Pati, F. Natural, Synthetic and Semi-Synthetic Polymers. In Organ Printing; Morgan & Claypool Publishers: San Rafael, CA, USA, 2015; pp. 7-1–7-10. [Google Scholar]
- Polyethylene Glycol—PubChem. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/polyethylene%20glycol (accessed on 1 June 2024).
- Padín-González, E.; Lancaster, P.; Bottini, M.; Gasco, P.; Tran, L.; Fadeel, B.; Wilkins, T.; Monopoli, M.P. Understanding the Role and Impact of Poly (Ethylene Glycol) (PEG) on Nanoparticle Formulation: Implications for COVID-19 Vaccines. Front. Bioeng. Biotechnol. 2022, 10, 882363. [Google Scholar] [CrossRef]
- ChemDraw—PerkinElmer. Available online: https://perkinelmerinformatics.com/products/research/chemdraw/ (accessed on 24 July 2024).
- Elieh-Ali-Komi, D.; Hamblin, M.R.; Daniel, E.-A.-K. Chitin and Chitosan: Production and Application of Versatile Biomedical Nanomaterials. Int. J. Adv. Res. 2016, 4, 411. [Google Scholar]
- Mathaba, M.; Daramola, M.O. Effect of Chitosan’s Degree of Deacetylation on the Performance of PES Membrane Infused with Chitosan during AMD Treatment. Membranes 2020, 10, 52. [Google Scholar] [CrossRef]
- Vasiliadis, H.S.; Tsikopoulos, K. Glucosamine and Chondroitin for the Treatment of Osteoarthritis. World J. Orthop 2017, 8, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.I.; No, H.K.; Meyers, S.P. Physicochemical Characteristics and Functional Properties of Various Commercial Chitin and Chitosan Products. J. Agric Food Chem 1998, 46, 3839–3843. [Google Scholar] [CrossRef]
- Jhaveri, J.; Raichura, Z.; Khan, T.; Momin, M.; Omri, A. Chitosan Nanoparticles-Insight into Properties, Functionalization and Applications in Drug Delivery and Theranostics. Molecules 2021, 26, 272. [Google Scholar] [CrossRef] [PubMed]
- Aranaz, I.; Alcántara, A.R.; Civera, M.C.; Arias, C.; Elorza, B.; Caballero, A.H.; Acosta, N. Chitosan: An Overview of Its Properties and Applications. Polymers 2021, 13, 3256. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, M.A.; Syeda, J.T.M.; Wasan, K.M.; Wasan, E.K. An Overview of Chitosan Nanoparticles and Its Application in Non-Parenteral Drug Delivery. Pharmaceutics 2017, 9, 53. [Google Scholar] [CrossRef]
- Lu, Y.; Cheng, D.; Niu, B.; Wang, X.; Wu, X.; Wang, A. Properties of Poly (Lactic-Co-Glycolic Acid) and Progress of Poly (Lactic-Co-Glycolic Acid)-Based Biodegradable Materials in Biomedical Research. Pharmaceuticals 2023, 16, 454. [Google Scholar] [CrossRef]
- Hiorns, R.C.; Boucher, R.J.; Duhlev, R.; Hellwich, K.H.; Hodge, P.; Jenkins, A.D.; Jones, R.G.; Kahovec, J.; Moad, G.; Ober, C.K.; et al. A Brief Guide to Polymer Nomenclature (IUPAC Technical Report). Pure and Applied Chemistry 2012, 84, 2167–2169. [Google Scholar] [CrossRef]
- Lanao, R.P.F.; Jonker, A.M.; Wolke, J.G.C.; Jansen, J.A.; Van Hest, J.C.M.; Leeuwenburgh, S.C.G. Physicochemical Properties and Applications of Poly(Lactic-Co-Glycolic Acid) for Use in Bone Regeneration. Tissue Eng. Part B Rev. 2013, 19, 380–390. [Google Scholar] [CrossRef]
- Choi, S.Y.; Park, S.J.; Kim, W.J.; Yang, J.E.; Lee, H.; Shin, J.; Lee, S.Y. One-Step Fermentative Production of Poly(Lactate-Co-Glycolate) from Carbohydrates in Escherichia coli. Nat. Biotechnol 2016, 34, 435–440. [Google Scholar] [CrossRef]
- Astete, C.E.; Sabliov, C.M. Synthesis and Characterization of PLGA Nanoparticles. J. Biomater Sci. Polym. Ed. 2006, 17, 247–289. [Google Scholar] [CrossRef]
- Makadia, H.K.; Siegel, S.J. Poly Lactic-Co-Glycolic Acid (PLGA) as Biodegradable Controlled Drug Delivery Carrier. Polymers 2011, 3, 1377–1397. [Google Scholar] [CrossRef] [PubMed]
- Emami, F.; Mostafavi Yazdi, S.J.; Na, D.H. Poly(Lactic Acid)/Poly(Lactic-Co-Glycolic Acid) Particulate Carriers for Pulmonary Drug Delivery. J. Pharm. Investig. 2019, 49, 427–442. [Google Scholar] [CrossRef]
- Li, X.; Yang, Y.; Zhang, B.; Lin, X.; Fu, X.; An, Y.; Zou, Y.; Wang, J.-X.; Wang, Z.; Yu, T. Lactate Metabolism in Human Health and Disease. Signal Transduct. Target. Ther. 2022, 7, 305. [Google Scholar] [CrossRef] [PubMed]
- El-Hammadi, M.M.; Arias, J.L. Recent Advances in the Surface Functionalization of PLGA-Based Nanomedicines. Nanomaterials 2022, 12, 354. [Google Scholar] [CrossRef] [PubMed]
- Sah, H.; Thoma, L.A.; Desu, H.R.; Sah, E.; Wood, G.C. Concepts and Practices Used to Develop Functional PLGA-Based Nanoparticulate Systems. Int. J. Nanomed. 2013, 8, 747–765. [Google Scholar] [CrossRef]
- Severino, P.; da Silva, C.F.; Andrade, L.N.; de Lima Oliveira, D.; Campos, J.; Souto, E.B. Alginate Nanoparticles for Drug Delivery and Targeting. Curr. Pharm. Des. 2019, 25, 1312–1334. [Google Scholar] [CrossRef]
- Abka-khajouei, R.; Tounsi, L.; Shahabi, N.; Patel, A.K.; Abdelkafi, S.; Michaud, P. Structures, Properties and Applications of Alginates. Mar Drugs 2022, 20, 364. [Google Scholar] [CrossRef]
- Dodero, A.; Alberti, S.; Gaggero, G.; Ferretti, M.; Botter, R.; Vicini, S.; Castellano, M. An Up-to-Date Review on Alginate Nanoparticles and Nanofibers for Biomedical and Pharmaceutical Applications. Adv. Mater Interfaces 2021, 8, 2100809. [Google Scholar] [CrossRef]
- Li, D.Q.; Xu, Y.L.; Xu, F.; Li, J. Eco-Friendly and Biodegradable Cellulose Hydrogels. In Sustainable Hydrogels: Synthesis, Properties, and Applications; Elsevier: Amsterdam, The Netherlands, 2023; pp. 197–230. ISBN 9780323917537. [Google Scholar]
- Neves, M.I.; Moroni, L.; Barrias, C.C. Modulating Alginate Hydrogels for Improved Biological Performance as Cellular 3D Microenvironments. Front. Bioeng. Biotechnol. 2020, 8. [Google Scholar] [CrossRef]
- Makarova, A.O.; Derkach, S.R.; Khair, T.; Kazantseva, M.A.; Zuev, Y.F.; Zueva, O.S. Ion-Induced Polysaccharide Gelation: Peculiarities of Alginate Egg-Box Association with Different Divalent Cations. Polymers 2023, 15, 1243. [Google Scholar] [CrossRef]
- Thi, M.T.T.; Wibowo, D.; Rehm, B.H.A. Pseudomonas Aeruginosa Biofilms. Int. J. Mol. Sci. 2020, 21, 8671. [Google Scholar] [CrossRef]
- Boylan, N.J.; Suk, J.S.; Lai, S.K.; Jelinek, R.; Boyle, M.P.; Cooper, M.J.; Hanes, J. Highly Compacted DNA Nanoparticles with Low MW PEG Coatings: In Vitro, Ex Vivo and in Vivo Evaluation. J. Control. Release 2012, 157, 72–79. [Google Scholar] [CrossRef] [PubMed]
- Vij, N.; Min, T.; Marasigan, R.; Belcher, C.N.; Mazur, S.; Ding, H.; Yong, K.-T.; Roy, I. Development of PEGylated PLGA Nanoparticle for Controlled and Sustained Drug Delivery in Cystic Fibrosis. J. Nanobiotechnology 2010, 8, 22. [Google Scholar] [CrossRef] [PubMed]
- Cartiera, M.S.; Ferreira, E.C.; Caputo, C.; Egan, M.E.; Caplan, M.J.; Saltzman, W.M. Partial Correction of Cystic Fibrosis Defects with PLGA Nanoparticles Encapsulating Curcumin. Mol. Pharm. 2010, 7, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Günday Türeli, N.; Torge, A.; Juntke, J.; Schwarz, B.C.; Schneider-Daum, N.; Türeli, A.E.; Lehr, C.M.; Schneider, M. Ciprofloxacin-Loaded PLGA Nanoparticles against Cystic Fibrosis P. Aeruginosa Lung Infections. Eur. J. Pharm. Biopharm. 2017, 117, 363–371. [Google Scholar] [CrossRef] [PubMed]
- Patel, K.K.; Tripathi, M.; Pandey, N.; Agrawal, A.K.; Gade, S.; Anjum, M.M.; Tilak, R.; Singh, S. Alginate Lyase Immobilized Chitosan Nanoparticles of Ciprofloxacin for the Improved Antimicrobial Activity against the Biofilm Associated Mucoid P. Aeruginosa Infection in Cystic Fibrosis. Int. J. Pharm. 2019, 563, 30–42. [Google Scholar] [CrossRef] [PubMed]
- Fernández Fernández, E.; Santos-Carballal, B.; Weber, W.M.; Goycoolea, F.M. Chitosan as a Non-Viral Co-Transfection System in a Cystic Fibrosis Cell Line. Int. J. Pharm. 2016, 502, 1–9. [Google Scholar] [CrossRef]
- Scolari, I.R.; Páez, P.L.; Musri, M.M.; Petiti, J.P.; Torres, A.; Granero, G.E. Rifampicin Loaded in Alginate/Chitosan Nanoparticles as a Promising Pulmonary Carrier against Staphylococcus Aureus. Drug Deliv. Transl Res. 2020, 10, 1403–1417. [Google Scholar] [CrossRef]
- Ahonen, M.J.R.; Dorrier, J.M.; Schoenfisch, M.H. Antibiofilm Efficacy of Nitric Oxide-Releasing Alginates against Cystic Fibrosis Bacterial Pathogens. ACS Infect Dis 2019, 5, 1327–1335. [Google Scholar] [CrossRef]
- Deacon, J.; Abdelghany, S.M.; Quinn, D.J.; Schmid, D.; Megaw, J.; Donnelly, R.F.; Jones, D.S.; Kissenpfennig, A.; Elborn, J.S.; Gilmore, B.F.; et al. Antimicrobial Efficacy of Tobramycin Polymeric Nanoparticles for Pseudomonas Aeruginosa Infections in Cystic Fibrosis: Formulation, Characterisation and Functionalisation with Dornase Alfa (DNase). J. Control. Release 2015, 198, 55–61. [Google Scholar] [CrossRef]
- Hillis, D.M.; Heller, H.C.; Hacker, S.D.; Hall, D.W.; Laskowski, M.J.; Sadava, D. Life: The Science of Biology, 12th ed.; Sinauer Associates: Sunderland, MA, USA, 2020. [Google Scholar]
- Ahmed, S.; Shah, P.; Ahmed, O. Biochemistry, Lipids; StatPearls: Treasure Island, FL, USA, 2023. [Google Scholar]
- Rao Sapala, A.; Dhawan, S.; Haridas, V. Vesicles: Self-Assembly beyond Biological Lipids. RSC Adv. 2017, 7, 26608–26624. [Google Scholar] [CrossRef]
- Anandharamakrishnan, C.; Dutta, S.; Moses, J.A. Introductory Overview on Liposomes. In Liposomal Encapsulation in Food Science and Technology; Anandharamakrishnan, C., Dutta, S., Eds.; Academic Press: Cambridge, MA, USA, 2023; pp. 1–14. ISBN 978-0-12-823935-3. [Google Scholar]
- Xu, L.; Wang, X.; Liu, Y.; Yang, G.; Falconer, R.J.; Zhao, C.X. Lipid Nanoparticles for Drug Delivery. Adv. Nanobiomed Res. 2022, 2. [Google Scholar] [CrossRef]
- Tenchov, R.; Bird, R.; Curtze, A.E.; Zhou, Q. Lipid Nanoparticles from Liposomes to MRNA Vaccine Delivery, a Landscape of Research Diversity and Advancement. ACS Nano 2021, 15, 16982–17015. [Google Scholar] [CrossRef] [PubMed]
- de Lima, P.H.C.; Butera, A.P.; Cabeça, L.F.; Ribeiro-Viana, R.M. Liposome Surface Modification by Phospholipid Chemical Reactions. Chem. Phys. Lipids 2021, 237, 105084. [Google Scholar] [CrossRef]
- Kraft, J.C.; Freeling, J.P.; Wang, Z.; Ho, R.J.Y. Emerging Research and Clinical Development Trends of Liposome and Lipid Nanoparticle Drug Delivery Systems. J. Pharm. Sci. 2014, 103, 29–52. [Google Scholar] [CrossRef]
- Al-Jipouri, A.; Almurisi, S.H.; Al-Japairai, K.; Bakar, L.M.; Doolaanea, A.A. Liposomes or Extracellular Vesicles: A Comprehensive Comparison of Both Lipid Bilayer Vesicles for Pulmonary Drug Delivery. Polymers 2023, 15, 318. [Google Scholar] [CrossRef]
- Inglut, C.T.; Sorrin, A.J.; Kuruppu, T.; Vig, S.; Cicalo, J.; Ahmad, H.; Huang, H.C. Immunological and Toxicological Considerations for the Design of Liposomes. Nanomaterials 2020, 10, 190. [Google Scholar] [CrossRef]
- Robinson, E.; MacDonald, K.D.; Slaughter, K.; McKinney, M.; Patel, S.; Sun, C.; Sahay, G. Lipid Nanoparticle-Delivered Chemically Modified MRNA Restores Chloride Secretion in Cystic Fibrosis. Mol. Ther. 2018, 26, 2034–2046. [Google Scholar] [CrossRef]
- Mukherjee, A.; MacDonald, K.D.; Kim, J.; Henderson, M.I.; Eygeris, Y.; Sahay, G. Engineered Mutant α-ENaC Subunit MRNA Delivered by Lipid Nanoparticles Reduces Amiloride Currents in Cystic Fibrosis-Based Cell and Mice Models. Sci. Adv. 2020, 6, 5911–5929. [Google Scholar] [CrossRef]
- Conte, G.; Costabile, G.; Baldassi, D.; Rondelli, V.; Bassi, R.; Colombo, D.; Linardos, G.; Fiscarelli, E.V.; Sorrentino, R.; Miro, A.; et al. Hybrid Lipid/Polymer Nanoparticles to Tackle the Cystic Fibrosis Mucus Barrier in SiRNA Delivery to the Lungs: Does PEGylation Make the Difference? ACS Appl. Mater Interfaces 2022, 14, 7565–7578. [Google Scholar] [CrossRef]
- Garbuzenko, O.B.; Kbah, N.; Kuzmov, A.; Pogrebnyak, N.; Pozharov, V.; Minko, T. Inhalation Treatment of Cystic Fibrosis with Lumacaftor and Ivacaftor Co-Delivered by Nanostructured Lipid Carriers. J. Control. Release 2019, 296, 225–231. [Google Scholar] [CrossRef] [PubMed]
- Pastor, M.; Moreno-Sastre, M.; Esquisabel, A.; Sans, E.; Viñas, M.; Bachiller, D.; Asensio, V.J.; Del Pozo, Á.; Gainza, E.; Pedraz, J.L. Sodium Colistimethate Loaded Lipid Nanocarriers for the Treatment of Pseudomonas Aeruginosa Infections Associated with Cystic Fibrosis. Int. J. Pharm. 2014, 477, 485–494. [Google Scholar] [CrossRef] [PubMed]
- Nafee, N.; Forier, K.; Braeckmans, K.; Schneider, M. Mucus-Penetrating Solid Lipid Nanoparticles for the Treatment of Cystic Fibrosis: Proof of Concept, Challenges and Pitfalls. Eur. J. Pharm. Biopharm. 2018, 124, 125–137. [Google Scholar] [CrossRef] [PubMed]
- Medications | Cystic Fibrosis Foundation. Available online: https://www.cff.org/managing-cf/medications (accessed on 1 June 2024).
- Viatris. TOBI Podhaler (Tobramycin Inhalation Powder) [Package Insert]. U.S. Food and Drug Administration Website. 2023. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2023/050753s028lbl.pdf (accessed on 2 July 2024).
- Viatris. TOBI (Tobramycin Inhalation Solution) [Package Insert]. U.S. Food and Drug Administration Website. 2023. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2023/201688s019lbl.pdf (accessed on 2 July 2024).
- Geller, D.E.; Weers, J.; Heuerding, S. Development of an Inhaled Dry-Powder Formulation of Tobramycin Using PulmosphereTM Technology. J. Aerosol Med. Pulm Drug Deliv. 2011, 24, 175–182. [Google Scholar] [CrossRef]
- Konstan, M.W.; Flume, P.A.; Kappler, M.; Chiron, R.; Higgins, M.; Brockhaus, F.; Zhang, J.; Angyalosi, G.; He, E.; Geller, D.E. Safety, Efficacy and Convenience of Tobramycin Inhalation Powder in Cystic Fibrosis Patients: The EAGER Trial. J. Cyst. Fibros. 2011, 10, 54–61. [Google Scholar] [CrossRef]
- Konstan, M.W.; Geller, D.E.; Minić, P.; Brockhaus, F.; Zhang, J.; Angyalosi, G. Tobramycin Inhalation Powder for P. Aeruginosa Infection in Cystic Fibrosis: The EVOLVE Trial. Pediatr. Pulmonol. 2011, 46, 230–238. [Google Scholar] [CrossRef]
- Galeva, I.; Konstan, M.W.; Higgins, M.; Angyalosi, G.; Brockhaus, F.; Piggott, S.; Thomas, K.; Chuchalin, A.G. Tobramycin Inhalation Powder Manufactured by Improved Process in Cystic Fibrosis: The Randomized EDIT Trial. Curr. Med. Res. Opin. 2013, 29, 947–956. [Google Scholar] [CrossRef]
- Insmed. Arikayce (Amikacin Liposome Inhalation Suspension) [Package Insert]. U.S. Food and Drug Administration Website. 2023. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2023/207356s012lbl.pdf (accessed on 2 July 2024).
- Griffith, D.E.; Eagle, G.; Thomson, R.; Aksamit, T.R.; Hasegawa, N.; Morimoto, K.; Addrizzo-Harris, D.J.; O’Donnell, A.E.; Marras, T.K.; Flume, P.A.; et al. Amikacin Liposome Inhalation Suspension for Treatment-Refractory Lung Disease Caused by Mycobacterium Avium Complex (CONVERT) a Prospective, Open-Label, Randomized Study. Am. J. Respir. Crit. Care Med. 2018, 198, 1559–1569. [Google Scholar] [CrossRef]
- Eakin, M.N.; Riekert, K.A. The Impact of Medication Adherence on Lung Health Outcomes in Cystic Fibrosis. Curr Opin. Pulm Med 2013, 19, 687–691. [Google Scholar] [CrossRef]
- Five Feet Apart | Cystic Fibrosis Foundation. Available online: https://www.cff.org/get-involved/five-feet-apart (accessed on 1 June 2024).
Material | Conjugate | Model | Reference |
---|---|---|---|
Silver | N/A | P. aeruginosa | [52] |
Citrate-Capped | P. aeruginosa | [53] | |
N/A | P. aeruginosa | [54] | |
Gold | N-Acetyl-Cysteine | P. aeruginosa | [55] |
Fucose or Galactose | P. aeruginosa | [56] | |
SPION | Tobramycin | P. aeruginosa | [57] |
Alginate and/or Tobramycin | P. aeruginosa | [58] | |
Fluorescein or Complex Plasmid DNA | Mice | [59] |
Material | Conjugate | Model | Reference |
---|---|---|---|
PEG | DNA NPs | Mice | [89] |
PEG-PLGA | Bortezomib | Mice | [90] |
PLGA | Curcumin | Mice | [91] |
Ciprofloxacin | P. aeruginosa | [92] | |
Chitosan | Alginate Lyase and Ciprofloxacin | Mice | [93] |
DNA Plasmid | Human Bronchial CF Cells | [94] | |
Alginate–Chitosan | Rifampicin and Ascorbic Acid | S. aureus | [95] |
Alginate | Nitric Oxide-Releasing Conjugates | P. aeruginosa, S. aureus, and others | [96] |
Tobramycin and Dornase Alfa | P. aeruginosa | [97] |
Type of Lipid NP | Excipient | Model | Reference |
---|---|---|---|
Liposome | Chemically Modified mRNA | Bronchial Epithelial Cells, Mouse | [108] |
mRNA | CF-Based Cells, Mice | [109] | |
Micelle | PEG and siRNA | Artificial CF Mucus | [110] |
NLC | Lumacaftor and Ivacaftor | Mice | [111] |
SLNPs and NLCs | Sodium Colistimethate | Mice, P. aeruginosa | [112] |
SLNP | Tween-80 or PVA | Artificial CF Mucus, CF Sputum, Mucus-Secreting Cell Line | [113] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hourihane, E.; Hixon, K.R. Nanoparticles as Drug Delivery Vehicles for People with Cystic Fibrosis. Biomimetics 2024, 9, 574. https://doi.org/10.3390/biomimetics9090574
Hourihane E, Hixon KR. Nanoparticles as Drug Delivery Vehicles for People with Cystic Fibrosis. Biomimetics. 2024; 9(9):574. https://doi.org/10.3390/biomimetics9090574
Chicago/Turabian StyleHourihane, Eoin, and Katherine R. Hixon. 2024. "Nanoparticles as Drug Delivery Vehicles for People with Cystic Fibrosis" Biomimetics 9, no. 9: 574. https://doi.org/10.3390/biomimetics9090574
APA StyleHourihane, E., & Hixon, K. R. (2024). Nanoparticles as Drug Delivery Vehicles for People with Cystic Fibrosis. Biomimetics, 9(9), 574. https://doi.org/10.3390/biomimetics9090574